Microcanonical Entropy Model Documents
This material has 2 associated documents. Select a document title to view a document's information.
Main Document
written by
Wolfgang Christian, Trisha Salagaram, and Nithaya Chetty
The Microcanonical Entropy model considers an isolated system consisting of N identical, non-interacting quantum particles with energy E. We wish to determine the entropy of the system S(N,E). For fixed total energy E, we compute the entropy by considering a system of N distinguishable particles to be composed of a subsystem of (N - 1) particles and a subsystem of 1 particle. The model displays the entropy S(N,E) and the computation time as users vary the number of particles N and the total energy E. This model is a supplemental simulation for the article "Enhancing the understanding of entropy through computation" in the American Journal of Physics 79(11), 1127-1132 (2011).
The Microcanonical Entropy model was developed by Wolfgang Christian, Trisha Salagaram, and Nithaya Chetty using the Easy Java Simulations (EJS) modeling tool. It is distributed as a ready-to-run (compiled) Java archive. Double clicking the ejs_stp_MicrocanonicalEntropy.jar file will run the program if Java is installed.
Last Modified June 10, 2014
This file has previous versions.
Source Code Documents
The source code zip archive contains an EJS-XML representation of the Microcanonical Entropy Model. Unzip this archive in your EJS workspace to compile and run this model using EJS.
Last Modified August 8, 2011
|