Detail Page

Item Picture
published by the WGBH Educational Foundation
content provider: the ChemThink
This Flash interactive tutorial explores covalent bonding, a type of chemical bond that involves sharing of electrons. Learners investigate the attractive and repulsive forces that act on atomic particles and how the sharing of electrons can keep atoms together. See how two hydrogen atoms interact with each other to create a covalent bond. Learn about patterns in the periodic table and how electrostatic potential energy determines the bond length.

Teachers' Domain is a growing collection of more than 1,000 free educational resources compiled by researchers and experienced teachers to promote the use of digital resources in the classroom.

Please note that this resource requires Flash.
Subjects Levels Resource Types
Electricity & Magnetism
- Electrostatics
Modern Physics
- Atomic Physics
= Electron Properties
Other Sciences
- Chemistry
- High School
- Middle School
- Informal Education
- Instructional Material
= Activity
= Interactive Simulation
- Audio/Visual
= Movie/Animation
Intended Users Formats Ratings
- Learners
- Educators
- application/flash
- text/html
  • Currently 0.0/5

Want to rate this material?
Login here!


Access Rights:
Free access with registration
Unlimited access to Teachers' Domain and to ChemThink require registration, which is cost-free for both teachers and students.
Restriction:
© 2008 ChemThink
Keywords:
chemical bond animation, covalent, covalent bonding animation, electron sharing, electrostatic attraction, valence bond theory
Record Cloner:
Metadata instance created August 16, 2011 by Caroline Hall
Record Updated:
August 19, 2020 by Lyle Barbato
Last Update
when Cataloged:
December 30, 2009
Other Collections:

AAAS Benchmark Alignments (2008 Version)

4. The Physical Setting

4D. The Structure of Matter
  • 6-8: 4D/M1a. All matter is made up of atoms, which are far too small to see directly through a microscope.
  • 6-8: 4D/M6a. There are groups of elements that have similar properties, including highly reactive metals, less-reactive metals, highly reactive nonmetals (such as chlorine, fluorine, and oxygen), and some almost completely nonreactive gases (such as helium and neon).
  • 6-8: 4D/M11. Substances react chemically in characteristic ways with other substances to form new substances with different characteristic properties.
  • 9-12: 4D/H2. The number of protons in the nucleus determines what an atom's electron configuration can be and so defines the element. An atom's electron configuration, particularly the outermost electrons, determines how the atom can interact with other atoms. Atoms form bonds to other atoms by transferring or sharing electrons.
4G. Forces of Nature
  • 9-12: 4G/H2a. Electric forces acting within and between atoms are vastly stronger than the gravitational forces acting between the atoms. At larger scales, gravitational forces accumulate to produce a large and noticeable effect, whereas electric forces tend to cancel each other out.
  • 9-12: 4G/H3. Most materials have equal numbers of protons and electrons and are therefore electrically neutral. In most cases, a material acquires a negative charge by gaining electrons and acquires a positive charge by losing electrons. Even a tiny imbalance in the number of protons and electrons in an object can produce noticeable electric forces on other objects.

11. Common Themes

11B. Models
  • 6-8: 11B/M1. Models are often used to think about processes that happen too slowly, too quickly, or on too small a scale to observe directly. They are also used for processes that are too vast, too complex, or too dangerous to study.
11D. Scale
  • 6-8: 11D/M3. Natural phenomena often involve sizes, durations, and speeds that are extremely small or extremely large. These phenomena may be difficult to appreciate because they involve magnitudes far outside human experience.
ComPADRE is beta testing Citation Styles!

Record Link
AIP Format
(WGBH Educational Foundation, Boston, 2008), WWW Document, (https://oeta.pbslearningmedia.org/resource/lsps07.sci.phys.matter.covalentbond/covalent-bonding/).
AJP/PRST-PER
PBS Learning Media: Covalent Bonding (WGBH Educational Foundation, Boston, 2008), <https://oeta.pbslearningmedia.org/resource/lsps07.sci.phys.matter.covalentbond/covalent-bonding/>.
APA Format
PBS Learning Media: Covalent Bonding. (2009, December 30). Retrieved April 24, 2024, from WGBH Educational Foundation: https://oeta.pbslearningmedia.org/resource/lsps07.sci.phys.matter.covalentbond/covalent-bonding/
Chicago Format
ChemThink. PBS Learning Media: Covalent Bonding. Boston: WGBH Educational Foundation, December 30, 2009. https://oeta.pbslearningmedia.org/resource/lsps07.sci.phys.matter.covalentbond/covalent-bonding/ (accessed 24 April 2024).
MLA Format
PBS Learning Media: Covalent Bonding. Boston: WGBH Educational Foundation, 2008. 30 Dec. 2009. ChemThink. 24 Apr. 2024 <https://oeta.pbslearningmedia.org/resource/lsps07.sci.phys.matter.covalentbond/covalent-bonding/>.
BibTeX Export Format
@misc{ Title = {PBS Learning Media: Covalent Bonding}, Publisher = {WGBH Educational Foundation}, Volume = {2024}, Number = {24 April 2024}, Month = {December 30, 2009}, Year = {2008} }
Refer Export Format

%T PBS Learning Media: Covalent Bonding %D December 30, 2009 %I WGBH Educational Foundation %C Boston %U https://oeta.pbslearningmedia.org/resource/lsps07.sci.phys.matter.covalentbond/covalent-bonding/ %O application/flash

EndNote Export Format

%0 Electronic Source %D December 30, 2009 %T PBS Learning Media: Covalent Bonding %I WGBH Educational Foundation %V 2024 %N 24 April 2024 %8 December 30, 2009 %9 application/flash %U https://oeta.pbslearningmedia.org/resource/lsps07.sci.phys.matter.covalentbond/covalent-bonding/


Disclaimer: ComPADRE offers citation styles as a guide only. We cannot offer interpretations about citations as this is an automated procedure. Please refer to the style manuals in the Citation Source Information area for clarifications.

Citation Source Information

The AIP Style presented is based on information from the AIP Style Manual.

The APA Style presented is based on information from APA Style.org: Electronic References.

The Chicago Style presented is based on information from Examples of Chicago-Style Documentation.

The MLA Style presented is based on information from the MLA FAQ.

Save to my folders

Supplements

Contribute

Similar Materials