Detail Page

Item Picture
Microcanonical Entropy Model
written by Wolfgang Christian, Trisha Salagaram, and Nithaya Chetty
The Microcanonical Entropy model considers an isolated system consisting of N identical, non-interacting quantum particles energy E.  We wish to determine the entropy of the system S(N,E).
 
For fixed total energy E, we consider a system of N distinguishable particles to be composed of a subsystem of (N ? 1) particles and a subsystem of 1 particle. The system comprising N particles with energy E. (1,E?) are the degeneracies of the single particle levels with energy E? less than or equal to E. The number of microstates is used to compute entropy when N is small and a recursive algorithm is used to construct the entropy when N is large.  The model displays the entropy S(N,E) and the computation time as users vary the number of particles N and the total energy E.

The Microcanonical Entropy model was developed by Wolfgang Christian, Trisha Salagaram, and Nithaya Chetty using the Easy Java Simulations (EJS) modeling tool.  It is distributed as a ready-to-run (compiled) Java archive.  Double clicking the  ejs_stp_MicrocanonicalEntropy.jar file will run the program if Java is installed.

Please note that this resource requires at least version 1.5 of Java.
1 source code document is available
Subjects Levels Resource Types
Mathematical Tools
- Probability
- Statistics
Thermo & Stat Mech
- Second and Third Law
= Entropy
- Lower Undergraduate
- Upper Undergraduate
- Instructional Material
= Interactive Simulation
Intended Users Formats Ratings
- Learners
- Educators
- application/java
  • Currently 0.0/5

Want to rate this material?
Login here!


Access Rights:
Free access
Program released under GNU-GPL. Narrative is copyrighted.
License:
This material is released under a GNU General Public License Version 3 license.
Rights Holder:
Wolfgang Christian
Keyword:
statistical mechanics
Record Cloner:
Metadata instance created August 8, 2011 by Wolfgang Christian
Record Updated:
June 10, 2014 by Andreu Glasmann
Last Update
when Cataloged:
August 8, 2011
Other Collections:

ComPADRE is beta testing Citation Styles!

Record Link
AIP Format
W. Christian, T. Salagaram, and N. Chetty, Computer Program MICROCANONICAL ENTROPY MODEL, Version 1.0 (2011), WWW Document, (https://www.compadre.org/Repository/document/ServeFile.cfm?ID=11380&DocID=2389).
AJP/PRST-PER
W. Christian, T. Salagaram, and N. Chetty, Computer Program MICROCANONICAL ENTROPY MODEL, Version 1.0 (2011), <https://www.compadre.org/Repository/document/ServeFile.cfm?ID=11380&DocID=2389>.
APA Format
Christian, W., Salagaram, T., & Chetty, N. (2011). Microcanonical Entropy Model (Version 1.0) [Computer software]. Retrieved April 23, 2024, from https://www.compadre.org/Repository/document/ServeFile.cfm?ID=11380&DocID=2389
Chicago Format
Christian, W, T. Salagaram, and N. Chetty. "Microcanonical Entropy Model." Version 1.0. https://www.compadre.org/Repository/document/ServeFile.cfm?ID=11380&DocID=2389 (accessed 23 April 2024).
MLA Format
Christian, Wolfgang, Trisha Salagaram, and Nithaya Chetty. Microcanonical Entropy Model. Vers. 1.0. Computer software. 2011. Java 1.5. 23 Apr. 2024 <https://www.compadre.org/Repository/document/ServeFile.cfm?ID=11380&DocID=2389>.
BibTeX Export Format
@misc{ Author = "Wolfgang Christian and Trisha Salagaram and Nithaya Chetty", Title = {Microcanonical Entropy Model}, Month = {August}, Year = {2011} }
Refer Export Format

%A Wolfgang Christian %A Trisha Salagaram %A Nithaya Chetty %T Microcanonical Entropy Model %D August 8, 2011 %U https://www.compadre.org/Repository/document/ServeFile.cfm?ID=11380&DocID=2389 %O 1.0 %O application/java

EndNote Export Format

%0 Computer Program %A Christian, Wolfgang %A Salagaram, Trisha %A Chetty, Nithaya %D August 8, 2011 %T Microcanonical Entropy Model %7 1.0 %8 August 8, 2011 %U https://www.compadre.org/Repository/document/ServeFile.cfm?ID=11380&DocID=2389


Disclaimer: ComPADRE offers citation styles as a guide only. We cannot offer interpretations about citations as this is an automated procedure. Please refer to the style manuals in the Citation Source Information area for clarifications.

Citation Source Information

The AIP Style presented is based on information from the AIP Style Manual.

The APA Style presented is based on information from APA Style.org: Electronic References.

The Chicago Style presented is based on information from Examples of Chicago-Style Documentation.

The MLA Style presented is based on information from the MLA FAQ.

This resource is stored in 2 shared folders.

You must login to access shared folders.

Microcanonical Entropy Model:

Is Based On Easy Java Simulations Modeling and Authoring Tool

The Easy Java Simulations Modeling and Authoring Tool is needed to explore the computational model used in the Microcanonical Entropy Model.

relation by Wolfgang Christian

Know of another related resource? Login to relate this resource to it.
Save to my folders

Supplements

Contribute

Related Materials

Similar Materials