Cognition of an expert tackling an unfamiliar conceptual physics problem Documents

Main Document

Cognition of an expert tackling an unfamiliar conceptual physics problem 

written by David Schuster and Adriana Undreiu

We have investigated and analyzed the cognition of an expert tackling a qualitative conceptual physics problem of an unfamiliar type. Our goal was to elucidate the detailed cognitive processes and knowledge elements involved, irrespective of final solution form, and consider implications for instruction. The basic but non-trivial problem was to find qualitatively the direction of acceleration of a pendulum bob at various stages of its motion, a problem originally studied by Reif and Allen. Methodology included interviews, introspection, retrospection and self-reported metacognition. Multiple facets of cognition were revealed, with different reasoning strategies used at different stages and for different points on the path. An account is given of the zigzag thinking paths and interplay of reasoning modes and schema elements involved. We interpret the cognitive processes in terms of theoretical concepts that emerged, namely: case-based, principle-based, experientialintuitive and practical-heuristic reasoning; knowledge elements and schemata; activation; metacognition and epistemic framing. The complexity of cognition revealed in this case study contrasts with the tidy principle-based solutions we present to students. The pervasive role of schemata, case-based reasoning, practical heuristic strategies, and their interplay with physics principles is noteworthy, since these aspects of cognition are generally neither recognized nor taught. The schema/reasoning-mode perspective has direct application in science teaching, learning and problem-solving.

Published November 11, 2009
Last Modified October 13, 2009

This file is included in the full-text index.