Mobile Videoanalyse mit Tablets
am Beispiel des freien Falls mit Luftreibung

P. Klein, S. Gröber, J. Kuhn u. A. Müller

1 Einleitung


<table>
<thead>
<tr>
<th>Experiment</th>
<th>Relevante Größen, die videoexperimentell bestimmt werden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freier Fall</td>
<td>Erdbeschleunigung, Fallzeit</td>
</tr>
<tr>
<td>Schiefer Wurf</td>
<td>Abwurfinkel, Wurfhöhe, Wurfweite, Steig-/Flugzeit</td>
</tr>
<tr>
<td>Flummi</td>
<td>Restitutionskoeffizient</td>
</tr>
<tr>
<td>1D/2D – Stoßversuche</td>
<td>Geschwindigkeiten / Impulse</td>
</tr>
<tr>
<td>Schiefe Ebene</td>
<td>Beschleunigungen</td>
</tr>
<tr>
<td>Fallkegel</td>
<td>Geschwindigkeiten</td>
</tr>
<tr>
<td>Faden-/Federpendel</td>
<td>Schwingungsdauer, Pendellängen</td>
</tr>
<tr>
<td>Kreisbewegungen</td>
<td>Geschwindigkeiten, Radien</td>
</tr>
<tr>
<td>Gedämpfte Schwingung</td>
<td>Amplituden</td>
</tr>
</tbody>
</table>


2 Mobile Videoanalyse: Ein Beispiel aus der Mechanik


2.1 Bestimmung des Widerstandsbeiwerts eines Papierbackförmchens

Ein fallender Körper der Masse m erfährt auf Grund der vorbeistreichenden Luft eine abbremsende Kraft \( F_g = \frac{1}{2} \rho AV^2 \), die der Bewegungsrichtung entgegengesetzt ist. Die Sinkgeschwindigkeit \( v_s \) stellt sich ein, wenn die Gewichtskraft \( F_g = mg \) durch die Reibungskraft kompensiert wird:

\[
v_s = \sqrt{\frac{2mg}{\rho AV}}
\]

Dabei sind \( \rho = 1,3 \text{ kg/m}^3 \) die Dichte der Luft, g die Erdbeschleunigung, A die effektive Querschnittsfläche des Körpers und \( c_w \) der empirisch zu bestimmende Widerstandsbeiwert.

2.2 Versuchsdurchführung

Das Backförmchen wird mit einem roten Punkt markiert und aus ausreichender Höhe fallen gelassen, um eine Endgeschwindigkeit zu beobachten. Der Fallvorgang wird mit einem Tablet video-dokumentiert. Die optische Achse der Kamera wird mithilfe einer Wasserwaage senkrecht zur Bewegungsrichtung ausgerichtet, und ein in der Bewegungsrichtung befindlicher Maßstab mitgefilmt (Abb. 1, links). Ein techni-
lichkeit: VideoPhysics ermöglicht aus-

schließlich voreingestellte Achsenbele-
gungen; mit NewtonDV können die
Größen $x, y, v_x, v_y$ und $t$ frei den Achsen
zugeordnet werden. Auch lineare Kur-
venfits können nur mit Sensor-Tools
und Newton-DV vorgenommen werden.
Keine iOS App bietet die Möglichkeit, im
Video direkt Winkel oder Abstände zu
messen.

Aufgrund dieser Ergebnisse entschieden
sich einige Autoren, die a) auf
Android-basierten Endgeräte operieren, b) alle
für die Unterrichtspraxis relevanten Fe-
tures beinhaltet, c) didaktisch motiviert
ist und d) auch bei Praxiseinschränkungen
modifizierbar sein kann.

4 Zusammenfassung und Diskussion

Der Beitrag demonstrierte das Prinzip der
Videoanalyse mit Tablets anhand eines
Beispiels zum Thema „Fallbewegungen
mit Luftreibung“. Die einzelnen Schritte
der Videoaufnahme über die Messdatener-
fassung bis zur Auswertung wurden
dargestellt. Die erhältlichen Apps unter-
scheiden sich in ihrem Funktionsumfang
und in ihrer Handhabung, weshalb sie sich
empfehlen, die Apps vor der Einführung in
den Unterricht miteinander zu vergleichen.
Einmal in den Unterricht eingeführt,
kann mit einheitlicher Hard- und Software
gearbeitet werden und es bedarf keiner
weiteren Technik, um Experimente durch-
zuführen und auszuwerten („Stand-Alone
Devices“). Die Kameraqualität der Tablets
liegt allerdings (noch) hinter der von
Digitalkameras (bzgl. Auflösung und Framera-
tte), sodass man die Experimentierbedin-
gungen entsprechend anpassen muss (nied-
grige Geschwindigkeiten der Objekte, aus-
reichende Beleuchtung des Settings). Trotz
der Einschränkung kommen Tablets den
Unterricht durchaus bereichern, denn die
meisten Versuche eignen sich auf Grund
des geringen Materialaufwandes als Schü-
lerexperimente. Dank der Mobilität der Ge-
räte können solche Experimente auch zu
Hause durchgeführt werden. Der dargebo-
tene Vergleich auf dem Markt erhältlicher
Apps soll als Handreichung für Lehrende
dienen, die die mobile Videoanalyse in ih-
rem Unterricht einsetzen möchten.

Tab. 3: Vergleich erhältlicher Videoanalyse Apps anhand relevanter Kategorien

<table>
<thead>
<tr>
<th>Preis</th>
<th>Video Motion Analysis</th>
<th>Newton DV</th>
<th>Video Physics</th>
<th>iTrack Motion</th>
<th>Sensor Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt; 4 €, Preis nicht bekannt</td>
<td>iOS</td>
<td>iOS</td>
<td>iOS</td>
<td>iOS</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Betriebssystem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Android</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Koordinatenursprung frei wählbar</th>
</tr>
</thead>
<tbody>
<tr>
<td>ja</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Koordinatenachsen orientierbar</th>
</tr>
</thead>
<tbody>
<tr>
<td>beliebig</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>KS in jedem Frame neu wählbar</th>
</tr>
</thead>
<tbody>
<tr>
<td>ja</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Längenskalierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>ja</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Framerate skalierbar</th>
</tr>
</thead>
<tbody>
<tr>
<td>ja</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitnullpunkt wählbar</th>
</tr>
</thead>
<tbody>
<tr>
<td>ja</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Datenerfassung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Punktpaar anzeigen</td>
</tr>
<tr>
<td>ja</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Markierte Punkte korrigieren</th>
</tr>
</thead>
<tbody>
<tr>
<td>ja</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Videoframes überspringen</th>
</tr>
</thead>
<tbody>
<tr>
<td>ja</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Datendarstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datentabelle</td>
</tr>
<tr>
<td>ja</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diagramme</th>
</tr>
</thead>
<tbody>
<tr>
<td>ja</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Achsen beliebig belegbar, neue Größen erzeugbar in Vorbereitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>ja</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ja (v, a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ja</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>掖extoren</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serienbilder</td>
</tr>
<tr>
<td>----------------------------------</td>
</tr>
<tr>
<td>nicht averebar</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Datenauswertung (am mobilen Endgerät)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Längen messbar</td>
</tr>
<tr>
<td>ja</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Winkel messbar</th>
</tr>
</thead>
<tbody>
<tr>
<td>ja</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Funktionsgleichung darstellbar</th>
</tr>
</thead>
<tbody>
<tr>
<td>ja (4 Typen)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fitlinie im Diagramm</th>
</tr>
</thead>
<tbody>
<tr>
<td>ja (linear, quadr.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Datensicherung und Export/Import</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sicherung intern</td>
</tr>
<tr>
<td>ja</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Export kabellos (.csv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ja</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Export mit Kabel</th>
</tr>
</thead>
<tbody>
<tr>
<td>ja</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Datenimport (Sharing)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ja</td>
</tr>
</tbody>
</table>

| ja |

<table>
<thead>
<tr>
<th>Dropbox</th>
</tr>
</thead>
<tbody>
<tr>
<td>ja</td>
</tr>
</tbody>
</table>

Literatur

Anschriften der Verfasser
Pascal Klein, Dr. Sebastian Gröber, Prof. Dr. Jochen Kuhn, TU Kaiserslautern, E-Mail: pklein@physik.uni-kl.de, grober@tuhh.uni-kl.de, kuhn@physik.uni-kl.de; Prof. Dr. Andreas Müller, Universität Genf, E-Mail: Andreas.Mueller@unige.ch
lichkeit: VideoPhysics ermöglicht aus-
schließlich voreingestellte Achsenbele-
gegungen; mit NewtonDV können die
Größen x, y, v_x, v_y und t frei den Achsen
zugeordnet werden. Auch lineare Kur-
venfits können nur mit Sensor-Tools
und Newton-DV vorgenommen werden.
Keine iOS App bietet die Möglichkeit, im
Video direkt Winkel oder Abstände zu
messen.

Aufgrund dieser Ergebnisse entschieden wir, eine App zu programmieren, die a) auf
Android-basierten Endgeräten operiert, b) alle für die Unterrichtspraxis relevanten Fe-
atures beinhaltet, c) didaktisch motiviert
ist und d) auch nach Praxiserfahrungen
modifizierbar sein kann.

4 Zusammenfassung und Diskussion

Der Beitrag demonstrierte das Prinzip der
Videoanalyse mit Tablets anhand eines
Beispiels zum Thema „Fallbewegungen
mit Luftreibe“. Die einzelnen Schritte
von der Videoaufnahme über die Messdaten-
erfassung bis zur Auswertung wurden
dargestellt. Die erhältlichen Apps unter-
scheiden sich in ihrem Funktionsumfang
und in ihrer Handhabung, weshalb es sich
empfiehlt, die Apps vor der Einführung in
den Unterricht miteinander zu verglei-
chen. Einmal in den Unterricht eingeführt,
cann mit einheitlicher Hard- und Software
gearbeitet werden und es bedarf keiner
weiteren Technik, um Experimente durch-
zuführen und auszuwerten („Stand-Alone
Devices“). Die Kameraqualität der Tablets
liegt allerdings (noch) hinter der von Digi-
talkameras (bzw. Auflösung und Framera-
te), sodass man die Experimentierbedin-
gungen entsprechend anpassen muss (nied-
rigte Geschwindigkeiten der Objekte, aus-
reichende Beleuchtung des Settings). Trotz
der Einschränkung kommen Tablets den
Unterricht durchaus bereichern, denn die
meisten Versuche eignen sich auf Grund
des geringen Materialaufwandes als Schul-
lexperimente. Dank der Mobilität der Ge-
räte können solche Experimente auch zu
Hause durchgeführt werden. Der dargebotene Vergleich auf dem Markt erhältlicher
Apps soll als Handreichung für Lehrende
dienen, die die mobile Videonalyse in ih-
rem Unterricht einsetzen möchten.

---

**Literatur**

(Stand 06/2014)

---

**Tab. 3: Vergleich erhältlicher Videonalyse Apps anhand relevanter Kategorien**

<table>
<thead>
<tr>
<th>Preis</th>
<th>Video Motion Analysis</th>
<th>Newton DV</th>
<th>Video Physics</th>
<th>iTrack Motion</th>
<th>Sensor Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preis &lt; 4 €, Preis nicht bekannt</td>
<td>1.79 €</td>
<td>4.49 €</td>
<td>1.79 €</td>
<td>2.69 €</td>
<td></td>
</tr>
<tr>
<td>Betriebssystem</td>
<td>iOS</td>
<td>iOS</td>
<td>iOS</td>
<td>iOS</td>
<td></td>
</tr>
<tr>
<td>Videoskalierung</td>
<td>ja</td>
<td>ja</td>
<td>ja</td>
<td>ja</td>
<td></td>
</tr>
<tr>
<td>Koordinatenursprung frei wählbar</td>
<td>beliebig</td>
<td>nein</td>
<td>beliebig</td>
<td>nein</td>
<td></td>
</tr>
<tr>
<td>Koordinatenachsen orientierbar</td>
<td>ja</td>
<td>nein</td>
<td>nein</td>
<td>nein</td>
<td></td>
</tr>
<tr>
<td>KS in jedem Frame neu wählbar</td>
<td>ja</td>
<td>nein</td>
<td>nein</td>
<td>nein</td>
<td></td>
</tr>
<tr>
<td>Längenskalierung</td>
<td>ja</td>
<td>ja</td>
<td>ja</td>
<td>ja</td>
<td></td>
</tr>
<tr>
<td>Framerate skalierbar</td>
<td>ja</td>
<td>nein</td>
<td>nein</td>
<td>nein</td>
<td></td>
</tr>
<tr>
<td>Zeitnullpunkt wählbar</td>
<td>ja</td>
<td>nein</td>
<td>nein</td>
<td>nein</td>
<td></td>
</tr>
<tr>
<td>Datenerfassung</td>
<td>ja</td>
<td>nein</td>
<td>ja</td>
<td>ja</td>
<td></td>
</tr>
<tr>
<td>Punktspur anzeigen</td>
<td>ja</td>
<td>nein</td>
<td>ja</td>
<td>ja</td>
<td></td>
</tr>
<tr>
<td>Markierte Punkte korrigieren</td>
<td>ja</td>
<td>ja</td>
<td>nein</td>
<td>nein</td>
<td></td>
</tr>
<tr>
<td>Videoframes überspringen</td>
<td>ja</td>
<td>ja</td>
<td>ja</td>
<td>ja</td>
<td></td>
</tr>
<tr>
<td>Datendarstellung</td>
<td>ja</td>
<td>nein</td>
<td>nein</td>
<td>nein</td>
<td></td>
</tr>
<tr>
<td>Datentabelle</td>
<td>ja</td>
<td>Achsen beliebig belegbar, neue Größen erzeugbar in Vorbereitung</td>
<td>nein</td>
<td>x(y), x(f), y(f), y(f) (*beliebig)</td>
<td>ja</td>
</tr>
<tr>
<td>Diagramme</td>
<td>ja</td>
<td>Achsen beliebig belegbar</td>
<td>ja</td>
<td>nein</td>
<td>ja</td>
</tr>
<tr>
<td>Vektoren</td>
<td>ja</td>
<td>ja</td>
<td>ja</td>
<td>ja</td>
<td></td>
</tr>
<tr>
<td>Serienbilder</td>
<td>ja</td>
<td>ja</td>
<td>ja</td>
<td>ja</td>
<td></td>
</tr>
<tr>
<td>Datenauswertung (am mobilen Endgerät)</td>
<td>ja</td>
<td>nein</td>
<td>nein</td>
<td>nein</td>
<td></td>
</tr>
<tr>
<td>Längen messbar</td>
<td>ja</td>
<td>nein</td>
<td>nein</td>
<td>nein</td>
<td></td>
</tr>
<tr>
<td>Winkel messbar</td>
<td>ja</td>
<td>nein</td>
<td>nein</td>
<td>nein</td>
<td></td>
</tr>
<tr>
<td>Funktionsgleichung darstellbar</td>
<td>ja</td>
<td>nein</td>
<td>nein</td>
<td>nein</td>
<td></td>
</tr>
<tr>
<td>Fitline im Diagramm</td>
<td>ja</td>
<td>nein</td>
<td>nein</td>
<td>nein</td>
<td></td>
</tr>
<tr>
<td>Sicherung intern</td>
<td>ja</td>
<td>nein</td>
<td>nein</td>
<td>ja</td>
<td></td>
</tr>
<tr>
<td>Export kabellos (.csv)</td>
<td>E-Mail</td>
<td>ja</td>
<td>ja</td>
<td>ja</td>
<td></td>
</tr>
<tr>
<td>Export mit Kabel</td>
<td>ja</td>
<td>nein</td>
<td>ja</td>
<td>ja</td>
<td></td>
</tr>
<tr>
<td>Datenimport (Sharing)</td>
<td>ja</td>
<td>nein</td>
<td>ja</td>
<td>ja</td>
<td></td>
</tr>
</tbody>
</table>

---


**Anschriften der Verfasser**
Pascal Klein, Dr. Sebastian Gröber, Prof. Dr. Jochen Kuhn, TU Kaiserslautern, E-Mail: pklein@physik.uni-kl.de, groeber@rhrk.
uni-kl.de, kuhn@physik.uni-kl.de; Prof. Dr. Andreas Müller, Universität Genf, E-Mail: Andreas.Mueller@unige.ch