Physics First: Kinematics: The Physics of Motion Units
This topic contains a selection of units designed to assist you in teaching motion. Units include frames of reference, graphing skills, motion in one dimension, motion in more than one dimension, vectors, and more. Units are not listed in a prescribed order.
Graphing (15)
Lesson Plans:
An excellent lesson plan developed specifically to accompany the PhET simulation "The Moving Man". Students with little prior knowledge of graph interpretation will gain understanding of velocity vs. time graphs and how they differ from position vs. time. Adaptable for both middle school and high school. Note: You must be a registered user to access PhET teacher-contributed resources. Registration is easy and free.
Level: Grades 8-12
Duration: One class period
This is a PhET Gold Star winning lesson that helps students build skills in interpreting graphs of motion. It accompanies the PhET simulation "The Moving Man" (see link below) and includes classroom-ready Power Point concept questions, student guide, and assessments. Note: This lesson is appropriate for more advanced students than the lesson listed directly above. You must be a registered user to access it, but registration is free.
Level: Grades 10-12
Duration: 2 Class Periods
High school students can often record data and "plug & chug", but have more difficulty in fitting or interpreting data. This exemplary two-week unit on data analysis introduces students to the statistical method known as least squares regression. Using an online tool to plot data, students then calculate regression lines and fit the data to estimated parameters.
Level: Grades 9-12
Duration: Two Weeks
Activities:
This free digital grapher is especially user-friendly for beginning learners. Students can choose from five graph types: bar, line, area, pie, and X/Y. Various patterns, colors, grids, and label choices are available to allow customization. Minimum and maximum values can be set to limit the scale of the graph.
Level: Grades 4-12
This website contains a collection of short videos depicting physical processes commonly discussed in beginning courses. Positions of objects in the video frame can be viewed in step motion or real-time, and then mapped onto video analysis software, allowing for more accurate measurement and graphing.
Level: Grades 9-12
This set of eleven interactive challenges will help students master motion graphing. Each challenge requires the student to match the motion of an animated car to the correct position/time or velocity/time graph. The activity provides enough repetition to help learners construct a meaningful understanding of why the graphs appear as they do.
Level: Grades 9-12
Duration: 30-40 minutes
Blend a motion sensor lab with student-generated graph modeling. Students use the online graph sketching tool to predict the motion of a person walking back & forth over a 40-meter line. Next, they do a motion sensor lab to collect actual data. Last, they analyze differences between their predictions and the real-world data. Pair this lab with the one directly below, "Motion on a Ramp" for a great 3-day experience.
Level: Grades 5-9
Duration: 1-2 Class Periods
This activity blends a motion sensor lab with digital graph modeling. Students use the online graph-sketching tool to predict graphs of distance vs. time and velocity vs. time. Next, they use a motion sensor to collect data on a real toy being pushed up a ramp. Last, they analyze differences between their predictions and the actual data. Highly recommended by the editors. For beginners, try first introducing the activity directly above.
Level: Grades 6-9
Duration: 1-2 Class Periods
Maneuver a simulated man and watch simultaneous graphs of his position, velocity, and acceleration. For beginning learners, the acceleration graph may be closed. Try teaming this simulation with the great companion lessons by PhET teacher-fellows, found under "Lesson Plans" above. Highly versatile resource; adaptable to a broad spectrum of abilities/levels.
Level: Grades 6-12
Duration: One Class Period
This interactive graphing activity explores the effects of gravity on light and heavy objects. It gives learners a means to make predictions, quickly compare their predictions with real data, and analyze why the predictions were right or wrong. It's one of the few resources we've seen in which universal gravitation, constant acceleration, slope of the line, and graphing of free-fall motion can all be meaningfully explored in one class period. Includes lesson plan & assessment w/answer key.
Level: Grades 6-12
Duration: One Class Period
References and Collections:
This set of lessons investigates the language of kinematics (the physics of motion). It is designed to help students understand that the scientific meaning of words like "velocity" and "acceleration" is different from their use in everyday language.
Level: Grades 8-12
Duration: 20 minutes
This robust browser-based tool lets users perform calculations, share designs, and create interactive Whiteboard resources. Choose from Cartesian or polar grids, select angle measurement in degrees or radians, and view parabolic graphs in standard, vertex, or intercept form. You can zoom in/out, drag a graph onto the page, and change axes. The platform also supports conic sections, Fourier expansions, and polar graphing. When you finish, you can publish your resource or embed the file into a virtual learning space.
Level: Grades 6-12
Student Tutorials:
Excellent self-guided tutorial promotes understanding of "position" as a physics concept. Contains multiple graphs, animations, and interactive opportunities for students to test their comprehension.
Level: Grades 8-12
Duration: One Class Period
Unique approach based on a prediction model of learning. Students predict the appearance of distance and velocity graphs for different types of walking motion, then verify their predictions with a motion sensor. If all members of the group predict correctly, they move to the next problem. If not, the group's task is to analyze the error to see what went wrong, then write statements to modify incorrect ideas. Lesson was designed using evidence from physics education research (PER).
Level: 9-12
Duration: Two Class Periods
Assessment:
Here is a set of free assessment tools for grades 6-12 on topics related to physics and biology. Within the sub-topic of Force and Motion, you'll find assessments to gauge understanding of kinematics, the relationship of motion and force, and momentum. Diagnoser assessments are aligned with the NGSS, and include elicitation (warm-ups) and developmental lessons. After completing the lesson, students answer digital question sets on specific topics, with immediate feedback provided to both teachers and learners. The final step in the process is "Prescriptive Activities", designed to target specific problematic areas located by Diagnoser.
Level: Grades 6-12
Vectors (7)
Lesson Plans:
A unique and highly engaging two-week unit on vectors. Beginning physics students build understanding of vector properties by doing real pilot navigation training. This problem-based learning module comes with complete guides for teacher and learner. The final assessment is a virtual pilot test flight. Cost-free with teacher registration
Level: High School
Duration: Two Weeks
This is an exemplary set of tutorial materials for teachers to introduce vector basics, including vector addition/subtraction and how to calculate vector components. See Assessments below for a companion unit test. All may be freely downloaded. To read about the underlying pedagogy employed by the authors, go to Reference Material below and click on Bridging the Vector Calculus Gap.
Level: High School Physics
Duration: 1-2 Class Periods
Activities:
It can be difficult for beginning students to understand what a vector represents. This fun simulation allows them to watch vectors change as they drive a virtual car. Speed vs. Time is also displayed in a real-time companion graph. Note: This resource requires Flash.
Level: Grades 7-10
Duration: 30 minutes
This very simple simulation can help beginners understand what vector arrows represent. It was designed by the PhET team to target specific areas of difficulty in student understanding of vectors. Learners can move a ball with the mouse or let the simulation control the ball in four modes of motion (two types of linear, simple harmonic, and circular). Two vectors are displayed -- one green and one blue. Which color represents velocity and which acceleration? This resource requires Java.
Level: Grades 6-12
Duration: 20-30 minutes
Content Support For Teachers:
This award-winning web tutorial is a great choice for the crossover teacher who wants a refresher on vectors and their properties. Included is an introduction to free-body diagrams, example problems, a series of self-paced questions, and related interactive simulations.
Level: Teacher Support
Student Tutorials:
This page is an interactive environment where subjects are organized in flow charts, allowing easy movement from one topic to a related item. Vector resolution, addition, and product are covered in-depth.
Level: Grades 9-12
Duration: 30 minutes
Assessment:
This comprehensive worksheet on vectors may be used as a test/quiz for beginning physics students. It was designed to accompany the lecture and lesson materials by the same authors (see above under Lesson Plans). May be freely downloaded and printed for classroom use.
Level: High School Physics
Duration: One Class Period
Motion in One Dimension (5)
Activities:
A simulation to explore the motion of a model car with constant acceleration. The student sets values for initial position, velocity and acceleration -- the simulation creates the real-time graphs. A pair of timers can be placed anywhere along the path of the car to measure the motion at intervals. Available in HTML5 or Java. Can be adapted for grades 6-7 by using only the velocity and position fields.
Level: Grades 6-12
Duration: 30 minutes
This interactive graphing activity explores the effects of gravity on light and heavy objects. It gives learners a means to make predictions, quickly compare their predictions with real data, and analyze why the predictions were right or wrong. It's one of the few resources we've seen in which universal gravitation, constant acceleration, slope of the line, and graphing of free-fall motion can all be meaningfully explored in one class period. Includes lesson plan & assessment w/answer key.
Level: Grades 6-12
Duration: One Class Period
How does air resistance affect the motion of a free-falling object? In this model, a blue ball falls under the influence of gravity alone. The red ball is subject to both gravity and air resistance. Adjust the amount of air resistance with a slider, then watch the changes in the motion graphs. Requires Java
Level: Grades 9-12
Duration: 30 minutes
References and Collections:
This tutorial focuses on the language, principles, and laws which describe and explain the motion of objects. It is part of The Physics Classroom website, and provides links to related labs, problem sets, help for struggling learners, and curriculum support.
Level: High School
A must-read for teachers of K-8 science and 9th grade physical science. A physics education researcher studied groups of students in grades 4, 6, and 8. The research took a deep look at how students at these grade levels distinguish between speed and changing speed. The findings will help teachers in constructing effective lessons. Editor's Note: Why is this Important? Research reveals that children in elementary school form and maintain conceptions about the physical world that remain deeply entrenched into adulthood. Inaccurate conceptions can be very difficult to reverse.
Level: Teacher Support
Motion in More Than One Dimension (7)
Lesson Plans:
An excellent two-day lesson to accompany the PhET simulation Projectile Motion (see Activities below). It was crafted by educators to provide robust support to both teachers and learners on projectile motion with and without air resistance. You will find scripted teacher discussion, explanations of fluid properties of air, and modifiable worksheets. Created for middle school, but can be easily adapted to Physics First or Physics Prep courses.
Level: Grades 6-9
Duration: Two Class Periods
Activities:
Students can have fun exploring projectile motion as they interactively fire objects of varying mass from a cannon. Users may set initial velocity, angle, and air resistance. This resource would be teamed well with the Physics Classroom student tutorial on projectile motion (below).
Level: Grades 6-12
Duration: One Class Period
This simulation would be a good follow-up to the PhET projectile motion applet (above). This item takes the learner to the next level by calculating maximum height, horizontal distance, magnitude of velocity, and total energy of a projected object. Students will set initial height, speed, angle, and mass before firing their projectile. Appropriate for high school or gifted/talented middle school students.
Level: Grades 8-12
Duration: 45 minutes
This simulation features an airplane flying at constant horizontal velocity, preparing to drop relief supplies to a small island. As captain of the plain, you must calculate the release point for dropping the package and press the red release button at the right moment. The trajectory of the falling package is traced onscreen. If your calculations were off, it will dump in the ocean. Question for students to ponder: what does inertia have to do with it?
Level: Grades 9-12
Duration: 20-30 minutes
This popular sim has been converted to HTML5 and dressed up with cool new features. As with the older version, students will set initial speed & angle, and choose from a variety of projectiles (pumpkin, piano, cannonball, person). Now they can also set drag coefficient and easily see how air resistance affects the trajectory. You can also adjust the gravitational constant and manually adjust the diameter of the projectile. Very robust, very easy to adapt to different learning levels!
Level: 6-12
Duration: One Class Period
Student Tutorials:
This seven-part resource is an excellent introduction to the characteristics of projectile motion. Through in-depth explanations and animations, it explores vertical acceleration and explains why there are no horizontal forces acting upon projectiles, a common student misconception. The last two sections are devoted to problem solving. Try teaming it with the PhET Projectile Motion activity above.
Level: Grades 8-12
Duration: 45 minutes
A unique and highly-engaging tutorial developed by the authors of Australia's PhysClips. Short film clips, photos, and diagrams are integrated with simple text to spark interest. The first two videos feature the classic "Hammer and Feather Drop", both on the moon and on Earth.....a great springboard to discuss air resistance.
Level: High School
Duration: 1-2 Class Periods
Circular Motion (5)
Activities:
For the teacher planning a unit on amusement park physics, this tutorial can double as a student classroom activity. It offers an overview of the forces acting upon a roller coaster as it travels on a straight, curved, or looped track. Free body diagrams and animations depicting kinetic/potential energy also enhance student understanding of a complex set of interactions. (Includes a self-test.)
Level: Grades 8-12
Duration: One Class Period
Can an amusement park Merry-Go-Round be designed to be dangerous? This simple model lets kids discover for themselves how rotational speed and radial distance interact to create a more thrilling ride. Don't miss the page link to "Physiological impact of G-forces". Setting the speed & radial distance at the highest points will result in g-forces that exceed space shuttle re-entry and high speed fighter jets!
Level: Grades 6-12
Duration: 20-30 minutes
Content Support For Teachers:
One of the most deeply entrenched misconceptions among beginning physics students is that centrifugal motion (away from the center) is a "force" in itself. In this tutorial, part of Physics Classroom, the author explains why the direction of force is viewed from an inertial frame of reference in a classical mechanics course and thus why centrifugal motion is not a force in a Newtonian framework.
Level: Grades 8-12
Student Tutorials:
This resource guides the beginning student through characteristics of circular motion. It is broken into five sections addressing: the mechanics of circular motion, centripetal force, algebraic and trigonometric problems and solutions, and a full chapter that debunks the centrifugal "force" misconception. Interactive problems feature liberal use of diagrams and force vectors to enhance understanding.
Level: High School
Duration: 60-90 minutes
This student tutorial illustrates how circular motion principles can be combined with Newton's Second Law to analyze physical situations. Two algebraic problems and detailed solutions are provided, plus a five-step model for solving circular motion problems.
Level: Grades 9-12
Duration: 45 minutes
Planetary Motion (3)
Lesson Plans:
This 40-minute lesson, created by a veteran high school teacher, gives kids explicit guidance in using the PhET simulation My Solar System to explore orbital motion and gravitational attraction. Great concept building activity. Note: Registration is required to access PhET teacher-contributed materials (it's free).
Level: Grades 8-10
Duration: One Class Period
Activities:
Explore Kepler's Laws in this simulation that allows students to control the size and path of an object orbiting one of the planets in our Solar System. You can modify the eccentricity and adjust the axial radius. The simulation generates radial lines, graphs of Period vs. Semimajor Axis and more. Don't miss the "About" link to supporting resources: student manuals, assessment materials, and more. Note This resource requires Flash
Level: High School
Duration: 30-45 minutes
With this orbit simulator, you can set initial positions, velocities, and masses of 2, 3, or 4 bodies, and then watch them orbit each other. The simulation is especially effective at helping students understand how distance and mass are related to orbit. Scroll down on the page for related lesson plans developed by middle school and high school teachers. Requires Flash
Level: Grades 7-12
Duration: One class period
Special Collections (5)
Lesson Plans:
This page contains procedures for setting up 20 demonstrations relating to motion. All demos have been fully tested in the classroom and were selected for inclusion because they are engaging, require minimal set-up, and are highly illustrative of key concepts taught in introductory classical mechanics. Historical anecdotes and commentary add to the depth of this unique resource.
Level: Grades 6-12
Duration: 10-20 minutes each
This 8-day instructional unit for middle school integrates engineering practice into a study of the energy of motion. Through investigations of waterwheels, roller coasters, bouncing balls, and a pendulum, students get a solid introduction to energy transformation in a mechanical system. The unit also introduces static and kinetic friction, drag, elastic/inelastic collision, and students learn to calculate frictional force. Don't have time to do the full unit? Lessons can be pulled out individually.
Level: Grades 6-8
Duration: 8-10 Class Periods
Activities:
This free collection will impress teachers in the way it promotes depth of understanding about graphs. Learners use interactive digital tools to predict how a motion graph will look, then they watch as the computer simulates process in real time. Next, they place inputs on the graphs and use language to explain what is happening. Finally, they compare their own predictions with the simulated process to analyze why the graphs appear as they do. As with all Concord Consortium materials, the resources are subjected to rigorous classroom testing to ensure their effectiveness.
Level: Grades 6-12
References and Collections:
This collection of short videos explores the basic physics of football in a way that's sure to spark interest among kids. Each video features an NFL player, file footage of games, slow-motion video captured with a super high-speed Phantom Cam. Physicists appear in each video to explain the concepts and clarify the connection to physics. Topics: Newton's Laws, momentum, inertia, vectors, center of mass, projectile motion, and more.
Level: Grades 7-12
Student Tutorials:
This is an interactive website designed and maintained by a high school physics teacher. It offers tutorials, simulations, and problems relating to kinematics, waves, trigonometry, algebra, and geometry. The entertaining format is designed for students and also contains an EZ Graph calculator to help them easily see the graphic effect of changing coefficients.
Level: High School
Velocity and Acceleration (4)
Activities:
This robust activity from Concord Consortium lets kids deeply explore the meaning behind the slopes of velocity/time and position/time graphs. It blends interactive graph sketching, data analysis, and digital Q&A as learners explore the motion of an animated car. It will help students understand why motion graphs appear as they do, rather than mimic the pathway of an object's motion.
Level: Grades 6-10
Duration: One Class Period
This interactive graphing activity explores the effects of gravity on light and heavy objects. It gives learners a means to make predictions, quickly compare their predictions with real data, and analyze why the predictions were right or wrong. It's one of the few resources we've seen in which universal gravitation, constant acceleration, slope of the line, and graphing of free-fall motion can all be meaningfully explored in one class period. Includes lesson plan & assessment w/answer key.
Level: Grades 6-12
Duration: One Class Period
References and Collections:
A must-read for teachers of K-8 science and 9th grade physical science. A physics education researcher studied groups of students in grades 4, 6, and 8. The research took a deep look at how students at these grade levels distinguish between speed and changing speed. The findings will help teachers in constructing effective lessons. Editor's Note: Why is this important? Research reveals that children in elementary school form and maintain conceptions about the physical world that remain deeply entrenched into adulthood. Inaccurate conceptions can be very difficult to reverse.
Level: Teacher Support
In this study, students in an inquiry-based classroom were videotaped to detect how they made sense of concepts relating to force and motion. The analysis revealed that focused "sense-making activities", free-body diagrams, energy diagrams, and related real-world activities produced deeper student understanding. Free download
Level: Teacher Support
Assessments (3)
Assessment:
This comprehensive worksheet may be used as a test-quiz for introductory physics or as a diagnostic assessment for more advanced courses. It was designed to accompany the lecture and lesson materials by the same authors (see above under Vectors: Lesson Plans). May be freely downloaded and printed for classroom use.
Level: High School
Duration: One Class Period
This comprehensive self-assessment offers much more than a set of problems. For each of the 37 questions, links are provided to additional explanations. This resource is ideal for self-assessment or as guided practice for learners who are struggling.
Level: Grades 9-12
Duration: 45-60 minutes
Here is a set of free assessment tools for grades 6-12 on topics related to physics and biology. Within the sub-topic of Force and Motion, you'll find assessments to gauge understanding of kinematics, the relationship of motion and force, and momentum. Diagnoser assessments are aligned with the NGSS, and include elicitation (warm-ups) and developmental lessons. After completing the lesson, students answer digital question sets on specific topics, with immediate feedback provided to both teachers and learners. The final step in the process is "Prescriptive Activities", designed to target specific problematic areas located by Diagnoser.
Level: 6-12
Modeling Motion (2)
Activities:
This simulation is a powerful way to investigate the meaning of shape/slope for 3 types of motion graphs: p-t, v-t, and a-t. Students "match" the motion of a ball whose movement is automatically generated. To do it correctly requires analysis of the motion. Next, learners predict what the graphs will look like by using sliders to generate their own straight-line graphs.
Level: Grades 9-12
Duration: One Class Period
We like the simplicity of this model for introducing free fall and gravitational acceleration. Students can control the initial height, set initial velocity from -20 to 20 m/s and change the gravitational constant. The free fall is displayed as a motion diagram, while graphs are simultaneously displayed showing position, velocity, and acceleration vs. time.
Level: Grades 8-12
Duration: One Class Period
The Case of Roller Coasters (10)
Lesson Plans:
Roller coasters offer an inherently interesting way to study energy transformation in a system. This simulation lets students choose from 5 track configurations or create their own design, then watch the resulting motion. Energy bar graphs are simultaneously displayed as the coaster runs its course. Students can adjust the initial speed and friction, or switch to stepped motion to see exact points where kinetic and potential energy reach maximum and minimum levels. Includes lesson plan and student guide.
Level: Grades 6-10
Duration: One Class Period
Students build understanding of kinetic and potential energy as they design a physical model of a roller coaster with foam pipe insulation and marbles. The lesson is almost completely turn key: scripted teacher introduction, detailed illustrated instructions, student worksheet, scoring rubric, and post-activity assessment. Which track configuration works best? What can be done to reduce friction?
Level: Grades 7-9
Duration: Two Class Periods
A four-day lesson that explores the same physics concepts as roller coaster design, but breaks the learning into two distinct segments to ensure that beginners understand the basics. In Part I, kids build a very simple curved track to explore kinetic and potential energy for a gumball moving downhill. Part II becomes more complex: build and test a gumball machine with loops and specific design constraints.
Level: Grades 7-10
Duration: 4-5 class periods
Activities:
This short video does a great job of demonstrating centripetal force and how it acts to keep objects moving along a curved path. What makes a rider on a roller coaster feel a sensation of being thrown outward from the center during a loop, although there is no outward net force? The video serves to help beginners understand the dynamics of circular motion.
Level: Grades 7-12
Duration: 5 minutes
Exactly what IS centripetal force and what does it do? An astronaut on board the International Space Station demonstrates this force in ways students cannot observe in daily life. The environment is "almost" weightless, making it easy to observe the center-seeking motion without the complicating effects of gravity.
Level: Grades 6-12
Duration: 5 minutes
Want to do a quick lesson on energy transfer in a roller coaster, but can't devote more than one class period? This simulation lets kids design a very simple roller coaster, then it evaluates the design based on physical principles, safety, and "fun factor". Good springboard for further inquiry into energy transformation.
Level: Grades 6-10
Duration: 30 minutes
This self-paced multimedia tutorial explores how cars move along a roller coaster track as a result of energy transformation. Part of the Middle School Literacy Project, it is designed to develop literacy skills in the context of a focused science or math lesson. Students read informational text, build vocabulary, view videos and interactive simulations, and create written responses in both short and extended forms. Registered teachers may set up student accounts for tracking progress.
Level: Grades 6-9
Duration: 30 minutes
References and Collections:
The heart of this website for engineering education is its wonderful collection of videos that feature kids doing activities that illuminate key concepts in science and engineering. Each video is well-produced to allow the actor-students to apply concepts of science, then experience the excitement that goes with real discovery. Here's a taste: one video takes kids on a field trip to the Etnies shoe headquarters to learn the biomechanics of skateboarding from engineers who are also skateboarders. Another video takes the kids to Epcot Center to design and plan their own roller coaster configurations. The site also offers interactive games and simulations.
Level: Grades 6-10
Content Support For Teachers:
If you need a refresher in the basics, this is a nicely organized tutorial that addresses four topics: uniform circular motion, centripetal force, applications and mathematics of circular motion, and amusement park physics. Includes free-body diagrams, animations, and problem sets with answers.
Level: Introductory Physics
Short tutorial that uses an animation to illustrate the work/energy relationship in a roller coaster. The author breaks down the associated equation to show how total mechanical energy is conserved in the system.
Level: Introductory Physics