Detail Page
Ceiling Bounce Model
written by
Wolfgang Christian
supported by the National Science Foundation
This simulation shows a ball launched by a spring-gun in a building with a very high ceiling. The student's task is to calculate an initial velocity so that the ball barely touches the 80-foot ceiling. Students can test their answers by setting the initial velocity on the simulation, then watch the ball's path. Graphs of position vs. time or velocity vs. time may be turned on to view the ball's motion as a function of time.
This item was created with Easy Java Simulations (EJS), a modeling tool that allows users without formal programming experience to generate computer models and simulations. To run the simulation, simply click the Java Archive file below. To modify or customize the model, See Related Materialsfor detailed instructions on installing and running the EJS Modeling and Authoring Tool. Please note that this resource requires at least version 1.5 of Java. Editor's Note: This model is especially helpful for visualizing the relationship between the one-dimensional motion of this example and its graph, as it displays the ball continuously bouncing at constant velocity in a straight line from floor to ceiling. There is no horizontal displacement. For students who need help determining time of flight and peak height, SEE ANNOTATIONS for an editor-recommended tutorial.
AAAS Benchmark Alignments (2008 Version)4. The Physical Setting
4F. Motion
9. The Mathematical World
9B. Symbolic Relationships
11. Common Themes
11B. Models
Common Core State Standards for Mathematics AlignmentsStandards for Mathematical Practice (K-12)
MP.4 Model with mathematics.
High School — Algebra (9-12)
Creating Equations^{?} (9-12)
High School — Functions (9-12)
Interpreting Functions (9-12)
Building Functions (9-12)
Linear, Quadratic, and Exponential Models^{?} (9-12)
The Physics Classroom: Initial Velocity Components for Projectile Motion
(Editor: Caroline Hall)
Date: 07/08/2010
This editor-recommended resource provides a step-by-step tutorial in determining time of flight and peak height of a projectile, which will be needed to perform the calculations required in the Ceiling Bounce simulation. This resource is part of a Physics Front Topical Unit.
Topic: Kinematics: The Physics of Motion
Unit Title: Modeling Motion In this model, a ball is launched by a spring-gun in a building with a very high ceiling. The task: calculate an initial velocity so that the ball barely touches the 80-foot ceiling. Students can test their answers by setting the initial velocity on the simulation, then watch the ball's path. Graphs of position vs. time or velocity vs. time can be turned on to view the ball's motion as a function of time. Link to Unit:
ComPADRE is beta testing Citation Styles!
Record Link
<a href="https://www.compadre.org/precollege/items/detail.cfm?ID=8385">Christian, Wolfgang. "Ceiling Bounce Model." Version 1.0.</a>
AIP Format
W. Christian, Computer Program CEILING BOUNCE MODEL, Version 1.0 (2008), WWW Document, (https://www.compadre.org/Repository/document/ServeFile.cfm?ID=8385&DocID=926).
AJP/PRST-PER
W. Christian, Computer Program CEILING BOUNCE MODEL, Version 1.0 (2008), <https://www.compadre.org/Repository/document/ServeFile.cfm?ID=8385&DocID=926>.
APA Format
Christian, W. (2008). Ceiling Bounce Model (Version 1.0) [Computer software]. Retrieved August 20, 2018, from https://www.compadre.org/Repository/document/ServeFile.cfm?ID=8385&DocID=926
Chicago Format
Christian, Wolfgang. "Ceiling Bounce Model." Version 1.0. https://www.compadre.org/Repository/document/ServeFile.cfm?ID=8385&DocID=926 (accessed 20 August 2018).
MLA Format
Christian, Wolfgang. Ceiling Bounce Model. Vers. 1.0. Computer software. 2008. Java 1.5. 20 Aug. 2018 <https://www.compadre.org/Repository/document/ServeFile.cfm?ID=8385&DocID=926>.
BibTeX Export Format
@misc{
Author = "Wolfgang Christian",
Title = {Ceiling Bounce Model},
Month = {December},
Year = {2008}
}
Refer Export Format
%A Wolfgang Christian
EndNote Export Format
%0 Computer Program Disclaimer: ComPADRE offers citation styles as a guide only. We cannot offer interpretations about citations as this is an automated procedure. Please refer to the style manuals in the Citation Source Information area for clarifications.
Citation Source Information
The AIP Style presented is based on information from the AIP Style Manual. The APA Style presented is based on information from APA Style.org: Electronic References. The Chicago Style presented is based on information from Examples of Chicago-Style Documentation. The MLA Style presented is based on information from the MLA FAQ. This resource is stored in 11 shared folders. You must login to access shared folders. Ceiling Bounce Model:
Is Based On
Easy Java Simulations Modeling and Authoring Tool
The Easy Java Simulations Modeling and Authoring Tool is needed to explore the computational model used in the Ceiling Bounce Model. relation by Caroline HallKnow of another related resource? Login to relate this resource to it. |
SupplementsContributeRelated MaterialsSimilar Materials |