This interactive simulation lets students investigate simple collisions in one dimension or more complex scenarios. The simpler experiment explores the meaning of elastic vs. inelastic collisions, while the 2D model integrates the Law of Conservation of Momentum to solve problems. Users can adjust the mass of the two balls and set the elasticity from zero to 100%. The website also provides lesson plans developed by high school teachers specifically to accompany the Collision Lab simulation.

Editor's Note:Tablet and mobile friendly! The simulation was recently rewritten to HTML5. It is appropriate for a range of courses, from Grade 9 Physical Science to Algebra-Based Physics.

Momentum is defined for a particular frame of reference; it is the mass times the velocity of the object. (9-12)

Crosscutting Concepts (K-12)

Systems and System Models (K-12)

When investigating or describing a system, the boundaries and initial conditions of the system need to be defined and their inputs and outputs analyzed and described using models. (9-12)

NGSS Science and Engineering Practices (K-12)

Developing and Using Models (K-12)

Modeling in 9â12 builds on Kâ8 and progresses to using, synthesizing, and developing models to predict and show relationships among variables between systems and their components in the natural and designed worlds. (9-12)

Develop and use a model based on evidence to illustrate the relationships between systems or between components of a system. (9-12)

Using Mathematics and Computational Thinking (5-12)

Mathematical and computational thinking at the 9â12 level builds on Kâ8 and progresses to using algebraic thinking and analysis, a range of linear and nonlinear functions including trigonometric functions, exponentials and logarithms, and computational tools for statistical analysis to analyze, represent, and model data. Simple computational simulations are created and used based on mathematical models of basic assumptions. (9-12)

Create a computational model or simulation of a phenomenon, designed device, process, or system. (9-12)

AAAS Benchmark Alignments (2008 Version)

4. The Physical Setting

4F. Motion

9-12: 4F/H2. All motion is relative to whatever frame of reference is chosen, for there is no motionless frame from which to judge all motion.

9-12: 4F/H4. Whenever one thing exerts a force on another, an equal amount of force is exerted back on it.

9-12: 4F/H8. Any object maintains a constant speed and direction of motion unless an unbalanced outside force acts on it.

11. Common Themes

11B. Models

9-12: 11B/H1a. A mathematical model uses rules and relationships to describe and predict objects and events in the real world.

%0 Electronic Source %D October 31, 2010 %T PhET Collision Lab %I PhET %V 2018 %N 23 July 2018 %8 October 31, 2010 %9 text/html %U https://phet.colorado.edu/en/simulation/collision-lab

Disclaimer: ComPADRE offers citation styles as a guide only. We cannot offer interpretations about citations as this is an automated procedure. Please refer to the style manuals in the Citation Source Information area for clarifications.