published by
the Institute of Electrical and Electronics Engineers
supported by
the International Business Machines
This is a lesson plan that explores the operation and engineering of artificial heart valves, developed to help teachers integrate engineering practices in the secondary classroom. Students examine and operate both a ball valve and a gate valve, then they work as a team of "engineers" to develop and sketch enhancements to the mechanical heart valve. The driving question of the lesson: How do engineers design human/machine interface systems to meet human needs?
The lesson follows a module format that includes objectives and learner outcomes, problem sets, student guides, recommended reading, illustrated procedures, worksheets, and background information about the engineering connections. The lesson plan and student worksheets are available for download. Allow two class periods.
This collection is part of TryEngineering.org, a website maintained by the Institute of Electrical and Electronics Engineers (IEEE).
Editor's Note:See Related Materials for "Affairs of the Heart", a collection of labs and activities to explore the physics of fluid flowing in a vessel. Click "Watch Online" to view video clips of surgery to repair children's heart valves, robotic heart surgery, and the story of the 20-year effort to develop an artificial heart.
Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions. (MS-ETS1-1)
Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem. (MS-ETS1-2)
Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success. (MS-ETS1-3)
Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved. (MS-ETS1-4)
Disciplinary Core Ideas (K-12)
Forces and Motion (PS2.A)
The motion of an object is determined by the sum of the forces acting on it; if the total force on the object is not zero, its motion will change. The greater the mass of the object, the greater the force needed to achieve the same change in motion. For any given object, a larger force causes a larger change in motion. (6-8)
Relationship Between Energy and Forces (PS3.C)
When two objects interact, each one exerts a force on the other that can cause energy to be transferred to or from the object. (6-8)
Crosscutting Concepts (K-12)
Systems and System Models (K-12)
Models can be used to represent systems and their interactions. (6-8)
When investigating or describing a system, the boundaries and initial conditions of the system need to be defined and their inputs and outputs analyzed and described using models. (9-12)
Models can be used to predict the behavior of a system, but these predictions have limited precision and reliability due to the assumptions and approximations inherent in models. (9-12)
Structure and Function (K-12)
Structures can be designed to serve particular functions. (6-8)
Influence of Engineering, Technology, and Science on Society and the Natural World (K-12)
Modern civilization depends on major technological systems. Engineers continuously modify these technological systems by applying scientific knowledge and engineering design practices to increase benefits while decreasing costs and risks. (9-12)
Interdependence of Science, Engineering, and Technology (K-12)
Science and engineering complement each other in the cycle known as research and development (R&D). (9-12)
Science is a Human Endeavor (3-12)
Technological advances have influenced the progress of science and science has influenced advances in technology. (9-12)
Science is a result of human endeavors, imagination, and creativity. (9-12)
NGSS Science and Engineering Practices (K-12)
Analyzing and Interpreting Data (K-12)
Analyzing data in 9–12 builds on K–8 and progresses to introducing more detailed statistical analysis, the comparison of data sets for consistency, and the use of models to generate and analyze data. (9-12)
Analyze data using tools, technologies, and/or models (e.g., computational, mathematical) in order to make valid and reliable scientific claims or determine an optimal design solution. (9-12)
Asking Questions and Defining Problems (K-12)
Asking questions and defining problems in grades 6–8 builds from grades K–5 experiences and progresses to specifying relationships between variables, and clarifying arguments and models. (6-8)
Define a design problem that can be solved through the development of an object, tool, process or system and includes multiple criteria and constraints, including scientific knowledge that may limit possible solutions. (6-8)
Asking questions and defining problems in grades 9–12 builds from grades K–8 experiences and progresses to formulating, refining, and evaluating empirically testable questions and design problems using models and simulations. (9-12)
Ask questions that arise from examining models or a theory to clarify relationships. (9-12)
Developing and Using Models (K-12)
Modeling in 6–8 builds on K–5 and progresses to developing, using and revising models to describe, test, and predict more abstract phenomena and design systems. (6-8)
Develop a model to generate data to test ideas about designed systems, including those representing inputs and outputs. (6-8)
Modeling in 9–12 builds on K–8 and progresses to using, synthesizing, and developing models to predict and show relationships among variables between systems and their components in the natural and designed worlds. (9-12)
Develop and use a model based on evidence to illustrate the relationships between systems or between components of a system. (9-12)
Engaging in Argument from Evidence (2-12)
Engaging in argument from evidence in 6–8 builds on K–5 experiences and progresses to constructing a convincing argument that supports or refutes claims for either explanations or solutions about the natural and designed world(s). (6-8)
Evaluate competing design solutions based on jointly developed and agreed-upon design criteria. (6-8)
Engaging in argument from evidence in 9–12 builds on K–8 experiences and progresses to using appropriate and sufficient evidence and scientific reasoning to defend and critique claims and explanations about natural and designed worlds. Arguments may also come from current scientific or historical episodes in science. (9-12)
Construct an oral and written argument or counter-arguments based on data and evidence. (9-12)
Obtaining, Evaluating, and Communicating Information (K-12)
Obtaining, evaluating, and communicating information in 6–8 builds on K–5 and progresses to evaluating the merit and validity of ideas and methods. (6-8)
Integrate qualitative scientific and technical information in written text with that contained in media and visual displays to clarify claims and findings. (6-8)
Obtaining, evaluating, and communicating information in 9–12 builds on K–8 and progresses to evaluating the validity and reliability of the claims, methods, and designs. (9-12)
Communicate scientific ideas (e.g. about phenomena and/or the process of development and the design and performance of a proposed process or system) in multiple formats (including orally, graphically, textually, and mathematically). (9-12)
Planning and Carrying Out Investigations (K-12)
Planning and carrying out investigations to answer questions or test solutions to problems in 6–8 builds on K–5 experiences and progresses to include investigations that use multiple variables and provide evidence to support explanations or design solutions. (6-8)
Conduct an investigation to produce data to serve as the basis for evidence that meet the goals of an investigation. (6-8)
Using Mathematics and Computational Thinking (5-12)
Mathematical and computational thinking at the 6–8 level builds on K–5 and progresses to identifying patterns in large data sets and using mathematical concepts to support explanations and arguments. (6-8)
Use mathematical representations to describe and/or support scientific conclusions and design solutions. (6-8)
Mathematical and computational thinking at the 9–12 level builds on K–8 and progresses to using algebraic thinking and analysis, a range of linear and nonlinear functions including trigonometric functions, exponentials and logarithms, and computational tools for statistical analysis to analyze, represent, and model data. Simple computational simulations are created and used based on mathematical models of basic assumptions. (9-12)
Use mathematical representations of phenomena or design solutions to describe and/or support claims and/or explanations. (9-12)
NGSS Nature of Science Standards (K-12)
Analyzing and Interpreting Data (K-12)
Analyzing data in 9–12 builds on K–8 and progresses to introducing more detailed statistical analysis, the comparison of data sets for consistency, and the use of models to generate and analyze data. (9-12)
Asking Questions and Defining Problems (K-12)
Asking questions and defining problems in grades 6–8 builds from grades K–5 experiences and progresses to specifying relationships between variables, and clarifying arguments and models. (6-8)
Asking questions and defining problems in grades 9–12 builds from grades K–8 experiences and progresses to formulating, refining, and evaluating empirically testable questions and design problems using models and simulations. (9-12)
Developing and Using Models (K-12)
Modeling in 6–8 builds on K–5 and progresses to developing, using and revising models to describe, test, and predict more abstract phenomena and design systems. (6-8)
Modeling in 9–12 builds on K–8 and progresses to using, synthesizing, and developing models to predict and show relationships among variables between systems and their components in the natural and designed worlds. (9-12)
Engaging in Argument from Evidence (2-12)
Engaging in argument from evidence in 6–8 builds on K–5 experiences and progresses to constructing a convincing argument that supports or refutes claims for either explanations or solutions about the natural and designed world(s). (6-8)
Engaging in argument from evidence in 9–12 builds on K–8 experiences and progresses to using appropriate and sufficient evidence and scientific reasoning to defend and critique claims and explanations about natural and designed worlds. Arguments may also come from current scientific or historical episodes in science. (9-12)
Obtaining, Evaluating, and Communicating Information (K-12)
Obtaining, evaluating, and communicating information in 6–8 builds on K–5 and progresses to evaluating the merit and validity of ideas and methods. (6-8)
Obtaining, evaluating, and communicating information in 9–12 builds on K–8 and progresses to evaluating the validity and reliability of the claims, methods, and designs. (9-12)
Planning and Carrying Out Investigations (K-12)
Planning and carrying out investigations to answer questions or test solutions to problems in 6–8 builds on K–5 experiences and progresses to include investigations that use multiple variables and provide evidence to support explanations or design solutions. (6-8)
Using Mathematics and Computational Thinking (5-12)
Mathematical and computational thinking at the 6–8 level builds on K–5 and progresses to identifying patterns in large data sets and using mathematical concepts to support explanations and arguments. (6-8)
Mathematical and computational thinking at the 9–12 level builds on K–8 and progresses to using algebraic thinking and analysis, a range of linear and nonlinear functions including trigonometric functions, exponentials and logarithms, and computational tools for statistical analysis to analyze, represent, and model data. Simple computational simulations are created and used based on mathematical models of basic assumptions. (9-12)
AAAS Benchmark Alignments (2008 Version)
3. The Nature of Technology
3A. Technology and Science
6-8: 3A/M3. Engineers, architects, and others who engage in design and technology use scientific knowledge to solve practical problems. They also usually have to take human values and limitations into account.
9-12: 3A/H3a. Technology usually affects society more directly than science does because technology solves practical problems and serves human needs (and also creates new problems and needs).
4. The Physical Setting
4F. Motion
6-8: 4F/M3a. An unbalanced force acting on an object changes its speed or direction of motion, or both.
8. The Designed World
8B. Materials and Manufacturing
6-8: 8B/M2. Manufacturing usually involves a series of steps, such as designing a product, obtaining and preparing raw materials, processing the materials mechanically or chemically, and assembling the product. All steps may occur at a single location or may occur at different locations.
6-8: 8B/M5. Efforts to find replacements for existing materials are driven by an interest in finding materials that are cheaper to obtain or produce or that have more desirable properties.
11. Common Themes
11A. Systems
6-8: 11A/M2. Thinking about things as systems means looking for how every part relates to others. The output from one part of a system (which can include material, energy, or information) can become the input to other parts. Such feedback can serve to control what goes on in the system as a whole.
12. Habits of Mind
12C. Manipulation and Observation
6-8: 12C/M3. Make accurate measurements of length, volume, weight, elapsed time, rates, and temperature by using appropriate devices.
6-8: 12C/M5. Analyze simple mechanical devices and describe what the various parts are for; estimate what the effect of making a change in one part of a device would have on the device as a whole.
12D. Communication Skills
6-8: 12D/M6. Present a brief scientific explanation orally or in writing that includes a claim and the evidence and reasoning that supports the claim.
6-8: 12D/M8. Explain a scientific idea to someone else, checking understanding and responding to questions.
6-8: 12D/M9. Prepare a visual presentation to aid in explaining procedures or ideas.
Common Core State Reading Standards for Literacy in Science and Technical Subjects 6—12
Key Ideas and Details (6-12)
RST.9-10.3 Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks, attending to special cases or exceptions defined in the text.
Integration of Knowledge and Ideas (6-12)
RST.9-10.7 Translate quantitative or technical information expressed in words in a text into visual form (e.g., a table or chart) and translate information expressed visually or mathematically (e.g., in an equation) into words.
RST.11-12.7 Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem.
Common Core State Writing Standards for Literacy in History/Social Studies, Science, and Technical Subjects 6—12
Research to Build and Present Knowledge (6-12)
WHST.6-8.7 Conduct short research projects to answer a question (including a self-generated question), drawing on several sources and generating additional related, focused questions that allow for multiple avenues of exploration.
WHST.9-10.9 Draw evidence from informational texts to support analysis, reflection, and research.
This resource is part of a Physics Front Topical Unit.
Topic: Dynamics: Forces and Motion Unit Title: Applications of Newton's Laws
A lesson for exploring the physics & engineering of artificial heart valves. Students examine and operate both a ball valve and a gate valve, then they work as a team of "engineers" to develop and sketch enhancements to the mechanical heart valve. Great activity for integrating engineering design in the secondary classroom.
<a href="https://www.compadre.org/precollege/items/detail.cfm?ID=12260">International Business Machines. TryEngineering: Heart of the Matter. Institute of Electrical and Electronics Engineers, December 4, 2010.</a>
TryEngineering: Heart of the Matter. (2010, December 4). Retrieved September 9, 2024, from Institute of Electrical and Electronics Engineers: https://tryengineering.org/teacher/heart-matter/
International Business Machines. TryEngineering: Heart of the Matter. Institute of Electrical and Electronics Engineers, December 4, 2010. https://tryengineering.org/teacher/heart-matter/ (accessed 9 September 2024).
TryEngineering: Heart of the Matter. Institute of Electrical and Electronics Engineers, 2006. 4 Dec. 2010. International Business Machines. 9 Sep. 2024 <https://tryengineering.org/teacher/heart-matter/>.
@misc{
Title = {TryEngineering: Heart of the Matter},
Publisher = {Institute of Electrical and Electronics Engineers},
Volume = {2024},
Number = {9 September 2024},
Month = {December 4, 2010},
Year = {2006}
}
%T TryEngineering: Heart of the Matter %D December 4, 2010 %I Institute of Electrical and Electronics Engineers %U https://tryengineering.org/teacher/heart-matter/ %O text/html
%0 Electronic Source %D December 4, 2010 %T TryEngineering: Heart of the Matter %I Institute of Electrical and Electronics Engineers %V 2024 %N 9 September 2024 %8 December 4, 2010 %9 text/html %U https://tryengineering.org/teacher/heart-matter/
Disclaimer: ComPADRE offers citation styles as a guide only. We cannot offer interpretations about citations as this is an automated procedure. Please refer to the style manuals in the Citation Source Information area for clarifications.
A set of multimedia materials for grades 5-9 on fluid dynamics in the context of the human heart. Includes labs, activities, and video clips of heart surgeries.