The Physics Front is a free service provided by the AAPT in partnership with the NSF/NSDL.

Detail Page
«

Detail Page

Simple Circular Motion Model

written by
Michael R. Gallis

This simulation is a simple model of a Merry-Go-Round. You can set the rotational speed and adjust the radial distance with sliders to see how these factors influence the net force on the rider. The net horizontal force is monitored in the accompanying graph in terms of g-force experienced by the rider.

See Related Materials for an interactive tutorial on circular motion, appropriate for high school and lower-level undergraduate studies.

The Simple Circular Motion Model was created using the Easy Java Simulations (EJS) modeling tool. It is distributed as a ready-to-run (compiled) Java archive. Double clicking the jar file will run the program if Java is installed.

Please note that this resource requires
at least version 1.5 of Java (JRE).

Editor's Note:The 3D formatting is very useful for viewing the motion from a variety of vantage points. Kids discover for themselves how rotational speed and radial distance interact to create a more thrilling ride. Don't miss the page link to "Physiological impact of g-forces". Students will learn that setting the speed and radial distance at the highest points will result in g-forces that exceed space shuttle re-entry and fighter jets at high speed.

Simple Circular Motion Source Code
The source code zip archive contains an XML representation of the Simple Circular Motion Model. Unzip this archive in your Ejs workspace to compile and run this model using EJS. download 519kb .zip
Last Modified: January 15, 2012

The motion of an object is determined by the sum of the forces acting on it; if the total force on the object is not zero, its motion will change. The greater the mass of the object, the greater the force needed to achieve the same change in motion. For any given object, a larger force causes a larger change in motion. (6-8)

All positions of objects and the directions of forces and motions must be described in an arbitrarily chosen reference frame and arbitrarily chosen units of size. In order to share information with other people, these choices must also be shared. (6-8)

Newton's second law accurately predicts changes in the motion of macroscopic objects. (9-12)

Relationship Between Energy and Forces (PS3.C)

When two objects interact, each one exerts a force on the other that can cause energy to be transferred to or from the object. (6-8)

Crosscutting Concepts (K-12)

Patterns (K-12)

Graphs and charts can be used to identify patterns in data. (6-8)

NGSS Science and Engineering Practices (K-12)

Analyzing and Interpreting Data (K-12)

Analyzing data in 6–8 builds on K–5 and progresses to extending quantitative analysis to investigations, distinguishing between correlation and causation, and basic statistical techniques of data and error analysis. (6-8)

Analyze and interpret data to provide evidence for phenomena. (6-8)

Analyzing data in 9–12 builds on K–8 and progresses to introducing more detailed statistical analysis, the comparison of data sets for consistency, and the use of models to generate and analyze data. (9-12)

Analyze data using computational models in order to make valid and reliable scientific claims. (9-12)

Developing and Using Models (K-12)

Modeling in 6–8 builds on K–5 and progresses to developing, using and revising models to describe, test, and predict more abstract phenomena and design systems. (6-8)

Develop and use a model to describe phenomena. (6-8)

Modeling in 9–12 builds on K–8 and progresses to using, synthesizing, and developing models to predict and show relationships among variables between systems and their components in the natural and designed worlds. (9-12)

Use a model to provide mechanistic accounts of phenomena. (9-12)

Using Mathematics and Computational Thinking (5-12)

Mathematical and computational thinking at the 9–12 level builds on K–8 and progresses to using algebraic thinking and analysis, a range of linear and nonlinear functions including trigonometric functions, exponentials and logarithms, and computational tools for statistical analysis to analyze, represent, and model data. Simple computational simulations are created and used based on mathematical models of basic assumptions. (9-12)

Use mathematical or computational representations of phenomena to describe explanations. (9-12)

AAAS Benchmark Alignments (2008 Version)

4. The Physical Setting

4E. Energy Transformations

6-8: 4E/M4. Energy appears in different forms and can be transformed within a system. Motion energy is associated with the speed of an object. Thermal energy is associated with the temperature of an object. Gravitational energy is associated with the height of an object above a reference point. Elastic energy is associated with the stretching or compressing of an elastic object. Chemical energy is associated with the composition of a substance. Electrical energy is associated with an electric current in a circuit. Light energy is associated with the frequency of electromagnetic waves.

4F. Motion

6-8: 4F/M3b. If a force acts towards a single center, the object's path may curve into an orbit around the center.

9-12: 4F/H8. Any object maintains a constant speed and direction of motion unless an unbalanced outside force acts on it.

11. Common Themes

11B. Models

6-8: 11B/M4. Simulations are often useful in modeling events and processes.

9-12: 11B/H3. The usefulness of a model can be tested by comparing its predictions to actual observations in the real world. But a close match does not necessarily mean that other models would not work equally well or better.

Common Core State Standards for Mathematics Alignments

High School — Functions (9-12)

Interpreting Functions (9-12)

F-IF.6 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

This resource is part of a Physics Front Topical Unit.

Topic: Kinematics: The Physics of Motion Unit Title: Circular Motion

Can an amusement park Merry-Go-Round be designed to be dangerous? This simple model lets kids discover for themselves how rotational speed and radial distance interact to create a more thrilling ride. Don't miss the page link to "Physiological impact of G-forces". Setting the speed & radial distance at the highest points will result in g-forces that exceed space shuttle re-entry and high speed fighter jets!

M. Gallis, Computer Program SIMPLE CIRCULAR MOTION MODEL (2012), WWW Document, (https://www.compadre.org/Repository/document/ServeFile.cfm?ID=11641&DocID=2529).

Gallis, M. (2012). Simple Circular Motion Model [Computer software]. Retrieved October 16, 2021, from https://www.compadre.org/Repository/document/ServeFile.cfm?ID=11641&DocID=2529

%0 Computer Program %A Gallis, Michael %D January 9, 2012 %T Simple Circular Motion Model %8 January 9, 2012 %U https://www.compadre.org/Repository/document/ServeFile.cfm?ID=11641&DocID=2529

Disclaimer: ComPADRE offers citation styles as a guide only. We cannot offer interpretations about citations as this is an automated procedure. Please refer to the style manuals in the Citation Source Information area for clarifications.