Replacing a Written Final with a Technical Conversation: Lessons Learned

Peter W. Bryant
Bethany College, Lindsborg, KS, USA

bryantpw@bethanyhb.edu

PICUP Virtual Conference - Summer 2020

26 June 2020
Outline

1. The Technical Conversation
2. Initial Reading
3. Constrained vs. Open-Ended
4. Assessment
5. Lessons Learned and Moving Forward
Outline

1. The Technical Conversation
2. Initial Reading
3. Constrained vs. Open-Ended
4. Assessment
5. Lessons Learned and Moving Forward
Introduction

We replaced the final with a semi-structured, technical chat.

Our class:

- Second-semester, non-calculus-based introductory physics
- 13 students
- Typical majors were biology with some chemistry and exercise science
- Our weekly schedule for virtual classes included an abbreviated version of the technical chat every Wednesday.
Structure

- Common preparatory reading

Part First.

ORIGINAL COMMUNICATIONS.

Article I. — On the Medical Uses of Electricity: A Clinical Lecture by George W. Balfour, M.D., F.R.S.E., Consulting Physician to the Royal Hospital for Sick Children.

Somehow more than two thousand years ago, Thales, the great Ionian philosopher, discovered that a piece of amber rubbed with a dry woollen cloth attracted to itself any light objects in its neigh-

1. Student’s first post
2. I comment and ask question
3. Student’s response and question
4. I comment and ask question
5. Student’s final response
Plan

- **Students’ initial posts**
 - Give reading context
 - Most interesting part?
 - Ask a technical question

- **Plans for my responses**
 1. Address question and charge student with finding modern source and asking more questions
 2. Ask student to design an experiment to answer their question
Logistics

- **Google Chat**

 - **A** May 7, 7:59 PM
 Final Chat Check in #1:

 - **A** May 7, 8:35 PM
 So the article talks about sending ascending and descending currents throughout the body. An ascending current typically dilates the blood vessels and causes more irritation in the body, and a descending current causes less irritation, and constricts blood vessels. How would they determine positive or negative "poles in the body"? (If this is still accurate) based simply on direction relative to the head? Furthermore, in the article, muscle contraction in the body is mentioned, and I found it interesting that it claims to only occur when there are "variations in the change in density" in the flow of electricity. After reading further, this must be taking about an actual shock delivered to the body which would make sense at the beginning of the current, and if a stronger current is delivered (change in density). This made me wonder how muscles would react with the cathode attachment method or the "bath with glass feet". I found an article that confirmed that change in density of the current would cause muscle stimulation. It mentions fast twitch muscle fibers and slow twitch muscle fibers. It states, "current density decreases with increasing depth of muscle." Could the heart be activated to pump at a higher rate if the slow twitch muscle fibers are activated indirectly using other muscles the body by using an ascending current?

 - **Peter Bryant** May 7, 10:02 PM
 Wow. Great questions. As I understood it, ascending or descending current references the direction the current flows with respect to a nerve's direction. I think nerves have intrinsic direction. Do you know? If not, then maybe it's based on which side is connected to a muscle, and which goes to other nerves (or wherever nerves go—I know little about biology.) I guess that would be relative to the head, as you suggested.

 So let's dig deeper into your questions about the current density, and maybe we'll get to the heart. For now, find a source (or use the one you already have) to explain why changes in current density stimulate muscles. Is that the case for slow and fast twitch muscle fibers? Do fast and slow twitch muscles react the same to charge? See if you can address some or all of these. And the source doesn't need to be peer-reviewed. Just use something that makes sense, tell me what it is, and summarize what you find.

- **Chat with me; not role-playing**
Outline

1. The Technical Conversation

2. Initial Reading

3. Constrained vs. Open-Ended

4. Assessment

5. Lessons Learned and Moving Forward

- Phenomenological discussion of effects of electricity in body
- Diction: *Galvanic, Faradic, Franklinic*
- Purpose was to focus the responses
Initial Reading: Lessons Learned

This reading worked well because:

- Historical, anecdotal, and easy to read
- No math
- Very few theoretical explanations of phenomena
 - On their own students had to connect to class material

Students enjoyed it!

...perhaps the biggest key to success
Outline

1. The Technical Conversation
2. Initial Reading
3. Constrained vs. Open-Ended
4. Assessment
5. Lessons Learned and Moving Forward
Balance Between Constrained and Open-ended

<table>
<thead>
<tr>
<th>Constrained</th>
<th>Open-ended</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professor steers</td>
<td>Students steer</td>
</tr>
<tr>
<td>Worse engagement (?)</td>
<td>Better engagement (?)</td>
</tr>
<tr>
<td>Cheating more likely</td>
<td>Cheating less likely</td>
</tr>
<tr>
<td>Less difficult to grade</td>
<td>More difficult to grade</td>
</tr>
</tbody>
</table>

Example destinations from student navigation:

- canine psychology
- human pain threshold
Constrained vs. Open-ended: Lessons Learned

- Share a rubric
 - "Physics experiment proposal, X pts"

- Anticipate when asking questions
 - "How would you measure the effects of current on human tissue without relying on human reaction?"

- Tree structure to steer conversation
Outline

1. The Technical Conversation
2. Initial Reading
3. Constrained vs. Open-Ended
4. Assessment
5. Lessons Learned and Moving Forward
Assessment

- Assessment was difficult
 - I didn’t know what to expect and didn’t provide a rubric
 - Conversations varied significantly
 - I was a part of the conversation. How to normalize for me?

- When a student did well, it was clear. When a student did poorly, it was difficult to separate my own contributions.
To normalize for my presence, script a few responses ahead of time:

- **subject** is indeed interesting. I wonder how **phenomena** can be modeled by a circuit. How would you model it with a cap in your circuit? How would you model it without?

- Maintains open-endedness?

In a regular semester, the chat is better suited for a lab midterm.

- I plan to use it in lab to gain experience.
Outline

1. The Technical Conversation
2. Initial Reading
3. Constrained vs. Open-Ended
4. Assessment
5. Lessons Learned and Moving Forward
Conclusions

What worked:
- The reading was a good choice (and was important!)
- Students did in fact work on their own

To change:
- Provide a rubric and specify physics experiment
- Find platform that allows tree-like conversation structure
- Use the technical chat for a laboratory midterm
- Script some response templates

To consider:
- Open responses so entire class can see

Final note:
- I spent 10-15 minutes on each post. Small classes only.
Thank you!

And thanks to my students!