Student responses to chain rule problems in thermodynamics

Ian W. Founds1, Paul J. Emigh1, and Corinne A. Manogue1

1Department of Physics, Oregon State University, Corvallis OR 97331

Students often struggle with the many partial derivatives used in the study of thermodynamics. This project explores how students respond to chain rule problems in an upper-level undergraduate thermodynamics course. This project’s dataset is composed of anonymized student responses to two such problems. We used an emergent coding method to sort responses by solution method. Observed solution methods include variable and differential substitution, implicit differentiation, differential division, and chain rule diagrams. The change of students’ solution methods between assignments was also observed. Responses were later analyzed to identify conceptual errors. Students make specific errors that provide insight into their lack of conceptual understanding of the solution methods.

I. INTRODUCTION

Thermodynamic variables are often related in complex ways. Partial derivatives express these relationships, which typically correspond to physically measurable attributes of the system of interest. In recent years, physics education research has expanded into upper-division courses, including thermodynamics. Some of this research focuses on student understanding of partial derivatives in physics contexts [1-7]. Evaluating partial derivatives often involves algebraic manipulation of multiple equations and the use of complicated chain rules. Research has shown that these mathematical techniques can be difficult for students [1-2] and experts [3-4] alike.

In this paper, we investigate the solution methods and errors in student responses to two chain rule problems, one with a thermodynamic context and one without, analogous to the problems examined by Kustusch et al. [3,4]. Our results can be used to help curriculum developers better prepare students to solve problems of this type, which are common in thermodynamics.

II. METHODS AND ANALYSIS

The participants in this study are students who were enrolled in a junior-level thermodynamics course at Oregon State University (OSU), known as Energy and Entropy. Demographic information was not collected. The course is part of OSU’s Paradigms in Physics, a reformed upper-level undergraduate physics program [8,9]. One of the goals of OSU’s Paradigms in Physics program is to expand students’ mathematical skills and problem-solving abilities, allowing them to respond to physics problems in multiple ways. Students in this program work interactively to learn and apply the course content, both in class and on the program’s intensive homework assignments. Most of the students previously completed two quarters of vector calculus as well as an introductory differential equations course. Most also had experience applying relevant mathematical concepts in prior Paradigms courses.

Data was gathered from student responses to two prompts given as part of the course (see Table I). In each prompt, students were given two “equations of state,” with overlapping variables, and asked to evaluate a particular partial derivative.

The Quiz prompt (N = 29) was assigned as a graded quiz on the last day of the course, the Friday of the third course week. Students had previously responded to the same prompt on a graded quiz at the end of the first week, and the Quiz prompt was posted online several days in advance of the assignment. This prompt has no explicit or implicit physical context.

The Final prompt (N = 27) was assigned on the final exam, which took place on the Monday following the quiz. The Final prompt has an explicit thermodynamic context (the equations of state for a Van der Waals gas).

We used an emergent, or open, coding scheme to identify and categorize students’ solution methods and errors [10]. Student responses that had little or no coherent work or contained invalid methods were labeled as “Other.” We refer to the five solution methods that emerged from student work (described in detail in the next section) as variable substitution, differential substitution, implicit differentiation, differential division, and chain rule diagrams. We believe these methods to be exhaustive. After sorting the responses by method, we separated student

<table>
<thead>
<tr>
<th>Given the definitions below, evaluate the requested partial derivative.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quiz prompt</td>
</tr>
<tr>
<td>$U = x^2 + y^2 + z^2$</td>
</tr>
<tr>
<td>$z = \ln (y-x)$</td>
</tr>
<tr>
<td>Find $\left(\frac{\partial U}{\partial z} \right)_y$</td>
</tr>
</tbody>
</table>
errors into two categories: conceptual and mathematical. We define conceptual errors to be errors pertaining to the evaluation and manipulation of partial derivatives, the algebraic manipulation of differentials, and the construction and reading of chain rule diagrams. Other algebraic errors, as well as sign errors, inadvertently dropped terms, and computational errors, are referred to as mathematical errors and were not examined further.

III. STUDENT SOLUTION METHODS AND CONCEPTUAL ERRORS

In this section, we describe the observed solution methods and discuss their prevalence in the dataset. We also identify conceptual errors that occurred within each method. The results are summarized in Fig. 1. In this figure, any student who made both a math and a conceptual error is counted only in the conceptual error category. There were two cases of this on the Quiz, but none on the Final exam. Responses that reflected multiple solution methods were counted as each of the methods. This occurred twice on the Quiz and once on the Final exam.

Variable Substitution (Var Sub): Students who used this method solved for and eliminated the variable that is not present in the partial derivative, including the variable held constant. We refer to variables that must be eliminated as excess variables. The excess variable is x in the Quiz prompt, and T in the Final prompt. Once the excess variable is replaced, the requested partial derivative can be evaluated. An example of a student using this method is shown in Fig. 2.

Both prompts can be solved using Var Sub. However, the Final prompt was intentionally designed to make isolating the excess variable more difficult than on the Quiz prompt. The algebra to solve Equation (4) for T is thus more challenging than to solve Equation (2) for x.

Var Sub was the most common solution method used on the Quiz prompt (31%). It was substantially less common on the Final prompt (11%). Only one student used Var Sub in response to both prompts. No students who used this method made a conceptual error.
\[\frac{\partial U}{\partial z} = \left(\frac{\partial U}{\partial y} \right)_x + \left(\frac{\partial U}{\partial z} \right)_y \]

\[\frac{\partial V}{\partial y} = \left(\frac{\partial V}{\partial x} \right)_z + \left(\frac{\partial V}{\partial y} \right)_z \]

\[\frac{\partial V}{\partial z} = \left(\frac{\partial V}{\partial x} \right)_y + \left(\frac{\partial V}{\partial z} \right)_y \]

\[\frac{\partial U}{\partial z} = \left(\frac{\partial U}{\partial x} \right)_y + \left(\frac{\partial U}{\partial z} \right)_z \]

\[\frac{\partial V}{\partial z} = \left(\frac{\partial V}{\partial x} \right)_y + \left(\frac{\partial V}{\partial z} \right)_y \]

\[\frac{\partial V}{\partial z} = \left(\frac{\partial V}{\partial x} \right)_y + \left(\frac{\partial V}{\partial z} \right)_y \]

\[\frac{\partial U}{\partial z} = \left(\frac{\partial U}{\partial x} \right)_y + \left(\frac{\partial U}{\partial z} \right)_z \]

\[\frac{\partial V}{\partial z} = \left(\frac{\partial V}{\partial x} \right)_y + \left(\frac{\partial V}{\partial z} \right)_y \]

\[\frac{\partial U}{\partial z} = \left(\frac{\partial U}{\partial x} \right)_y + \left(\frac{\partial U}{\partial z} \right)_z \]

\[\frac{\partial V}{\partial z} = \left(\frac{\partial V}{\partial x} \right)_y + \left(\frac{\partial V}{\partial z} \right)_y \]

\[\frac{\partial U}{\partial z} = \left(\frac{\partial U}{\partial x} \right)_y + \left(\frac{\partial U}{\partial z} \right)_z \]

\[\frac{\partial V}{\partial z} = \left(\frac{\partial V}{\partial x} \right)_y + \left(\frac{\partial V}{\partial z} \right)_y \]

\[\frac{\partial U}{\partial z} = \left(\frac{\partial U}{\partial x} \right)_y + \left(\frac{\partial U}{\partial z} \right)_z \]

\[\frac{\partial V}{\partial z} = \left(\frac{\partial V}{\partial x} \right)_y + \left(\frac{\partial V}{\partial z} \right)_y \]

\[\frac{\partial U}{\partial z} = \left(\frac{\partial U}{\partial x} \right)_y + \left(\frac{\partial U}{\partial z} \right)_z \]

\[\frac{\partial V}{\partial z} = \left(\frac{\partial V}{\partial x} \right)_y + \left(\frac{\partial V}{\partial z} \right)_y \]

\[\frac{\partial U}{\partial z} = \left(\frac{\partial U}{\partial x} \right)_y + \left(\frac{\partial U}{\partial z} \right)_z \]

\[\frac{\partial V}{\partial z} = \left(\frac{\partial V}{\partial x} \right)_y + \left(\frac{\partial V}{\partial z} \right)_y \]

\[\frac{\partial U}{\partial z} = \left(\frac{\partial U}{\partial x} \right)_y + \left(\frac{\partial U}{\partial z} \right)_z \]

\[\frac{\partial V}{\partial z} = \left(\frac{\partial V}{\partial x} \right)_y + \left(\frac{\partial V}{\partial z} \right)_y \]

\[\frac{\partial U}{\partial z} = \left(\frac{\partial U}{\partial x} \right)_y + \left(\frac{\partial U}{\partial z} \right)_z \]

\[\frac{\partial V}{\partial z} = \left(\frac{\partial V}{\partial x} \right)_y + \left(\frac{\partial V}{\partial z} \right)_y \]

\[\frac{\partial U}{\partial z} = \left(\frac{\partial U}{\partial x} \right)_y + \left(\frac{\partial U}{\partial z} \right)_z \]

\[\frac{\partial V}{\partial z} = \left(\frac{\partial V}{\partial x} \right)_y + \left(\frac{\partial V}{\partial z} \right)_y \]

\[\frac{\partial U}{\partial z} = \left(\frac{\partial U}{\partial x} \right)_y + \left(\frac{\partial U}{\partial z} \right)_z \]

\[\frac{\partial V}{\partial z} = \left(\frac{\partial V}{\partial x} \right)_y + \left(\frac{\partial V}{\partial z} \right)_y \]

\[\frac{\partial U}{\partial z} = \left(\frac{\partial U}{\partial x} \right)_y + \left(\frac{\partial U}{\partial z} \right)_z \]

\[\frac{\partial V}{\partial z} = \left(\frac{\partial V}{\partial x} \right)_y + \left(\frac{\partial V}{\partial z} \right)_y \]

\[\frac{\partial U}{\partial z} = \left(\frac{\partial U}{\partial x} \right)_y + \left(\frac{\partial U}{\partial z} \right)_z \]

\[\frac{\partial V}{\partial z} = \left(\frac{\partial V}{\partial x} \right)_y + \left(\frac{\partial V}{\partial z} \right)_y \]

\[\frac{\partial U}{\partial z} = \left(\frac{\partial U}{\partial x} \right)_y + \left(\frac{\partial U}{\partial z} \right)_z \]

\[\frac{\partial V}{\partial z} = \left(\frac{\partial V}{\partial x} \right)_y + \left(\frac{\partial V}{\partial z} \right)_y \]
(1) by applying \(dy = 0 \) and then set the requested partial derivative equal to all or part of the resulting expression. For example, one student wrote:

\[
\left(\frac{\partial U}{\partial z} \right)_y = 2zdz \quad \text{(incorrect quiz response)}
\]

On the Final exam, two students found the total differential of Equation (5) and then equated the requested partial derivative to the coefficient of the \(dV \) differential as below.

\[
\left(\frac{\partial U}{\partial z} \right)_y = N^2 \quad \text{(incorrect final exam response)}
\]

Two students applied the thermodynamic identity without making conceptual errors; however, this is not productive for the Final prompt.

IV. CONCLUSIONS

When asked to solve chain rule problems, we found that our upper-level physics students used a variety of solution methods. Students favored different methods when they responded to the Quiz prompt (a simple problem with no thermodynamic context) than to the Final prompt (a more complicated problem with explicit thermodynamic context).

In particular, the most prevalent solution method on the Quiz prompt was Var Sub, despite the fact that it was the only method not explicitly taught during the course. We suspect that intuition gained from experience with material in prior courses may have prompted students to use this method. However, many students abandoned Var Sub on the Final prompt. It is possible these students recognized the more challenging algebra necessary in this case, and switched to a method requiring less algebra. Most of these students changed to Diff Sub or CRD. These methods may also have been more appealing due to their prominence in the course. Since students who used Diff Sub or CRD were less likely to make conceptual errors, we intend to further emphasize these methods in future instruction.

We identified two underlying patterns in the observed student errors. The most common pattern was that students only attended to the variables in the numerator and the denominator of the derivative and that they did not know what to do with the variable that was to be held constant and the “excess” variable. For example, some students equated the requested partial derivative with a derivative that differed only by the variable(s) held constant. Similarly, other students: treated the excess variable as a constant or left it unchanged while evaluating the partial derivative, or obtained incorrect chain rule diagrams by identifying the wrong differential as excess. Although we did not observe it in this dataset, we have seen student responses in other datasets that identify the wrong variables and differentials as excess in the Var Sub and Diff Sub methods, respectively.

In the second pattern, some students constructed incorrect chain rules from their correctly built chain rule diagrams. This error seems to be a mechanical misunderstanding of chain rule diagrams, which we are investigating further to determine whether it is related to an underlying conceptual misunderstanding.

We intend to follow up on this pilot study by conducting further probes of how students respond to the kinds of chain rule problems that are common in thermodynamics by collecting data at additional strategic points throughout the course: for example, on pretests or quizzes early in the course. Additionally, we hope to provide prompts with parallel contexts; either all explicitly thermodynamic, or not. Doing so will eliminate the possibility that students respond differently based on contextual differences between the prompts.

Based on the results of this research, we are redesigning our course materials and activities to emphasize the role of each variable in a partial derivative [11]. In particular, our goal is to help students distinguish between these variables in partial derivatives: the variable in the numerator, the variable in the denominator, the variable(s) to be held constant, and any excess variables in a given system of equations. We also plan to place a larger emphasis on how to build and read chain rule diagrams as an aide to determining multivariable chain rules.

ACKNOWLEDGEMENTS

The authors thank David Roundy for designing the prompts, Guenter Schneider for instructing the spring-quarter 2016 thermodynamics class, and Mackenzie Lenz for being the teaching assistant during the class. Additional thanks go to Mike Vignal for his work as the interrater reliability tester during initial coding scheme development, the rest of the OSU PER group for their continued support, and the students who participated in this study. This work was supported in part by NSF grant DUE-1323800.