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Abstract.  This article discusses the need for a “grand theory” of physics cognition and learning. The idea of the grand 
theory is that it would be a complete description of the knowledge students possess and how that changes over time, 
from before instruction, all the way through expertise. The first part of the paper discusses our current state of 
knowledge and possible strategies for making progress on the grand theory. The second part of the paper illustrates, with 
an example, how the program might work. 
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TOWARD A “GRAND THEORY” 

The theme for this-year’s Physics Education 
Research Conference is “cognitive science and physics 
education research.” I have decided to use this invited 
address as an opportunity to talk, somewhat generally, 
about how I believe cognitive science should be 
applied in the context of physics education research. 
What I am going to talk about is what might be worth 
calling a “grand theory” of physics and learning. The 
idea of the grand theory is that it would be a complete 
description of the knowledge students possess and how 
that changes over time, from birth  through physics 
expertise and beyond. 

 

 

FIGURE 1. The big picture of physics learning. 
 

So, as a field, how close are we to having the grand 
theory? The answer, of course, is that we are not very 
close. As physics education researchers, we’ve 
focused a lot of attention in the highlighted region of 
Figure 1, which includes the time during introductory 
physics, and extends a bit beyond. Within this range, 
we know quite a lot about student performance on 
short, qualitative questions of the sort that show up on 
the FCI and in misconceptions research. These 
instruments tell us something about conceptions prior 
to instruction, and how those conceptions change 
during introductory physics instruction, at least as they 
are revealed by short qualitative questions. 

We also know a fair amount about how students 
solve textbook problems, from early introductory 
physics and somewhat into more advanced 
undergraduate study. Sometimes the same introductory 
textbook problems are given to experts for 
comparison. There has also been an emphasis on 
student epistemologies – their beliefs about physics 
knowledge and learning – and how those 
epistemologies affect what they learn. 

However, outside of the central highlighted region 
of Figure 1, and the particular foci just described, 
physics education researchers have done much less. 
For the later part of the life cycle, post-undergraduate, 
there is a limited amount of real research. Where 
experts are studied, they are often studied solving 
problems that are trivial for them. There are certainly 
notable exceptions [1, 2]. But, if we want to study the 
rarified regions out at the right of the life cycle in 
Figure 1, then we should be studying physics experts 
doing the range of cognitive tasks that truly 
characterize physics expertise, such as reading 
challenging journal articles, designing an experimental 
apparatus, and deriving new theoretical results. 

Down the far left end of the life cycle in Figure 1, 
physics education researchers have also not done 
much. Fortunately, there are some other fields, 
especially developmental psychology, that are filling 
in some relevant parts of the story. 

What can we reasonably do? 

Really constructing the grand theory is going to be 
extremely hard. Part of the problem is that physics is 
difficult and subtle, and expertise is built over years. If 



we were to try to study experts at work, in their chosen 
specialties, simply understanding the physics involved 
might be non-trivial. But an even bigger problem, I 
believe, is that, if we are really going to do this right, 
the amount of knowledge we have to consider is 
potentially enormous, and the learning really does start 
at birth. For example, our knowledge of physics is 
built, in a very fundamental way, on what we know 
about the physical world from being a person in the 
world. That knowledge is enormous, and we learn it 
starting at birth. Similarly, part of our grand theory 
must take into account our mathematical knowledge, 
and that learning also starts from birth. 

Given these difficulties, what, as a field, can we 
reasonably do? One mitigating factor is that there are 
other fields that are doing some of the work for us, 
especially in the early part of the life cycle.  
Psychology and mathematics education research are 
obvious places to look. We can make it our business to 
draw on that work and to make our own work 
consistent with it. Furthermore, I do not think it would 
be unreasonable for us to attempt to study physics 
expertise a bit more systematically. Finally, I believe 
that we can tweak our efforts in the highlighted part of 
Figure 1 – the time period that we already study – so 
that our efforts can fit more neatly in the grand 
program. I elaborate on this in what follows. 

AN EXAMPLE FROM PSYCHOLOGY 

I want to present a brief example from psychology, 
to illustrate the type of research that is being 
conducted down at the very earliest parts of the life 
cycle. I selected one article by Needham and 
Baillargeon [3], but there are many similar examples. 
This article investigates what 4.5-month-old babies 
think will happen when support of an object is 
removed. The way that these experiments with babies 
work is that babies are shown phenomena, and then 
the researchers measure how long the babies look at it. 
The longer they look, the more surprising or 
interesting the phenomenon is to the babies. 

Needham and Baillargeon showed babies possible 
and impossible events relating to support, as shown in 
Figure 2. The top row in this figure shows the possible 
event; hands appear and place an object on top of 
another object. The bottom row shows an impossible 
event. The hands appear, the object moves across and 
then beyond the supporting object. But then the object 
just appears to hang, unsupported, in space.  

What happens is that babies look longer at the 
impossible than the possible event, thus suggesting 
they know something about support. It turns out the 
story is a bit more complicated – and a bit more 
interesting. But the details are not too relevant here. 

The point is just that this learning starts very early, and 
that psychologists are mapping out some parts of this 
early learning about the physical world. 

 

 

FIGURE 2.  Possible and impossible events. From Needham 
and Baillargeon [3]. 

TWEAKING OUR EFFORTS 

I stated that we can tweak our efforts in the 
highlighted region of Figure 1 so that they fit more 
neatly into the grand program. Here’s where cognitive 
science as “the science of the nearly obvious finally 
comes in.” The idea is that we can refocus our 
attention on what is nearly obvious to us, what is right 
before our eyes and that we do every day. 

As I assert in my title, I believe that this is the 
primary business of cognitive science, to extract basic 
structure that we see in the world, the structure that is 
so basic to how we understand things that it can be all 
but invisible. The point is that changing our stance in 
this way will help us do work that fits more neatly 
within the grand program. 

An example: The Alphabet 

To illustrate what I mean by this change in stance, I 
am going to discuss an exercise that I use in 
introductory courses that I teach on cognitive theories 
of learning. What I have students do is form into pairs. 
Then one person in each pair interviews the other, and 
they ask some questions that have to do with the 
alphabet. They ask: 

1. What letter is the 12th letter in the alphabet? 
2. What’s the 10th letter after C? 
3. Say the alphabet backwards starting at Q. 
4. Is G before or after J? 
5. Is M before or after W? 

Not surprisingly, the way that the subjects answer 
the first two questions is that they say the alphabet 
from the beginning, counting on their fingers as they 
go. Answering the third question proves to be a bit 
more challenging. The main way that the subjects 
solve this is that they will jump backward a few letters, 
say the alphabet forwards from that point, then say that 
chunk of the alphabet backwards. Then they’ll jump 



back a bit more and iterate. Question 5, in contrast, 
turns out to be trivial; the subjects just answer it 
instantly. However, to answer question 4, and 
determine if G is before or after J, the subjects 
sometimes have to say a part of the alphabet to 
themselves. 

 

 

FIGURE 3.  A model of alphabet knowledge. 
 
A shown in Figure 3 one way to understand these 

results is to hypothesize that our knowledge of the 
alphabet is in the form of a clumpy, ordered list. In this 
simple model, we can move forward in the list from 
where we are. We can enter into the list at points other 
than A, but only at the start of a clump. So when 
people jump backward, they don’t have to go all the 
way back, but they have to jump back to the start of a 
clump. Also, in this model, given a letter, we can say 
what clump it’s in. That’s why comparison across 
clumps is easy and within clumps can be hard. 

Now I want to make some points about this 
alphabet example. First, in retrospect, the clumpy 
structure might seem to be somewhat obvious. In fact, 
when we discuss this example in my courses, students 
are very comfortable talking about these clumps, as if 
they have known about them for a long time.  

Second, although this clumpy structure might seem 
obvious in retrospect, this is usually fairly tacit 
knowledge. The clumps are not usually taught in the 
sense that a teacher says “we’re going to work on the 
HIJK clump today.” Third, the interesting grain size in 
this example is down a level from the structure that 
has a name. We call the whole thing “the alphabet,” 
but we don’t have names for the clumps. Finally, it is 
worth noting that the knowledge structure here retains 
some of the stamp of its origins. It’s possible that, to 
some extent, this clumpy structure is a result of the 
alphabet song. 

An Example From Physics 

Now I want to give an example to illustrate how 
this focus on the “nearly obvious” can look in the case 
of physics learning. To begin, imagine that we are 
looking at a sheet of paper that is filled with physics 
equations. As physicists, we can very quickly 
recognize a great deal of structure in this sheet. For 
example, we will recognize individual symbols and we 
might recognize some entire equations 

But the question is whether there is some sort of 
nearly obvious structure in this page of expressions, 
things we see for which we don’t have any immediate 
names. I believe that there is a great deal of such tacit 
structure in these symbols and I’m going to talk about 

a particular kind of structure that I call symbolic forms 
[4, 5]. A symbolic form is an association between two 
components. First, each symbolic form includes a 
conceptual schema. The conceptual schema is a way a 
way of understanding a physical situation that involves 
a few entities and some simple relations among those 
entities. The second component is a symbol template – 
it’s a template that specifies how exactly to express the 
conceptual schema in a symbolic expression. Or, 
stated in crude terms, a symbolic form is an “idea” 
plus a specification of how exactly to express that idea 
in an equation. 

 

 

FIGURE 4.  A page of physics expression 
 
In previous work, I have discussed 21 distinct 

symbolic forms [4, 5]. For illustration, Figure 4 lists 
some symbolic forms along with the associated 
symbol templates. First, in the balancing form, a 
physical situation is schematized as involving two 
influences that are equal and opposite. The symbol 
template for this form specifies that, to express the 
idea of “balancing,” we write two expressions, one for 
each influence, that are separated by an equal sign. In 
the parts-of-a-whole form, a situation is understood as 
involving a whole that is composed of two or more 
parts. The symbol template specifies that the way you 
express this particular idea is by writing two or more 
terms of some sort, separated by plus signs. Finally, in 
base+change, a base quantity is increased by the 
amount of a change. A thing to notice across the last 
two examples is that the same symbol structure can 
have multiple meanings. 

Symbolic forms and the grand theory 

Now what I want to argue is that my analysis of  
our understanding of symbol structure in terms of 
symbolic forms targets the right knowledge, and at the 
right grain size, so that we can begin to see how it 
might fit within the grand theory. To provide a sense 
for how that would work, I’m going to talk briefly 
about two kinds of precursor knowledge to symbolic 
forms, what diSessa calls “p-prims,” and what Greeno 
called “patterns in arithmetic word problems.” 

Phenomenological Primitives 

Andrea diSessa describes a portion of 
commonsense physics knowledge that he calls the 
sense-of-mechanism [6]. The sense-of-mechanism 
consists of knowledge elements called 



“phenomenological primitives” or just “p-prims” for 
short. They are called “primitives” because elements 
of the sense-of-mechanism form the base level of our 
intuitive explanations of physical phenomena. The 
idea of diSessa’s program is to identify these primitive 
pieces of knowledge – those are the p-prims. For 
example, in a p-prim that diSessa calls Ohm’s p-prim, 
a situation is schematized as involving an effort that 
works against a resistance to produce some result. 

In his published work, diSessa identifies dozens of 
p-prims, and suggests the existence of many more. For 
example, there are p-prims, such as Ohm’s p-prim, that 
have to do with force and agency. There also are p-
prims – such as one that diSessa calls dynamic balance 
– that have to do with balance and equilibrium. And 
there are p-prims that apply to constraint phenomena, 
such as blocking, supporting, and guiding. 

Patterns in Arithmetic Word Problems 

In the early 1980s, a number of mathematics 
education researchers hypothesized that young 
students are sensitive to a certain class of patterns in 
simple arithmetic word problems. For example, Riley, 
Greeno, and Heller [7] described four patterns, which 
they called change, combine, equalization, and 
compare. Change problems, for example, are problems 
in which some amount is added onto a base quantity to 
increase the size of that base quantity. In contrast, in 
combine problems, two given numbers A and B are 
put together, to form a new third quantity. So the 
change pattern should sound similar to the 
base+change symbolic form, and combine should 
sound similar to parts-of-a-whole. And these patterns 
share the property, with symbolic forms, that the same 
mathematical expressions can have multiple meanings. 

Putting the Story Together 

The point is that, looking across this research, we 
can see some small threads of the grand theory begin 
to emerge (refer to Figure 5). For symbolic forms such 
as balancing, there might be a thread back to p-prims 
and the sense-of-mechanism. And for forms such as 
parts-of-a-whole and base+change, there might be 
threads back to patterns in arithmetic word problems. 
It is even possible that we might be able to trace 
Needham and Baillargeon’s notion of support into the 
sense-of-mechanism. 

This is only a small slice through the grand theory. 
Here I am tracing knowledge of a very particular sort; 
it’s all moderately abstract schemas that have just a 
few entities in them.  Some threads in the grand theory 
are going to look very different. For example, we 
certainly have knowledge of specific phenomena. We 
know what happens when you mix vinegar and 

backing soda. And we know things about specific 
classes of objects, like strings. We probably acquire 
some of that knowledge early and it gets refined 
during the progression to physics expertise.  So not all 
threads in the grand theory will necessarily bear a 
close resemblance to this one. But this is the sort of 
game I think we should play. 

 

 

FIGURE 5. Some threads  in the grand theory. 

CONCLUSION 

In summary, I stated that, even if it might be an 
impossible ideal, we should think of ourselves as 
working on a grand theory that describes changing 
knowledge structures throughout the life cycle of a 
physicist. I said that this required us to broaden our 
focus somewhat to look at more of the lifespan, and 
across a broader range of tasks. I said we could look to 
other fields to do some of the work for us, especially at 
the left side of the life cycle. And finally I tried to 
show how tweaking our stance to focus on the nearly 
obvious could allow us to do our work so that it fits 
more neatly within the grand program. 
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