


show consistent improvement in student performance as
they became more experienced. While the study was ex-
ploratory and did not have a control group of instructors
not using LAs, it indicated that college physics instructor
experiences may impact student performance and that
these impacts may vary across instructor groups.

In an examination of the impact of LAs on instructor
practices, Otero et al. [8] found that the 11 instructors in-
terviewed reported that collaborating with LAs on plan-
ning lessons was instrumental in increasing their atten-
tion to student learning. The investigation, however, did
not measure shifts in instructor effectiveness over time.
While the support and collaborative aspects of the LA
model align with the recommendations made in the K-12
literature [4], there are no large-scale studies that have
empirically tested the impact of these practices on college
physics instructors.

III. RESEARCH QUESTIONS

To investigate how interactions with LAs relates to
physics instructor effectiveness over time, we investigated
two questions:

1. What is the impact of instructor experience teach-
ing introductory physics courses on student learn-
ing, if any?

2. Does an instructor’s history of using LAs alter
the impact of their teaching experience on student
learning?

IV. METHODS

The Learning About STEM Student Outcomes
(LASSO) platform hosts, administers, scores, and ana-
lyzes student pre- and posttest assessments online to pro-
vide instructors with objective feedback on their courses.
Instructors receive a report on their student performance
and can access their students’ responses. Data from
participating courses are added to the LASSO database
where they are anonymized, aggregated with similar
courses, and made available to researchers with approved
IRB protocols. This study used three years of introduc-
tory physics courses data from the LASSO database. We
examined data from courses that used the Force Con-
cept Inventory (FCI) [9] or Force and Motion Concep-
tual Evaluation (FMCE) [10]. We did not differentiate
between the FCI and FMCE in the models presented
in this paper because our preliminary analysis indicated
that doing so did not meaningfully change the model.

To clean our data, we removed assessment scores for
students if they took less than 5 minutes on the assess-
ment or were less than 80% complete. We removed entire
courses if they had less than 40% student participation
on either the pre- or posttest. After filtering our data was
missing 15% of the pretest scores and 30% of the posttest

FIG. 1. Instructor’s prior experience teaching their course
with and without LAs. Sixteen courses were taught by in-
structors with no prior experience in that course.

scores. To address missing data, we used Hierarchical
Multiple Imputation (HMI) with the hmi and mice pack-
ages in R. HMI addresses missing data by (1) imputing
each missing data point m times to create m complete
data sets, (2) independently analyzing each data set, and
(3) combining the m results using standardized methods
[11]. The analysis used 10 imputed datasets. HMI is
preferable to using matched data because it maximizes
statistical power by using all available data [11]. After
cleaning and imputation, our dataset included pre- and
posttest scores for 4,365 from 93 courses.

When setting up a course in LASSO, each instructor
answered a pair of questions on the number of times
they had previously taught the course with LAs and
the number of times they had taught the course with-
out LAs. The majority (83%) of the instructors reported
having prior experience teaching their courses (Figure 1).
Many of the instructors reported having always taught
the course either with (24%) or without (32%) LAs.

To identify factors associated with differences in stu-
dent performance, we developed 2-level HLM models us-
ing the HLM 7.01 software. These models nested student
data (level 1) within course data (level 2). The multi-
level nature of our models allowed us to quantify the
impact of teacher experience in courses taught with and
without LAs while accounting for inherent and unknown
course-level variations (e.g. the time of day of a class and
instructor backgrounds, which can lead to unforeseeable
differences in student performance).

We developed our HLM models through a series
of incremental additions of variables. In this paper
we show the results from three models. Model 1 is



the unconditional model, which predicts the student
performance without level-1 or level-2 variables. Model
2 builds on Model 1 by including the student (level-1)
variables (student prescore). Model 3 builds on Model
2 by including the course (level-2) variables and is
shown below. Postscore is the outcome variable and
is in level 1 because it was measured for each student.
Level 1 also includes a coefficient for the intercept
(β0j), for the student prescore (β1j), and for a ran-
dom effects variable (r0j). Each coefficient in level
1 has an associated level 2 equation. In the level 2
equation, the intercept is γi0, there is an associated
coefficient (γij) for each variable in the equation and
uij represents the random effect for the level 2 equations.

Level-1 Equation

(Postscore)ij = β0j + β1j ∗ (Student Prescore)ij + rij

Level-2 Equations

β0j = γ00 + γ01 ∗ (Times Taught With LAs)j +

γ02 ∗ (Times Taught Without LAs)j +

γ03 ∗ (LA Supported)j +

γ04 ∗ (Class Mean Prescore)j + u0j

β1j = γ10 + u1j

We do not include LA-support in the level-2 equation
for student prescore because the interaction between the
variables is not of interest in our analysis. For ease of
interpretation, student prescore is group mean centered,
class mean prescore is grand mean centered, and all other
variables are uncentered. These centerings simplify in-
terpreting the model by shifting the model to predict
posttest scores for average performing students in aver-
age performing classes. We included pretest scores in the
model because they are strong predictors of student per-
formance and improved the model’s fit. Pretest scores are
not the focus of this investigation so we will not substan-
tively discuss them in our interpretation of the models.

To interpret the models we will first discuss the vari-
ance across the three models then we will look at the co-
efficients for each variable of interest. In discussing the
variance, first we will discuss the Intraclass Correlation
Coefficient (ICC) for the unconditional model (model 1)
to compare the amount of variance in the data at the
student versus course level. The ICC is a good indica-
tor of the need for using HLM. Second, we will calculate
the variance that the additional variables in each model
explained by comparing the variances between the three
models. Then we will discuss the model coefficients.

V. FINDINGS

The ICC shows that 39% of the variability in student
performance is between students within courses and 61%

TABLE I. Hierarchical Linear Models

Fixed Effects with Robust SE

Model 1 Model 2 Model 3
β p β p β p

For Intercept
Intercept 55.05 <0.001 55.04 <0.001 55.97 <0.001
With LAs - - - - 0.02 0.974
W/o LAs - - - - -1.18 0.01
LA Sup. - - - - 3.10 0.171
Class Pre. - - - - 1.05 <0.001

For Student Prescore
Intercept - - 0.55 <0.001 0.54 <0.001

Random Effect Variance
Intercept 12.81 12.98 8.08
Prescore - 0.10 0.10
Level-1 20.14 17.47 17.43

FIG. 2. Predicted posttest scores for average students with
instructors who habitually teach with or without LAs (95%
confidence interval).

of the variability is within students. This shows that
course features are meaningfully related to student per-
formance and HLM is an appropriate method of analysis.
The reduction in level-1 variance (r) from Model 1 to
Model 2 (Table 1) shows that our student-level variable
(Student Prescore) explains 13% of the within-class vari-
ance in student performance. The reduction in level-2
intercept variance (u0j) from Model 1 to Model 3 shows
that our final model explains 37% of the variance in mean
performance across classes. This amount of explained
variance indicates that Model 3 has strong explanatory
power. As Model 3 is our most robust model, we will
focus solely on it in the remainder of our findings.

Model 3 shows that as the number of times instruc-
tors have taught a course without LAs increases their
posttest scores are predicted to reliably (p=0.01) de-
crease by 1.2%/term (Table 1). This decline in instruc-



tor effectiveness is absent in LA-supported courses as in-
structor experience using LAs is not a reliable (p=0.974)
predictor of student posttest scores. Figure 2 illustrates
the longitudinal impacts of repeated teaching with and
without LAs on predicted posttest scores for average stu-
dents. When instructors have no prior experience teach-
ing that course, our model predicts that the students
in LA-supported courses will outperform their peers in
courses without LAs by 3.1%. As the instructors gain
experience the predicted gap in student posttest scores
grows. When instructors have 6 terms of experience
teaching their respective courses (either with or without
LAs), the students in LA-supported courses are predicted
to outperform their peers by 10.3% on their posttests.

VI. DISCUSSION

Prior research into the impact of experience on teacher
effectiveness has primarily focused on K-12 settings. Ex-
isting research has found that teacher experience has dif-
ferential impacts across grades and disciplines. Our in-
vestigation extends this work by examining the impact
of teaching experience on college introductory physics in-
structor effectiveness. In answering research question 1,
our analysis found a general decline in effectiveness over
time for instructors who were not using LAs. In con-
trast, in answering research question 2, instructors who
were teaching with LAs maintained their effectiveness.
While the decline in student posttest performance asso-
ciated with each term of instructor teaching experience
without LAs (1.2%) may not sound substantial, the losses
are cumulative. Students in courses with instructors who
have taught without LAs for 6 terms are predicted to un-
derperform their peers in LA-supported courses by 10.3%
(7.2% loss due to instructor experience and 3.1% loss due
to current lack of LA-support). Given that in our dataset
the average student raw gains from pretest to posttest are

approximately 20%, losing 10.3% of that gain represents
losing approximately half of the student learning.

While our models cannot provide a causal mechanism
for these observed declines in effectiveness we hypothesize
that the shift may come from the lack of resources allo-
cated to improving instructor pedagogical practices. In
contrast to K-12 schools, the structures in colleges (e.g.
incentives and funding) tend to value faculty’s scholarly
productivity over teaching effectiveness. Given the gen-
eral lack of resources that colleges commit to supporting
and improving faculty’s instructional practices, it is not
entirely surprising that college instructors do not improve
their effectiveness in the same way as K-12 teachers do.
In contrast to typical college instructors, instructors who
use LAs have an entire network of resources (e.g. LAs,
weekly LA co-planning meetings, LA pedagogy courses,
LA program directors, and the LA Alliance) designed
to support them in reflecting on and improving their
teaching effectiveness. We propose that the additional
resources provided by LA programs may help to fill the
gap created by the colleges and preventing the decline in
instructor effectiveness.

VII. LIMITATIONS AND FUTURE WORK

The LASSO platform was originally promoted to fac-
ulty in the LA Alliance, which likely skewed the courses
to be ones that use research-based pedagogical practices
whether they were LA-supported or not. Thus, the shifts
in instructor effectiveness without LAs may not represent
the shifts in traditional lecture-based courses. We expect
that increased adoption of the LASSO platform will im-
prove the generalizability of our findings. In our future
work, we will use a meta-analysis of published results to
further inform our analysis. This work was funded in part
by NSF-IUSE Grant No. DUE-1525338 and is Contribu-
tion No. LAA-046 of the Learning Assistant Alliance.
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