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Abstract. As part of research into student understanding of topics related to thermodynamics and statistical mechanics at the
upper division, we have identified student difficulties in applying concepts related to the Boltzmann factor and the canonical
partition function. With this in mind, we have developed a guided-inquiry worksheet activity (tutorial) designed to help
students develop a better understanding of where the Boltzmann factor comes from and why it is useful. The tutorial guides
students through the derivation of both the Boltzmann factor and the canonical partition function. Preliminary results suggest
that students who participated in the tutorial had a higher success rate on assessment items than students who had only received
lecture instruction on the topic. We present results that motivate the need for this tutorial, the outline of the derivation used,
and results from implementations of the tutorial.
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INTRODUCTION

As part of a larger project on the learning and teaching of
thermal physics at the upper division, we have identified
several specific student difficulties in relevant courses.
One area of focus is the Boltzmann factor and the canon-
ical partition function. The Boltzmann factor (BF) is pro-
portional to the probability that a system in thermal equi-
librium is in a particular energy state:

P(Ψ j) ∝ e−E j/kT , (1)

where Ψ j denotes the energy eigenstate with eigenvalue
E j. The canonical partition function (Z) is the result of
the normalization constraint that the sum of P(Ψ j) over
all j must be unity:

P(Ψ j) =
e−E j/kT

Z
→ Z = ∑

i
e−Ei/kT . (2)

The BF and Z may be used to determine many thermody-
namic quantities of a system at fixed temperature, includ-
ing internal energy, Helmholtz free energy, entropy, and
heat capacity. As such they are considered cornerstones
of statistical mechanics.

Studies show that guided-inquiry worksheet activi-
ties (tutorials) are effective supplements to traditional
lecture-based instruction in introductory physics courses
(e.g. ref. 1), and that they may be beneficial to upper-
division students as well.[2] With this in mind we have
developed a Boltzmann factor tutorial (BFT) that guides
students through the characteristic derivation of the BF
in order to promote a deeper understanding of its origin

than is typically gained from lectures alone. We expect
that this deeper understanding will result in an improved
ability to appropriately apply the BF to relevant physi-
cal scenarios. In the following sections we discuss some
specific difficulties seen in student understanding of the
BF and Z. We then summarize the pedagogical approach
used within the BFT. We conclude by presenting some
preliminary results and implications for future research.

STUDENT RECOGNITION OF THE USE
OF THE BOLTZMANN FACTOR

One desired result of teaching students about the BF is
that they will recognize applicable situations and use it
to make claims about probabilities. The probability ratios
question (PRQ, shown in Figure 1) probes their ability to
do this. The correct solution to the PRQ requires students
to recognize two pieces of information:

• The probability of the particle being in each state
will be proportional to the BF for that state

• The energy difference between the states for each
ratio is the same (∆E = 0.05eV )

The first item implies that each ratio of probabilities
will be an exponential function of the energy difference
between the two states. The second item reveals that both
pairs of ratios in the PRQ are equal.

Starting in 2005, the PRQ was given to students in the
Statistical Mechanics course (PHY463) at the University
of Maine (UMaine) after they had completed all lecture
instruction on the BF and Z. PHY463 is a semester-long



Consider a particle (Particle A) in

a system with three evenly spaced

energy levels, as seen in the figure at right. The probability that
Particle A is in the nth energy level is PA(n).
A. Is the ratio of the probabilities PA(3)

PA(2) greater than, less than,

or equal to the ratio of the probabilities PA(2)
PA(1) ? Please explain

your reasoning.

n = 3
n = 2
n = 1

0.10eV
0.05eV
0.00eV

B. Consider a second single
particle, Particle B, that can
also only be in three states. The
energies of the three states of

each system are listed in the table at right. Both systems are in
equilibrium with a reservoir at temperature T .
Is the ratio of the probabilities PB(3)

PB(2) for Particle B greater than,

less than, or equal to the ratio of the probabilities PA(3)
PA(2) for

Particle A? Please explain your reasoning.

n Particle A Particle B

1 0.00eV −0.05eV
2 +0.05eV 0.00eV
3 +0.10eV +0.05eV

FIGURE 1. Probability ratios question (PRQ).

course dedicated to statistical mechanics offered every
spring. The majority of students in PHY463 are senior
physics majors, many of whom have taken a semester-
long classical thermodynamics course offered in the fall.
The class population usually includes between 6 and
12 students each semester and includes physics gradu-
ate students as well as some undergraduates majoring
in related fields (mathematics, chemistry, etc.). Figure 2
shows the response frequencies for the entire 5-year data
corpus. It should be noted that some incorrect responses
were not accompanied by thorough or consistent reason-
ing, and that some students were inconsistent between
parts A and B of the PRQ.
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FIGURE 2. Response frequencies for the probability ratios
question after lecture instruction. N = 32.

Considering Figure 1 and Figure 2, we can see that
the most common incorrect response for both parts of the
PRQ is the idea that, P(0.10eV )

P(0.05eV ) < P(0.05eV )
P(0.00eV ) (“less than” for

part A and “greater than” for part B). These answers are
considered consistent since the second and third energy
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FIGURE 3. An isolated container of an ideal gas is separated
into a small system (C) and a large reservoir (R). The label “C”
is used to avoid confusion with entropy.

levels in system B have the same numerical values as the
first and second energy levels in system A. One student
justified this response for part A stating that, “...the most
probable state...is the one with the lowest energy; hence
PA(1) > PA(2) > PA(3),” and indicated that, PA(3)

PA(2) < PA(2)
PA(1) .

This could be seen as an application of the Numerator
Principle, with which students compare fractions based
solely on the relative magnitudes of their numerators.[3]
Figure 2 also shows us that students are more likely to
answer part B correctly (which discusses an effective
shift in the ground state energy of a system) than part A
(comparing two different sets of probabilities for states
within the same system). Another student articulated this
very clearly in stating that, “...it does not matter what the
‘baseline’ is, just the amount of energy added.”

STUDENT APPRECIATION OF THE
ORIGIN OF THE BOLTZMANN FACTOR

During tutorial development one author (TIS) conducted
individual interviews with 4 students after classroom in-
struction to determine their familiarity with the BF, its
applications, and its origin. The interview consisted of
asking students to complete the second half of a prelim-
inary version of the BFT. Students worked individually,
and the interviewer solicited explanations for their work
and gave assistance when required. Two interview par-
ticipants had participated in the first half of the BFT dur-
ing class, and the other two had not seen the first half.
One student (Joel, who had seen part of the first half
of the BFT in class) was very familiar with the appli-
cations of the BF and seemed to be just as familiar with
its origin. During his interview Joel was presented with
a scenario in which a container of ideal gas is divided
into relatively small and large sections (shown in Figure
3). The system of interest (C) is said to be in thermal
equilibrium with the reservoir (R). Since the multiplici-
ties of C and R are so different (ωC � ωR) a toy model
is proposed in which ωtot = ωC ·ωR = ωR, and the en-
ergy of C can only take on a handful of discrete values,
EC ∈ {E j} = {E1,E2, ...} (see Table 1). Joel was given
the table of multiplicities and asked to determine which
macrostate (defined by EC) is most probable and which is



least probable. The desired solution is that the macrostate
in which R has the largest number of microstates (multi-
plicity) would be the most probable (E4 below) since all
microstates are equally likely.
TABLE 1. Values of energy and multiplicity given to stu-
dents during the interview and the tutorial (see Figure 3).

EC ωC ER ωR

E1 1 Etot −E1 3×1018

E2 1 Etot −E2 5×1019

E3 1 Etot −E3 4×1017

E4 1 Etot −E4 1×1020

E5 1 Etot −E5 7×1018

Rather than reasoning about multiplicities, Joel
wanted to use the BF even though no information had
been given about the relative energy values. The inter-
viewer asked Joel to show where the BF came from
before applying it to this situation, at which point Joel
quoted the textbook derivation of the BF practically
verbatim. The final portion of Baierlein’s mathematical
derivation is as follows, [4, p. 92]

P(Ψ j) = const×
(multiplicity of reservoir

when it has energy Etot −E j

)
(3)

P(Ψ j) = const× exp
[

1
k

SR(Etot −E j)
]

(4)

P(Ψ j) = (new constant)× exp(−E j/kT ) . (5)

When asked how the multiplicity of the reservoir re-
lates to the BF, however, Joel was at a loss. Without
explicit help from the interviewer, Joel could not make
the connection between the multiplicity of the reservoir
and the decaying exponential function of energy that he
had (implicitly) written to be proportional to one an-
other. Furthermore, Joel could not relate the physical ex-
ample used in the text (a “bit of cerium magnesium ni-
trate...in good thermal contact with a relatively large cop-
per disc”[4, p. 91]) to the ideal gas example used dur-
ing the interview. Joel’s failure to make these connec-
tions suggests an incomplete understanding of the phys-
ical reasoning used to derive the BF even after memoriz-
ing the textbook derivation.

Joel was also unique in that he was the only student
interviewed who could spontaneously generate a Taylor
series expansion of entropy as a function of energy as it
relates to the given physical scenario, the necessary step
to go from Eq. 4 to Eq. 5. Unfortunately the interviewer
did not question Joel further as to his understanding of
the Taylor series. Another 2 students were able to gener-
ate the appropriate expansion when given a generic math-
ematical expression for a Taylor series, but the final stu-
dent (of 4) was unable to make any connections between
the generic Taylor expansion and the physical scenario
without explicit instruction from the interviewer. These

results indicate that student understanding of the moti-
vation for a Taylor series expansion (a crucial part of the
derivation of the BF) cannot be taken for granted. In con-
trast, results from a supplement to the PRQ pretest in two
years showed that 9 out of 16 students were able to cor-
rectly interpret a Taylor series expansion of a function
given its graph.

OVERVIEW OF TUTORIAL

Given students’ apparent inabilities to properly use the
BF or to meaningfully articulate its origin, we created a
tutorial to guide students through the derivation of the BF
and encourage deep connections between the physical
quantities involved. The derivation chosen for use in the
BFT is found in many widely used textbooks including
the one used at UMaine.[4, 5]1 The BFT begins by asking
students to consider an isolated container of an ideal gas.
They are guided to recognize that the container will have
a fixed internal energy (Etot ) and multiplicity (ωtot ), and
that all microstates are equally probable.

Once the properties of the isolated container (micro-
canonical ensemble) have been established, the students
are told that the container is actually divided into the sec-
tions shown in Figure 3 and asked to compare the values
of the intensive and extensive properties of C to those
of R. Using the toy model described above (ωC = 1) the
students determine which value of EC is most probable
and which is least probable, leading them to the propor-
tionality between probability and the multiplicity of the
reservoir (P(Ψ j) ∝ ωR(Ψ j)).

The final section of the BFT is the derivation of the BF
itself. Using a Taylor series expansion of SR(ER) about
Etot , one obtains SR as a linear function of EC:

SR(ER) = SR(Etot)−
∂SR

∂ER Etot

EC + ...≈ Stot −
EC

T
, (6)

where
(

∂S
∂E

)
V,N

= 1
T from the first law of thermodynam-

ics. Then, using the relationship between entropy and
multiplicity (S = k ln(ω)), ωR may be written as a de-
caying exponential of the energy of C (the BF):

ωR = eSR/k ≈ eStot/k−EC/kT → ωR ∝ e−EC/kT . (7)

Students have now found that P(Ψ j) ∝ ωR(Ψ j) and that
ωR(Ψ j) ∝ e−E j/kT , leading to the proportionality in Eq.
1. Finally, they are asked to normalize the probability,
thus deriving Z (see Eq. 2).

To ensure that students could complete the Taylor se-
ries portion of the derivation we developed a homework

1 Notably, Schroeder’s derivation differs from these other texts.[6]



assignment to be completed by the students and brought
to class for tutorial. This assignment asks the students to
write the Taylor series expansion of S(E) about the fixed
value E0. During the BFT the students are asked to relate
the generic physical variables in this assignment to those
relevant to the physical scenario in question.

IMPLEMENTATION AND RESULTS

The BFT was administered in PHY463 after all lecture
instruction on the BF in two consecutive years. Students
were given one 50-minute class period to complete the
BFT. The course instructor and one TA were available
during the tutorial session. No course credit is offered
for the tutorial itself, but the course grade includes an
in-class participation aspect. Data from both implemen-
tations of the BFT indicate that students benefit from go-
ing through the tutorial whether or not they knew how to
use the BF on the PRQ after lecture instruction alone.

The PRQ or an analogous question was given on a
course examination after each implementation of the
BFT. From these two years we have 15 sets of matched
data: 6 undergraduate physics majors and 4 graduate stu-
dents in physics who participated in the BFT, and 5 un-
dergraduates who did not come to class the day of the
BFT. Additionally, 5 undergraduate students who par-
ticipated in the BFT did not complete the pre-tutorial
assessment. Table 2 shows how many of each of these
groups answered correctly with correct reasoning both
before and after tutorial instruction. While these findings
are not conclusive, we are encouraged that the BFT helps
students recognize the utility of the BF and how to apply
it properly.

TABLE 2. Number correct on pre- and post- tuto-
rial assessments. Percentages shown in parentheses.

N Pre-tutorial Post-tutorial

BFT 6 1 (17%) 5 (83%)
BFT No Pre 5 n/a 5 (100%)

Grad BFT 4 3 (75%) 4 (100%)
No BFT 5 2 (40%) 3 (60%)

In order to check that students were engaging in dis-
cussions about the physical concepts and phenomena in
the derivation, the tutorial sessions were videotaped. The
video data show that the tutorial in fact promotes these
conversations and suggest that students are gaining an
appreciation for where the BF comes from as a result. It
is unclear at present the specific benefits that result from
understanding the derivation of an equation in terms of
abilities to use the equation, and we are in the process of
developing assessment questions to determine the last-
ing effects of the appreciation students may gain from
the BFT.

SUMMARY AND IMPLICATIONS FOR
FUTURE WORK

We have shown that students’ written responses to a
question requiring the use of the Boltzmann factor do
not indicate mastery of the topic after lecture instruction
alone. We have shown that students who learn the deriva-
tion of the BF from the textbook may not have a thorough
understanding of the mathematical implications of and
physical reasoning behind this derivation (especially the
physical motivation for using a Taylor series expansion).
Moreover, we see that students benefit from our tutorial,
gaining an increased ability to use the BF in quantitative
scenarios (as shown on the course examination). Video
data suggest that students may also gain an appreciation
for the origin of the BF, and we are developing assess-
ment items to determine the effects of understanding this
origin.

We have begun implementing the BFT in different in-
stitutions to gather data from a more diverse population.
We have also begun conducting interviews to assess stu-
dent understanding of the relationship between the BF
and the density of states function. Preliminary results
suggest that a thorough understanding of the origin of
the BF is required to fully appreciate this relationship.
These interviews will also determine how well students
truly understand the derivation they worked through dur-
ing the tutorial session.
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