APS Excellence in Physics Education Award
November 2019

Education Prize Logo
Science SPORE Prize
November 2011

NSF Logo
The Open Source Physics Project is supported by NSF DUE-0442581.

Computer Program Detail Page

Item Picture
Wave Machine JS Model
written by Wolfgang Christian and Loo Kang Wee
The Wave Machine model simulates the wave machine produced by John Shive at Bell Laboratories and made famous by the PSSC Simple Waves film.  The machine consists of horizontal bars welded to a torsion rod that is perpendicular to the bars.  The simulation allows the user to change the lengths of the bars, thereby simulating the effect of a wave propagating in a non-uniform medium.

The simulation allows various pulse shapes to be sent down the machine by selecting a function for the twist of the first rod or by dragging the first rod.  For example, applying a Gaussian twist produces a Gaussian traveling pulse but the width of this pulse depends on the wave speed.  The far end of the wave machine can be free or clamped and this changes the nature of the reflected wave.

Please note that this resource requires at least version 1.5 of Java.
1 source code document is available
Subjects Levels Resource Types
Oscillations & Waves
- Oscillations
= Coupled Oscillations
= Springs and Oscillators
- Wave Motion
= Transverse Pulses and Waves
- Upper Undergraduate
- High School
- Lower Undergraduate
- Instructional Material
= Interactive Simulation
Intended Users Formats Ratings
- Learners
- Educators
- text/html
- application/zip
  • Currently 0.0/5

Want to rate this material?
Login here!


Access Rights:
Free access
License:
This material is released under a GNU General Public License Version 3 license. Additional information is available.
Rights Holder:
Wolfgang Christian
Keywords:
Wave Machine, coupled oscillator, coupled oscillator, torque, torsional vibration
Record Cloner:
Metadata instance created August 19, 2023 by Wolfgang Christian
Record Updated:
August 19, 2023 by Wolfgang Christian
Last Update
when Cataloged:
August 19, 2023

AAAS Benchmark Alignments (2008 Version)

4. The Physical Setting

4F. Motion
  • 6-8: 4F/M4. Vibrations in materials set up wavelike disturbances that spread away from the source. Sound and earthquake waves are examples. These and other waves move at different speeds in different materials.
  • 9-12: 4F/H6ab. Waves can superpose on one another, bend around corners, reflect off surfaces, be absorbed by materials they enter, and change direction when entering a new material. All these effects vary with wavelength.
  • 9-12: 4F/H6c. The energy of waves (like any form of energy) can be changed into other forms of energy.

9. The Mathematical World

9C. Shapes
  • 9-12: 9C/H3c. A graph represents all the values that satisfy an equation, and if two equations have to be satisfied at the same time, the values that satisfy them both will be found where the graphs intersect.

11. Common Themes

11B. Models
  • 6-8: 11B/M4. Simulations are often useful in modeling events and processes.
  • 6-8: 11B/M5. The usefulness of a model depends on how closely its behavior matches key aspects of what is being modeled. The only way to determine the usefulness of a model is to compare its behavior to the behavior of the real-world object, event, or process being modeled.

Common Core State Standards for Mathematics Alignments

Standards for Mathematical Practice (K-12)

MP.4 Model with mathematics.

High School — Algebra (9-12)

Creating Equations? (9-12)
  • A-CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context.
  • A-CED.4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.

High School — Functions (9-12)

Interpreting Functions (9-12)
  • F-IF.4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship.?
  • F-IF.6 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.
Building Functions (9-12)
  • F-BF.3 Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.
Trigonometric Functions (9-12)
  • F-TF.5 Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline.?
ComPADRE is beta testing Citation Styles!

Record Link
AIP Format
W. Christian and L. Wee, Computer Program WAVE MACHINE JS MODEL, Version 1.0 (2023), WWW Document, (https://www.compadre.org/Repository/document/ServeFile.cfm?ID=16530&DocID=5725).
AJP/PRST-PER
W. Christian and L. Wee, Computer Program WAVE MACHINE JS MODEL, Version 1.0 (2023), <https://www.compadre.org/Repository/document/ServeFile.cfm?ID=16530&DocID=5725>.
APA Format
Christian, W., & Wee, L. (2023). Wave Machine JS Model (Version 1.0) [Computer software]. Retrieved October 10, 2024, from https://www.compadre.org/Repository/document/ServeFile.cfm?ID=16530&DocID=5725
Chicago Format
Christian, Wolfgang, and Loo Kang Wee. "Wave Machine JS Model." Version 1.0. https://www.compadre.org/Repository/document/ServeFile.cfm?ID=16530&DocID=5725 (accessed 10 October 2024).
MLA Format
Christian, Wolfgang, and Loo Kang Wee. Wave Machine JS Model. Vers. 1.0. Computer software. 2023. Java 1.5. 10 Oct. 2024 <https://www.compadre.org/Repository/document/ServeFile.cfm?ID=16530&DocID=5725>.
BibTeX Export Format
@misc{ Author = "Wolfgang Christian and Loo Kang Wee", Title = {Wave Machine JS Model}, Month = {August}, Year = {2023} }
Refer Export Format

%A Wolfgang Christian %A Loo Kang Wee %T Wave Machine JS Model %D August 19, 2023 %U https://www.compadre.org/Repository/document/ServeFile.cfm?ID=16530&DocID=5725 %O 1.0 %O text/html

EndNote Export Format

%0 Computer Program %A Christian, Wolfgang %A Wee, Loo Kang %D August 19, 2023 %T Wave Machine JS Model %7 1.0 %8 August 19, 2023 %U https://www.compadre.org/Repository/document/ServeFile.cfm?ID=16530&DocID=5725


Disclaimer: ComPADRE offers citation styles as a guide only. We cannot offer interpretations about citations as this is an automated procedure. Please refer to the style manuals in the Citation Source Information area for clarifications.

Citation Source Information

The AIP Style presented is based on information from the AIP Style Manual.

The APA Style presented is based on information from APA Style.org: Electronic References.

The Chicago Style presented is based on information from Examples of Chicago-Style Documentation.

The MLA Style presented is based on information from the MLA FAQ.

Wave Machine JS Model:

Is Based On Easy Java Simulations Modeling and Authoring Tool

The Easy Java Simulations Modeling and Authoring Tool is needed to explore the computational model used in the Wave Machine JS Model.

relation by Wolfgang Christian

Know of another related resource? Login to relate this resource to it.
Save to my folders

Supplements

Contribute

Related Materials

Similar Materials

OSP Projects:
Open Source Physics - EJS Modeling
Tracker
Physlet Physics
Physlet Quantum Physics
STP Book