Computer Program Detail Page

Item Picture

This record is currently in the approval process for inclusion into the Physics To Go collection. If you feel this record should be given priority you may contact the editor using our feedback form.

written by Anne Cox, Wolfgang Christian, and Mario Belloni
supported by the National Science Foundation
The Introductory Physics 1D Motion Lab program asks students to develop a model for a ball moving vertically under the influence of gravity. It is distributed as a ready-to-run (compiled) Java archive.  Double-clicking the ejs_intro_1DMotionLab.jar file will run the program if Java is installed. In order to modify this simulation (and see how it is designed), if you have Ejs installed, you can right-click within the simulation window and select Open Ejs Model from the pop-up menu. Information about Ejs (Easy Java Simulations) is available at:
The Intro 1D Motion Lab program is one of a suite of Easy Java Simulations (Ejs) models used in Introductory Physics Labs. Ejs, a part of the Open Source Physics Project, and is designed to make it easier to access, modify and generate computer models.  Additional models can be found by searching ComPADRE for Ejs.

Please note that this resource requires at least version 1.5 of Java.
View the supplemental documents attached to this resource (2)
  • Ejs Intro 1DMotionLab Documentation
    A pdf document that briefly describes the Ejs Intro 1DMotionLab model. It describes how to use the stp_intro_1DMotionLab.jar file with Ejs and contains associated laboratory exercises and instructors notes.
  • Ejs Intro 1DMotionLab Distribution
    The materials distributed in this directory are in support of the Introductory 1D-Motion Lab model. This distribution contains the Intro 1D Motion Lab model, documentation and laboratory exercises but not Ejs itself. Information about Ejs (Easy Java Simulations) is available at:
View the source code document attached to this resource
  • Ejs Intro 1DMotionLab Source
    The source code zip archive contains an XML representation of the 1D Motion Lab model. Unzip this archive in your EJS workspace to compile and run this model using EJS.
Subjects Levels Resource Types
Education Practices
- Active Learning
= Modeling
Motion, Forces, and Energy
- Motion in One Dimension
= Gravitational Acceleration
- High School
- Lower Undergraduate
- Instructional Material
= Activity
= Interactive Simulation
= Laboratory
Intended Users Formats Ratings
- Learners
- Educators
- application/java
  • Currently 0.0/5

Want to rate this material?
Login here!

Additional Information
This resource was featured by the Physics Front collection from December 11, 2012 until December 11, 2012. View the feature here!

Access Rights: Free access
Restriction: © 2008 Wolfgang Christian
Additional information is available.
PACSs: 01.50.hv
Keywords: EJS, Easy Java Simulation, computational modeling, computer modeling, constant acceleration, motion model, motion modeling, osp
Record Creator: Metadata instance created May 29, 2008 by Anne Cox
Record Updated: Jun 05, 2014 by Andreu Glasmann
Last Update
when Cataloged:
May 29, 2008
Other Collections:

AAAS Benchmark Alignments (2008 Version)

4. The Physical Setting

4B. The Earth
  • 6-8: 4B/M3. Everything on or anywhere near the earth is pulled toward the earth's center by gravitational force.

11. Common Themes

11B. Models
  • 6-8: 11B/M2. Mathematical models can be displayed on a computer and then modified to see what happens.
  • 9-12: 11B/H1a. A mathematical model uses rules and relationships to describe and predict objects and events in the real world.
  • 9-12: 11B/H2. Computers have greatly improved the power and use of mathematical models by performing computations that are very long, very complicated, or repetitive. Therefore, computers can reveal the consequences of applying complex rules or of changing the rules. The graphic capabilities of computers make them useful in the design and simulated testing of devices and structures and in the simulation of complicated processes.
  • 9-12: 11B/H3. The usefulness of a model can be tested by comparing its predictions to actual observations in the real world. But a close match does not necessarily mean that other models would not work equally well or better.

12. Habits of Mind

12B. Computation and Estimation
  • 9-12: 12B/H4. Use computer spreadsheet, graphing, and database programs to assist in quantitative analysis of real-world objects and events.

Common Core State Standards for Mathematics Alignments

Standards for Mathematical Practice (K-12)

MP.4 Model with mathematics.

High School — Algebra (9-12)

Creating Equations? (9-12)
  • A-CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context.

High School — Functions (9-12)

Interpreting Functions (9-12)
  • F-IF.4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship.?
  • F-IF.6 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.
Linear, Quadratic, and Exponential Models? (9-12)
  • F-LE.1.b Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.
  • F-LE.5 Interpret the parameters in a linear or exponential function in terms of a context.
ComPADRE is beta testing Citation Styles!

Record Link
AIP Format
A. Cox, W. Christian, and M. Belloni, Computer Program EJS INTRO 1D MOTION LAB MODEL (2008), WWW Document, (
A. Cox, W. Christian, and M. Belloni, Computer Program EJS INTRO 1D MOTION LAB MODEL (2008), <>.
APA Format
Cox, A., Christian, W., & Belloni, M. (2008). Ejs Intro 1D Motion Lab Model [Computer software]. Retrieved October 22, 2017, from
Chicago Format
Cox, A, W. Christian, and M. Belloni. "Ejs Intro 1D Motion Lab Model." (accessed 22 October 2017).
MLA Format
Cox, Anne, Wolfgang Christian, and Mario Belloni. Ejs Intro 1D Motion Lab Model. Computer software. 2008. Java 1.5. 22 Oct. 2017 <>.
BibTeX Export Format
@misc{ Author = "Anne Cox and Wolfgang Christian and Mario Belloni", Title = {Ejs Intro 1D Motion Lab Model}, Month = {May}, Year = {2008} }
Refer Export Format

%A Anne Cox
%A Wolfgang Christian
%A Mario Belloni
%T Ejs Intro 1D Motion Lab Model
%D May 29, 2008
%O application/java

EndNote Export Format

%0 Computer Program
%A Cox, Anne
%A Christian, Wolfgang
%A Belloni, Mario
%D May 29, 2008
%T Ejs Intro 1D Motion Lab Model
%8 May 29, 2008

Disclaimer: ComPADRE offers citation styles as a guide only. We cannot offer interpretations about citations as this is an automated procedure. Please refer to the style manuals in the Citation Source Information area for clarifications.

Citation Source Information

The AIP Style presented is based on information from the AIP Style Manual.

The APA Style presented is based on information from APA Electronic References.

The Chicago Style presented is based on information from Examples of Chicago-Style Documentation.

The MLA Style presented is based on information from the MLA FAQ.

Ejs Intro 1D Motion Lab Model:

Is Based On Easy Java Simulations Modeling and Authoring Tool

The Easy Java Simulations Modeling and Authoring Tool is needed to explore the computational model used in the Free Fall Air Resistance Model.

relation by Caroline Hall

Know of another related resource? Login to relate this resource to it.

Have experience with this material? Login to leave a comment sharing your experience.

Know of a related resource? Login to relate this resource to other material across the web.

Know of a better resource? Suggest it!

See a problem with this material's physics or description? Contact us!