25. Efecto Doppler
Este modelos de simulación en el efecto Doppler para el sonido; el círculo negro es la fuente y el círculo rojo es el receptor. Si el origen o el receptor de una onda están en movimiento la longitud de onda aparente y la frecuencia del cambio de onda recibida. Esto es aparente cambio en la frecuencia de una fuente o un observador que se mueve se llama el Efecto Doppler. La velocidad de la onda no se ve afectada por el movimiento de la fuente o receptor y tampoco lo es la amplitud.
26. Las ondas electromagnéticas de una comisión de aceleración
Esta simulación muestra una carga positiva aceleración y el campo eléctrico alrededor de ella en dos dimensiones. Debido a que la carga es acelerada habrá una perturbación en el campo. La energía transportada por la perturbación proviene de la energía de entrada necesaria para acelerar la carga.
27. Antena
Esta simulación muestra el efecto de una onda que viaja en la dirección x en una segunda carga dentro de una antena de recepción. Sólo se muestra la componente y del cambio en el campo eléctrico (por lo que una frecuencia de oscilación de cero aparecerá nada, porque sólo hay un campo eléctrico constante).
29. Polarización
Esta simulación muestra el componente del campo eléctrico [s] para una onda que viaja en línea recta hacia el observador en la dirección + y. Una onda polarizada se definió anteriormente a ser una onda electromagnética que tiene su campo eléctrico confinado al cambio en una sola dirección. En esta simulación que investigar más a ondas polarizadas.
30. Ecuación de Onda
En esta simulación se estudia la dinámica de las olas. Comenzamos con una cadena que tiene una onda estacionaria en él y mira las fuerzas que actúan sobre cada extremo de un pequeño segmento de la cadena debido a las secciones vecinas. Para fines de visualización de la cadena se muestra como una serie de masas, pero el sistema físico es una cadena continua. Aunque la derivación es para una cadena, resultados similares se producen en muchos otros sistemas.
31. Cadena oscilador
En esta simulación examinamos las ondas que se producen en las cadenas de masas con masa M acoplados entre sí con el elástico, las fuerzas de la ley de Hooke (F = - x donde es la constante del resorte yx es la cantidad de los tramos de resorte?). Las masas están limitados sólo a moverse hacia arriba y hacia abajo para que el estiramiento depende sólo de la diferencia en los lugares de Y de las masas.
32. Las ondas no lineales
Esta simulación muestra lo que sucede si las fuerzas que no sean acto tensión en una cuerda. Algunas fuerzas adicionales causan la dispersión que vimos en las simulaciones 22 y 23, pero la fricción, la disipación y la no linealidad puede causar otros comportamientos como veremos aquí.
33. Solitones
Esta simulación explora una solución especial de la ecuación de onda no lineal, donde los efectos de la dispersión y disipación (que tienden a hacer un pulso de onda hacia fuera) se compensan exactamente por una fuerza no lineal (que, como hemos visto, tiende a causar empinamiento de una onda). En este caso puede haber una forma de pulso de onda especial que puede viajar y mantener su forma llamada un solitón.