The Astronomy Center has provided educational resources to introductory astronomy educators since 2003. Over the past 20 years, the rapid pace of discovery has rendered some of our linked resources obsolete. Thus, the Astronomy Center will be decommissioned on March 1, 2022. Our highest quality resources will be retained on ComPADRE.org.
The Exoplanet Detection: The Radial Velocity Method model simulates the detection of exoplanets by using the radial velocity method and the Doppler effect. In this simulation the exoplanet orbits the star (sun-sized) in circular motion via Kepler's third law. The radial velocity of the star is determined from the velocity of the exoplanet. This velocity is then used to calculate the Doppler shift of the Fraunhofer lines of the star. In practice it is the Doppler shift of the Fraunhofer lines of the star that are detected and from this the radial velocity is inferred. From this the mass and orbital period and average exoplanet-star separation are determined. In the simulation the star-exoplanet system is shown as seen from Earth (edge on view) and from space (overhead view), and with the star and exoplanet sizes not shown to the scale of the orbit. In addition, the Fraunhofer lines are shown. The radial velocites of stars are such that the Doppler shifts are small, to compensate you may snap to the Na line and use the right-hand side slider to zoom in on that line to see wavelength shift. The mass of the exoplanet (relative to the mass of Jupiter), the average star-exoplant separation (in AU), and the inclination of the system relative to Earth can be changed.
The simulation uses Java 3D, if installed, to render the view the star and exoplanet. If Java 3D is not installed, the simulation will default to simple 3D using Java.
Please note that this resource requires
at least version 1.5 of Java (JRE).
Exoplanet Detection: The Radial Velocity Method Source Code
The source code zip archive contains an XML representation of the Exoplanet Detection: The Radial Velocity Method Model. Unzip this archive in your Ejs workspace to compile and run this model using Ejs. download 30kb .zip
Published: June 29, 2010
previous versions
M. Belloni, Computer Program EXOPLANET DETECTION: RADIAL VELOCITY METHOD, Version 1.0 (2010), WWW Document, (https://www.compadre.org/Repository/document/ServeFile.cfm?ID=10155&DocID=1732).
M. Belloni, Computer Program EXOPLANET DETECTION: RADIAL VELOCITY METHOD, Version 1.0 (2010), <https://www.compadre.org/Repository/document/ServeFile.cfm?ID=10155&DocID=1732>.
%0 Computer Program %A Belloni, Mario %D June 29, 2010 %T Exoplanet Detection: Radial Velocity Method %7 1.0 %8 June 29, 2010 %U https://www.compadre.org/Repository/document/ServeFile.cfm?ID=10155&DocID=1732
Disclaimer: ComPADRE offers citation styles as a guide only. We cannot offer interpretations about citations as this is an automated procedure. Please refer to the style manuals in the Citation Source Information area for clarifications.
The Easy Java Simulations Modeling and Authoring Tool is needed to explore the computational model used in the Exoplanet Detection: The Radial Velocity Method.