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Dynamics of a sliding ladder leaning against a wall. 
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Abstract 

This study is about the dynamics of a sliding ladder leaning against a vertical wall. The 

results are understood by considering the motion divided in two parts: 𝑃𝑎𝑟𝑡 𝐼 − for 0 ≤

𝑡 ≤ 𝑡𝑠 with one degree of freedom;  𝑃𝑎𝑟𝑡 𝐼𝐼 − for 𝑡 > 𝑡𝑠 with two degrees of freedom, 

where the separation is determined by the instance 𝑡𝑠 when the ladder loses its contact 

with the wall. 

The observed experimental details are explained by appealing a simple model based on 

elementary notions of mechanics. We emphasize some features such as a maximum of 

the x component of the velocity and of the acceleration of the center of mass (CM) in 

Part I, and a minimum of the normal reaction force on the floor in Part II. 

 

Keywords: Rotation and translation of a rigid body, equations of motion in classical 
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Introduction 

The problem of a ladder leaning on a wall has been discussed in numerous introductory 

physics textbooks and in journals [1-8]. Those authors focus on the static equilibrium 

conditions of the ladder considering friction against the wall and/or the floor. It is 

shown that the reactions forces can be determined in a quite complex way, in which the 

elastic properties of the ladder play an important role. However, the dynamics of a 

sliding ladder is less studied, and usually on the assumption that it is a rigid body that is 

not under friction conditions simultaneously in both wall and floor surfaces [7, 8]. 

Here we present a study, both experimentally and theoretically, of the dynamics of the 

sliding ladder with friction at the end contacts with the wall and the floor. Video 

analysis of the ladder’s motion was done with Tracker, a freeware software [9, 10] that 

includes the module Data Tool for video modelling. Experimental configuration of this 
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motion assured that the wall and the ground have the same coefficient of friction and 

that the ladder is, initially, just on the verge of slipping downwards. 

 

Theory 

The model we use relies on the assumption that the ladder is a homogeneous beam 

shaped rigid body of length L and mass m. The coefficient of friction with the wall and 

the floor is .  The angle of the ladder with the floor () was chosen as the variable to 

describe the movement while the ladder is in contact with the wall (Figure 1). The 

motion of the ladder is governed by the equations of mechanics for rigid body motion, 

namely: 

𝑅⃗ = 𝑚 𝑟̈           (1) 

𝑀⃗⃗ 𝐶𝑀 = 𝐼𝐶𝑀 𝜃̈          (2) 

where 𝑟⃗⃗̈  is the acceleration of the center of mass CM=(x,y), 𝑀⃗⃗ 𝐶𝑀 is the resultant torque 

of the external forces about CM, 𝐼𝐶𝑀 is the moment of inertia about CM assumed as 
1

12
 𝑚𝐿2, and  𝜃̈ is the angular acceleration of the ladder during its intrinsic rotation.  𝑅⃗  is 

the vector sum of the external forces 𝐹 𝐴 = (𝑁𝐴, 𝜇𝑁𝐴), 𝐹 𝐵 = (−𝜇𝑁𝐵, 𝑁𝐵) and weight 

𝑚𝑔 , considering  𝜇𝑤𝑎𝑙𝑙 = 𝜇𝑓𝑙𝑜𝑜𝑟 =  𝜇 , and therefore the normal reactions in A and B 

are respectively  𝑁𝐴 and 𝑁𝐵 . The ladder is in equilibrium for an angle larger than the 

critical angle 𝜃𝑐 = tan−1 1−𝜇2

2𝜇
 . 

 
Figure 1: Scheme of the ladder as a homogeneous beam shaped rigid body. 𝑁𝐴 and 𝑁𝐵 

are the normal reactions in A and B, respectively.   
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While there is contact with the vertical wall (𝑦̇ =  𝑥 𝜃̇ ), the equations (1) and (2) can be 

rewritten as: 

𝑥̈ =
1

𝑚
 (− 𝜇𝑁𝐵 + 𝑁𝐴)        (3) 

𝑦̈ =
1

𝑚
 ( 𝜇𝑁𝐴 + 𝑁𝐵 − 𝑚𝑔)        (4) 

𝜃̈ =
6

𝑚𝐿
 [sin 𝜃 ( 𝜇𝑁𝐵 + 𝑁𝐴) + cos 𝜃 ( 𝜇𝑁𝐴 − 𝑁𝐵)]     (5) 

Thus, the following expressions of dynamics are obtained: 

𝜃̈ = −
3

𝐿

2𝜇𝑔 sin𝜃−𝑔cos𝜃+𝜇2𝑔cos𝜃−𝜇𝐿(𝜃̇)
2

𝜇2−2
                                     (6)  

𝑁𝐴 = −
𝑚

2(𝜇2−2)
[3𝑔 sin 𝜃 cos 𝜃 + 𝐿𝜇 sin 𝜃(𝜃̇)

2
− 2𝐿 cos 𝜃(𝜃̇)

2
− 2𝜇𝑔 + 3𝜇𝑔(cos 𝜃)2]     

(7) 

𝑁𝐵 =
𝑚

2(𝜇2−2)
[−3𝜇𝑔 sin 𝜃 cos 𝜃 + 2𝐿 sin 𝜃(𝜃̇)

2
+ 𝐿𝜇 cos 𝜃(𝜃̇)

2
− 4𝑔 + 3𝑔(cos 𝜃)2]  

(8) 

The ladder loses contact with the vertical wall at time 𝑡𝑠, corresponding to 𝑁𝐴= 0 at an 

angle 𝜃𝑠 given by 

𝐿

𝑔
[𝜇 sin 𝜃𝑠 − 2 cos 𝜃𝑠] (𝜃̇(𝑡𝑠))

2

+ 3𝜇(cos 𝜃𝑠)
2 + 3 sin 𝜃𝑠 cos 𝜃𝑠 =  2𝜇   (9) 

It is easy to prove that if 𝜇 > 0 the ladder achieves the maximal speed of x component 

at the time tm, before losing contact with the wall (tm < ts). In case of no friction ( = 0), 

that maximum value occurs exactly for tm= ts [3] (figure 2). 

 
Figure 2: The difference ∆𝑡 = 𝑡𝑠 − 𝑡𝑚 as a function of the coefficient of friction 

(computational results). 
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After losing contact with the vertical wall (t > ts), the beam’s motion has two degrees of 

freedom (θ and x). As a consequence, equations (1) and (2) result in the following: 

𝜃̈ =
3[2𝜇𝑔 sin𝜃+𝐿 sin𝜃 cos𝜃(𝜃̇)

2
−𝜇𝐿 (sin𝜃)2(𝜃̇)

2
−2𝑔cos𝜃]

𝐿[1+3 (cos𝜃)2−3𝜇 cos𝜃 sin𝜃]
     (10) 

𝑥̈ =
𝜇(2𝑔−𝐿 sin𝜃 (𝜃̇)

2
)

2[3𝜇 cos𝜃 sin𝜃−3(cos𝜃)2−1]
       (11) 

𝑁𝐴 = 0          (12) 

𝑁𝐵 =
1

2

𝑚(2𝑔−𝐿 sin𝜃(𝜃̇)
2
)

1+3 (cos𝜃)2−3𝜇 cos𝜃 sin𝜃
       (13) 

These equations allow us to recognize a discontinuity in 𝑁𝐴̇ and  𝑁𝐵̇ at t = ts. Therefore, 

there is also a discontinuity in the third derivatives of the variables that describe the 

ladder’s motion, namely x, y and θ (i.e., in the derivatives of linear and angular 

acceleration). This result is represented in computational curves of figures 6 and 7, and 

will be detailed in the following sections. 

 

Experimental and computational results 

An experiment was done using a homogeneous rigid beam representative of a ladder, 

with a mass 0.23572 kg and length 1.005 m. We have used a camera high-speed digital 

photography acquisition camera Panasonic FZ 100 LUMIX (220 frames/s) to record the 

motion of the center of gravity of the beam. The experimental setup is embedded in 

figure 3 which is a screenshot of Tracker software main window. The coordinates of the 

CM during the beam’s motion (represented by red points) as well as x(t), y(t) and 𝑥̇(𝑡) 

are depicted. 

Initially, the beam was placed against the wall at an angle 𝜃𝑜 = 0.69 𝑟𝑎𝑑, slightly lower 

than the experimental critical angle (the angle at which the beam starts to fall), and then 

left free to move.  
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Figure 3: Experimental set up of a sliding ladder leaning against a wall (screenshot of 

Tracker software main window). The coordinates of the CM during the motion are 

represented by red points. x(t), y(t) and 𝑥̇(𝑡) are also represented. 

 

Figure 4 shows the time variation of θ for both experimental and computational studies. 

The least-squares criterion was applied to adjust computational data to experimental 

one, and to estimate the coefficient of friction. It is evident from the plot that the 

agreement is fairly good, not only during the motion of the beam against the wall (t < ts, 

where ts = 0.592574 s is a numerical result, and is identified in figure 4 by a vertical dot 

line), but also during the interval between losing contact and the full stop (at te = 

0.6791960 s, also obtained with computational analysis). The value obtained for  from 

the curve fit was 0.43. 
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Figure 4: The angle  of inclination of the ladder as a function of time.  Representation 

of theoretical data (full red line) and experimental data (rhombus blue points). The 

vertical dot line marks the instant ts when the beam loses contact with the wall, while te 

is the instant of full stop of the ladder’s motion. 

 

The evolution of coordinates x and y of the CM during the motion (Figures 5A and 5B) 

also confirms the reasonable good performance of the model assumed.  

The slight deviations observed from comparison of the experimental data and the 

computational data are possibly due to the assumption of an ideal beam for the ladder, a 

constant value for the coefficient of friction, and experimental errors on measuring the 

coordinates of CM.  
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Figures 5A and 5B: Theoretical and experimental results of the coordinates of CM as a 

function of time. The vertical dot line marks the instant ts when the beam loses contact 

with the wall, while te is the instant of full stop of the ladder’s motion. 

 

As we claimed before, according to the model the x component of the speed should 

attain a maximum at tm, before the beam loses contact with the wall. In this case, we 

have obtained tm = 0.551314 s from computational analysis. Experimental and 

computational data match within experimental uncertainty, as evidenced in figure 6.  
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We can also disclose a discontinuity in the derivative of the horizontal component of the 

acceleration at ts, the instant when the ladder loses contact with the wall. This is related 

to the discontinuity in the derivative of the net force along x direction, as sustained 

above from equations (12) and (13). 

 
Figure 6: Representation of the evolution with time of the components of the velocity 

(experimental and theoretical) and acceleration of the CM along the x direction. Note 

that the left axis corresponds to speed, while the right axis corresponds to acceleration. 

The vertical dot line marks the instant te of full stop of the ladder’s motion, while te is 

the instant when the beam loses contact with the wall. 

 

The existence of the maximum of 𝑥̇ before 𝑡𝑠 can be easily understood, since the normal 

forces 𝑁𝐴 and 𝑁𝐵 are not constant during the motion (figure 7), which is not always an 

obvious remark. From equation 3, we conclude the maximum occurs when 𝜇𝑁𝐵 = 𝑁𝐴. 



Physics Education, 2015, 50(3), 329-334. (doi: 10.1088/0031-9120/50/3/329) 

 
Figure 7: Normal components of the reaction forces at the ends of the ladder (points A 

and B) as a function of time. These forces point in perpendicular directions, as specified 

in figure 1. The vertical dot line marks the instant ts when the beam loses contact with 

the wall. Note that both  𝑁𝐴̇ and  𝑁𝐵̇ are discontinuous at ts. 

 

The plot of the acceleration along x direction (Figure 6) reveals additional features 

about the beam’s motion. Again, the existence of the maximum of 𝑥̈ before 𝑡𝑠 can be 

sustained by mathematical analysis, looking for the solution of the equation 𝜇 𝑁𝐵̇ =

 𝑁𝐴̇ .  

We also note that 𝐹𝐵̇ is discontinuous at ts and exhibits a minimal value within the 

interval [𝑡𝑠 , 𝑡𝑒]. This outcome anticipates a careful and deeper analysis for the 

dynamics of a ladder after losing contact with the wall, which will be published 

elsewhere.  

The trajectory of the CM is represented in figure 8 both experimentally and 

theoretically. While there is no doubts about the geometric nature of this Cartesian line 

for 𝑡 < 𝑡𝑠 (circle line), no easy conclusion can be reached for 𝑡 > 𝑡𝑠 which reinforces 

the need for further study of the dynamics of the last part of the movement. 
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Figure 8: The trajectory of CM. The vertical dot line reveals the position of CM at the 

instant ts when the ladder loses contact with the wall. After 𝑡𝑠 the trajectory of CM is no 

longer a circular line. 

 

Conclusion 

We remark that this work addresses the dynamics of a sliding ladder in a context that, as 

far as we know, has never been studied previously. We restrict our study to the case 

where coefficients of friction along the two surfaces are equal, although no significant 

modifications should result if the coefficients are different or tend to zero.  

The fact that the ladder leaves the wall at a specific instant 𝑡𝑠 when the normal reaction 

force on the wall 𝑁𝐴 vanishes, before reaching the end of the motion, turns out the 

importance of considering the falling motion divided in two parts: for 0 ≤ 𝑡 ≤ 𝑡𝑠 with 

one degree of freedom, and for 𝑡 > 𝑡𝑠 with two degrees of freedom. This second part of 

the motion has been ignored so far in literature [2, 7, 11]. 

The physical interpretation of the dynamics of the ladder is more complex than it is 

usually admitted in literature [12]. In particular, the normal reaction forces change along 

the motion, resulting in surprising observations such as, for example, the maximum in 

the speed (supported by experimental data) along x direction, and the discontinuity of 

the time derivatives 𝑁𝐴̇ and 𝑁𝐵̇  at the instant where the ladder loses contact with the 

wall. A more general discussion of the problem is in progress and will be published 

elsewhere. 
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Finally, we stress that this problem provides an excellent introduction to the modelling 

process for college students, and teachers in Physics and Mathematics. Students have 

the opportunity to practice experimental techniques, theoretical modelling and video 

data acquisition and analysis. Additionally, the problem is a challenge for students to 

discuss their ideas with their mates and teachers, creating a rich environment for a better 

understanding of physical science. 
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