Full ScreenDetail Page

Physical Review Physics Education Research

This ComPADRE record has not been chosen for inclusion into the Physics Front collection. If you feel this record should be included, you may contact the editor using our feedback form.

written by Vegard Gjerde, Vegard Havre Paulsen, Bodil Holst, and Stein Danken Kolstø
Self-explanation, a learning strategy where students explain to themselves the steps taken in a worked example, is an effective learning strategy in early cognitive skill acquisition. However, many physics students produce self-explanations of low quality. There is also a lack of guidelines for what students should seek to explain when studying worked examples. Therefore, the overarching purpose of this article is to investigate how we can improve students' self-explanations of worked examples. We pursue the following two general research questions: (1) What knowledge representations should students seek while self-explaining worked examples to maximize their learning? (2) Can retrieval practice of physics principles and their conditions of application potentiate students' learning from self-explaining worked examples? In two studies (n = 18 and N = 54), we qualitatively categorized and quantified the students' written self-explanations. Our results indicate that to produce useful knowledge, self-explanations of the physics model in worked examples should explain what principle is used, how the principle is set up, and how the conditions of application are met for the principle, while explanations of the mathematical procedures should contain action descriptions, goals, and conditions (r = 0.30-0.50).Through a quasiexperimental (N = 57) and an experimental (N = 54) test, we found evidence that retrieval practice of physics principles and their conditions of application before self-explanation can have a medium-sized effect on post-test problem-solving scores and that it can increase the quality of students' self-explanations. Using retrieval practice to potentiate learning from more complex learning strategies is a novel and promising approach to improve physics students' learning.
Physical Review Physics Education Research: Volume 18, Issue 1, Pages 010136
Subjects Levels Resource Types
Classical Mechanics
- General
Education Foundations
- Cognition
= Cognition Development
- Learning Theory
- Problem Solving
= Processes
- Research Design & Methodology
= Evaluation
= Statistics
- Student Characteristics
= Skills
Education Practices
- Instructional Material Design
= Problem/Question
General Physics
- Physics Education Research
- Scientific Reasoning
- Lower Undergraduate
- High School
- Reference Material
= Research study
Intended Users Formats Ratings
- Researchers
- Professional/Practitioners
- Administrators
- Educators
- application/pdf
- text/html
  • Currently 0.0/5

Want to rate this material?
Login here!

Save to my folders