Support for Java Applets, including Physlets, has been discontinued by browsers and Oracle. Thus, traditional Java-based Physlets are no longer supported on this website. Please note Open Source Physics (OSP) Java programs continue to run on computers with Java if users download the jar file.

The OSP team is busy updating and developing simulations using HTML5 + JavaScript.
These simulations run on almost all platforms including tablets and cellphones. Explore the Third Edition of Physlets Physics or search OSP for JavaScript to find these simulations.

Chapter 32: Electromagnetic (EM) Waves

Electromagnetic waves (also called electromagnetic radiation) are waves that obey Maxwell's equations. One of the consequences of Maxwell's equations is that there are electromagnetic waves that propagate at 3 x 108 m/s in a vacuum. This is precisely the speed of light in a vacuum! Therefore, all light—visible light, ultraviolet radiation, radio waves, microwaves, x-rays, gamma rays, and infrared radiation—is an electromagnetic wave. The difference between these waves is simply in the frequency (f ) or wavelength (λ). Since the frequency times the wavelength (f λ) is equal to the speed of propagation (which for light in a vacuum must be 3 x 108 m/s), if you know the frequency, you know the wavelength. This chapter examines propagating electric and magnetic fields and links them to the observable properties of light.

Table of Contents

Illustrations

Explorations

Problems

Optics TOC

Overview TOC

The OSP Network:
Open Source Physics - Tracker - EJS Modeling
Physlet Physics
Physlet Quantum Physics