Support for Java Applets, including Physlets, has been discontinued by browsers and Oracle. Thus, traditional *Java-based* Physlets are
no longer supported on this website. Please note Open Source Physics (OSP) Java programs continue to run on computers with Java if users
download the jar file.

The OSP team is busy updating and developing simulations using HTML5 + JavaScript.

These simulations run on almost all platforms
including tablets and cellphones. Explore the **Third Edition of Physlets Physics**
or search OSP for JavaScript to find these simulations.

# Chapter 13: Multi-dimensional Wells

Thus far we have concerned ourselves with one-dimensional (non-relativistic) problems in quantum mechanics. We now consider the extension to systems with more than one degree of freedom in more than one dimension. Doing so extends our discussion of quantum-mechanical systems to include more real-world-like situations. We finish with the Coulomb potential which is the potential energy function responsible for basic atomic structure.

# Table of Contents

## Sections

- Section 13.1: The Two-dimensional Infinite Square Well.
- Section 13.2: Two Particles in a One-dimensional Infinite Well.
- Section 13.3: Exploring Superpositions in the Two-dimensional Infinite Well.
- Section 13.4: Exploring the Two-dimensional Harmonic Oscillator.
- Section 13.5: Particle on a Ring.
- Section 13.6: Angular Solutions of the Schrödinger Equation.
- Section 13.7: The Coulomb Potential for the Idealized Hydrogen Atom.
- Section 13.8: Radial Representations of the Coulomb Solutions.
- Section 13.9: Exploring Solutions to the Coulomb Problem.

## Problems

- Problem 13.1: Shown are the solutions to an unknown potential energy function in two dimensions (rectangular).
- Problem 13.2: Shown are the solutions to a two-dimensional infinite square well with an added, unknown potential energy function.
- Problem 13.3: Degeneracy in a rectangular infinite well.
- Problem 13.4: The relationship between n and l and the number of zero crossings.
- Problem 13.5: Determine most-probable values for Coulomb wave functions.
- Problem 13.6: The probability density for an electron in an idealized Hydrogen atom.
- Problem 13.7: Calculating <r> for the Coulomb wave functions.

## Alternate Visualizations

- Section 13.5: Particle on a Ring.
- Section 13.6: Angular Solutions of the Schrödinger Equation.
- Section 13.9: Exploring Solutions to the Coulomb Problem.