Support for Java Applets, including Physlets, has been discontinued by browsers and Oracle. Thus, traditional *Java-based* Physlets are
no longer supported on this website. Please note Open Source Physics (OSP) Java programs continue to run on computers with Java if users
download the jar file.

The OSP team is busy updating and developing simulations using HTML5 + JavaScript.

These simulations run on almost all platforms
including tablets and cellphones. Explore the **Third Edition of Physlets Physics**
or search OSP for JavaScript to find these simulations.

# Chapter 12: Harmonic Oscillators and Other Spatially-varying Wells

In this chapter we will consider eigenstates of potential energy functions that are spatially varying, *V*(*x*) ≠ constant. We begin with the most recognizable of these problems, that of the simple harmonic oscillator, *V*(*x*) = *m*ω^{2}*x*^{2}/2, is perhaps the most ubiquitous potential energy function in physics. Several systems in nature *exactly* exhibit the harmonic oscillator's potential energy, but many more systems *approximately* exhibit the form of the harmonic oscillator's potential energy.^{1}

# Table of Contents

## Sections

- Section 12.1: The Classical Harmonic Oscillator.
- Section 12.2: The Quantum-mechanical Harmonic Oscillator.
- Section 12.3: Classical and Quantum-Mechanical Probabilities.
- Section 12.4: Wave Packet Dynamics.
- Section 12.5: Ramped Infinite and Finite Wells.
- Section 12.6: Exploring Other Spatially-varying Wells.

## Problems

- Problem 12.1: Compare classical and quantum harmonic oscillator probability distributions.
- Problem 12.2: A particle is in a 1-d dimensionless harmonic oscillator potential.
- Problem 12.3: Two-state superpositions in the harmonic oscillator.
- Problem 12.4: A particle is confined to a box with an added unknown potential energy function.
- Problem 12.5: Describe the effect of the added potential energy function.
- Problem 12.6: Determining the properties of half wells.
- Problem 12.7: Determining the properties of half wells.

## Alternate Visualizations

- Section 12.3: Classical and Quantum-Mechanical Probabilities.
- Section 12.4: Wave Packet Dynamics.
- Problem 12.3: Two-state superpositions in the harmonic oscillator.

^{1}A generic potential energy function, *V*(*x*), can be expanded in a Taylor series to yield

*V*(*x*) = *V*(*x*_{0}) + (*x* − *x*_{0}) *dV*(x)/*dx*|_{x = x0 }+ ((*x* − *x*_{0})^{2}/2!) *d*^{2}*V*(*x*)/*dx*^{2}|_{x = x0}+…

If the original potential energy is symmetric about *x* = 0, we can expand about *x*_{0} = 0 to yield

V(*x*) = V(*x*_{0}) + (*x*) *dV*(*x*)/*dx*|_{x = 0 }+ (*x*^{2}/2!) *d*^{2}*V*(*x*)/*dx*^{2}|_{x = 0 }+ …

The leading non-constant term is in the form of a harmonic oscillator, and thus this potential can be approximately treated as a harmonic oscillator.