Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>1</td>
</tr>
<tr>
<td>Conference Overview</td>
<td>4</td>
</tr>
<tr>
<td>Conference Program</td>
<td>5</td>
</tr>
<tr>
<td>Introduction</td>
<td>7</td>
</tr>
</tbody>
</table>

PLENARY PAPER

A framework for improving diversity work in physics
Geraldine L. Cochran and Mildred Boveda
9

PEER REVIEWED PAPERS

Students’ exploring and refining their equity ethic within the Access Network
Fidel Amezcua, Gina M. Quan, and Chandra Turpen
17

Excerpts from an exploratory survey of units/dimensional analysis in introductory physics
Nathaniel R. Amos, David Harris, and Jeffrey Hutchinson
23

Graduate programs in physics education research: A USA based survey
Ramón S. Barthelemy, Mirna Mohamed, Alexis V. Knaub, and Charles R. Henderson
28

Identifying student conceptual resources for understanding electric current
Lauren C. Bauman, Jonathan Corcoran, Lisa M. Goodhew, and Amy D. Robertson
33

Systemic Change: TEAM-UP and Beyond
Edmund Bertschinger
39

Toward a framework for the natures of proportional reasoning in introductory physics
45

Maybe we aren’t that different after all: Faculty perceptions of grade 7-12 teaching as a career
51

Identifying student resources for understanding kinematics
Cheyenne Broadfoot, Brynna Hansen, Amy D. Robertson, and Lisa M. Goodhew
57

The long-term effects of learning in an ISLE approach classroom
Danielle Buggé and Eugenia Etkina
63

Evaluating secondary school students’ interest and conceptual understanding of circuits
Jan-Philipp Burde, Thomas Wilhelm, Martin Hopf, Lana Ivanjek, Thomas Schubatzky, Claudia Haagen-Schützenhöfer, Liza Dopatka, and Verena Spatz
69

Leveraging virtual reality for student development of force models in the introductory lab
Jared P. Canright, Jack R. Olsen, and Suzanne White Brahnia
75

Exploring the CLASS with Item Response Theory
Elaine Christman, Paul M. Miller, and John Stewart
81
From ‘having a day’ to doing astronomy: Supporting families learning together
Luke D. Conlin and Megan R. Luce

Characterizing and monitoring student discomfort in upper-division quantum mechanics
Giacomo Corsiglia, Tyler Garcia, Benjamin P. Schermerhorn, Gina Passante, Homeyra R. Sadaghiani, and Steven J. Pollock

Investigating how graduate students connect microstates and macrostates with entropy
Nathan Crossette, Michael Vignal, and Bethany R. Wilcox

How the learning environment predicts male and female students’ motivational beliefs in algebra-based introductory physics
Sonja Cwik, Kyle M. Whitcomb, and Chandralekha Singh

Measuring students’ interest in physics
Liza Dopatka, Verena Spatz, Jan-Philipp Burde, Thomas Wilhelm, Lana Ivanjek, Martin Hopf, Thomas Schubatzky, and Claudia Haagen-Schützenhöfer

Impact of changing physical learning space on GTA and student behaviors
Constance M. Doty, Tong Wan, Ashley A. Geraets, Christopher A. Nix, Erin K. H. Saitta, and Jacquelyn J. Chini

What Makes a Good Physics Lab Partner?
Danny Doucette, Russell Clark, and Chandralekha Singh

Student perceptions of laboratory classroom activities and experimental physics practice
Dimitri R. Dounas-Frazer, Kimme S. Johnson, Soojin E. Park, Jacob T. Stanley, and H. J. Lewandowski

Supporting student quantitative skills across introductory STEM courses: faculty approaches and perceived needs
Melissa Eblen-Zayas, Ellen Altermatt, Laura J. Muller, Jonathan Leamon, and Sundi Richard

The impact of extra credit incentives on students’ work habits when completing online homework assignments
Zachary Felker and Zhongzhou Chen

The transition to online teaching during the COVID-19 pandemic at a regional, rural university: The experience of learning assistants
Melanie Fields, Bahar Modir, William G. Newton, Robynne M. Lock, and J. Clay Stanfield

Capturing modeling pathways using the Modeling Assessment for Physics Laboratory Experiments
Michael F. J. Fox, Benjamin Pollard, Laura Ríos, and H. J. Lewandowski

Physics education research’s implicit views of physics faculty
Maxwell Franklin, Linda E. Strubbe, and Eleanor C. Sayre

Physics students’ reactions to an abrupt shift in instruction during the COVID-19 pandemic
Andrew Gavrin

A framework for curriculum design to support mathematical sense making
Julian D. Gifford and Noah D. Finkelstein

A case of resources-oriented instruction in calculus-based introductory physics
Lisa M. Goodhew, Amy D. Robertson, and Paula R. L. Heron
A tale of two guessing strategies: interpreting the time students spend solving problems through online log data
Matthew W. Guthrie, Tom Zhang, and Zhongzhou Chen

“I’m not that important”: Barriers and bolsters to student agency during conversations about the intersections of physics and ethics
Brianeen Gutmann, Eglad Ochoa-Madrid, and Alice R. Olmstead

Believe that they can achieve: How Teacher Attitudes Toward Physics Impact Student Outcomes
T. Blake Head, Raina Khatri, Zahra Hazari, Geoff Potvin, and Robynne M. Lock

Implementing a mixed-methods approach to understand students’ self-efficacy: A pilot study
Rachel Henderson and Vashti Sawtelle

Examining student understanding of matrix algebra and eigentheory
Pachi Her and Michael E. Loverude

Investigating students' views about the role of writing in physics lab classes
Jessica R. Hoehn and H. J. Lewandowski

Investigating Upper-Division Students' Interpretations of the Divergence Theorem
James A. Huffman, Michael Vignal, and Bethany R. Wilcox

Exploratory Factor Analysis of a survey on group-exam experiences and subsequent investigation of the role of group familiarity
Joss Ives, Jared B. Stang, José Arias-Bustamente, Patrick J. Dubois, and Analise Hofmann

Assessment feedback: A tool to promote scientific practices in upper-division
Amali Priyanka Jambuge, Katherine D. Rainey, Bethany R. Wilcox, and James T. Laverty

How do gender and inchargeness interact to affect equity in lab group interactions?
Sophia M. Jeon, Z. Yasemin Kalender, Eleanor C. Sayre, and N. G. Holmes

Examining consistency of student errors in vector operations using module analysis
Nekeisha Johnson and John B. Buncher

Instructional Pragmatism: Using a variety of evidence-based approaches flexibly to improve student learning
Paul Justice, Emily Marshman, and Chandralekha Singh

Sense of agency, gender, and students’ perception in open-ended physics labs
Z. Yasemin Kalender, Martin M. Stein, and N. G. Holmes

Investigating student understanding of the stationary state wavefunction for a system of identical particles
Christof Keebaugh, Emily Marshman, and Chandralekha Singh

Pedagogy training for the development of GTA mindsets and inclusive teaching practices
Caitlin Kepple, Marakee Tilahun, Natalia Matti, and Kim Coble

Re-defining lab norms via professional learning communities of physics teachers
Smadar Levy, Zehorit Kapach, Esther Magen, and Edit Yerushalmi

How learning environment predicts male and female students’ physics motivational beliefs in introductory physics courses
Yangqiuting Li, Kyle M. Whitcomb, and Chandralekha Singh
College faculty support for grade 7-12 teaching careers: survey results and comparisons to student perceptions

Diana Berenice López-Tavares, Mario Ramírez-Díaz, and Soraida Zúñiga-Martínez

(Re)imagining success through photovoice: Highlighting a research and teaching strategy that could be useful in physics/STEM education
L. Trenton S. Marsh

Improving student understanding of Dirac notation by using analogical reasoning in the context of a three-dimensional vector space
Emily Marshman and Chandrakekha Singh

Students’ dynamic engagement with experimental data in a physics laboratory setting
Jason M. May, Lauren A. Barth-Cohen, Jordan M. Gerton, and Claudia De Grandi

Team-based learning in physics courses
Michele W. McColgan, Rose A. Finn, George E. Hassel, and Zuleyha Yuksek

Investigating a collaborative group exam as an instructional tool to address student reasoning difficulties that remain even after instruction
Alistair McNerny and Mila Kryjevskaia

Characteristics of institutions with Learning Assistant programs: An equity investigation
Alexa McQuade, Jayson M. Nissen, and Manher Jariwala

The physics classroom as a space for empowerment
Khadijih Mitchell-Polka, William E. Lindsay, Julian Stenzel Martins, and Valerie K. Otero

Toward characterizing the demographics of introductory physics courses
Raphael Mondesir and Amy D. Robertson

An Investigation of Degree Pathways for Students of Color with Transfer Credits
Camila Monsalve, Rachel Henderson, and Vashti Sawtelle

Design Principles to Support Physics and Engineering Learning in Complementary Classrooms and Field Trip Activities
Alexandria Muller, Ron K. Skinner, Tarah Connolly, Devon M. Christman, and Danielle B. Harlow

Student perspective about the impacts of feedback
Carissa Myers, Rachel Henderson, Daryl McPadden, and Paul W. Irving

Participation in an online community of high school physics teachers
Michael Nadeau, Bahar Modir, Robynne M. Lock, and William G. Newton

Online administration of a reasoning inventory in development
Alexis Olsho, Suzanne White Brahmia, Charlotte Zimmerman, Trevor I. Smith, Philip Eaton, and Andrew Boudreaux

Physics GRE Requirements Create Uneven Playing Field for Graduate Applicants
Lindsay M. Owens, Benjamin M. Zwickl, Scott V. Franklin, and Casey W. Miller

Students’ pre-instructional perspectives of quantum physics
Zac Patterson and Lin Ding
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faculty perception insights obtained from faculty interviews during the development of the Perceptions of Teaching as a Profession in Higher Education (PTaP.HE) instrument</td>
<td>394</td>
</tr>
<tr>
<td>Richard L. Pearson III, Savannah L. Logan, and Wendy K. Adams</td>
<td></td>
</tr>
<tr>
<td>Creating a coupled multiple response assessment for modeling in lab courses</td>
<td>400</td>
</tr>
<tr>
<td>Benjamin Pollard, Michael F. J. Fox, Laura Rios, and H. J. Lewandowski</td>
<td></td>
</tr>
<tr>
<td>Exploratory factor analysis of the QMCA</td>
<td>406</td>
</tr>
<tr>
<td>Adam Quaal, Gina Passante, Steven J. Pollock, and Homeyra R. Sadaghiani</td>
<td></td>
</tr>
<tr>
<td>Understanding physics identity development through the identity performances of Black, Indigenous, and women of color and LGBTQ+ women in physics</td>
<td>412</td>
</tr>
<tr>
<td>Xandria R. Quichocho, Erin M. Schipull, and Eleanor W. Close</td>
<td></td>
</tr>
<tr>
<td>Developing coupled, multiple-response assessment items addressing scientific practices</td>
<td>418</td>
</tr>
<tr>
<td>Katherine D. Rainey, Amali Priyanka Jambuje, James T. Laverty, and Bethany R. Wilcox</td>
<td></td>
</tr>
<tr>
<td>Comparative analysis of letters and reports in an upper-division lab</td>
<td>424</td>
</tr>
<tr>
<td>Charles L. Ramey II, Dimitri R. Dounas-Frazer, and Beth Ann Thacker</td>
<td></td>
</tr>
<tr>
<td>The associations between conceptual learning, physics identity and social interdependence</td>
<td>430</td>
</tr>
<tr>
<td>Miguel Rodriguez and Geoff Potvin</td>
<td></td>
</tr>
<tr>
<td>Investigating partnerships and funding for the Physics Education Research community</td>
<td>436</td>
</tr>
<tr>
<td>Rebecca Rosenblatt</td>
<td></td>
</tr>
<tr>
<td>Question Characteristics and Students’ Epistemic Framing</td>
<td>442</td>
</tr>
<tr>
<td>Qing X. Ryan, Darwin Del Agunos, Scott V. Franklin, Manuel Gomez-Bera, and Eleanor C. Sayre</td>
<td></td>
</tr>
<tr>
<td>Student learning outcomes with hybrid computer simulations and hands-on labs</td>
<td>448</td>
</tr>
<tr>
<td>Sheila Sagear, Emily Allen, Andrew Duffy, and Manher Jariwala</td>
<td></td>
</tr>
<tr>
<td>Analysis of student perceptions of classroom structure, belongingness, and motivation in an introductory physics course</td>
<td>454</td>
</tr>
<tr>
<td>Alfredo X. Sánchez and Laura Ríos</td>
<td></td>
</tr>
<tr>
<td>Advanced students’ and faculty members’ reasoning about the double slit experiment with single particles</td>
<td>460</td>
</tr>
<tr>
<td>Ryan Sayer, Alexandru Maries, and Chandrakekha Singh</td>
<td></td>
</tr>
<tr>
<td>Practicing physicists’ knowledge about disability: Development of the Disability and Physics Careers Survey (DPCS)</td>
<td>466</td>
</tr>
<tr>
<td>Erin M. Scanlon, Dan P. Oleynik, and Jacquelyn J. Chini</td>
<td></td>
</tr>
<tr>
<td>Centering and marginalization in introductory university physics courses</td>
<td>472</td>
</tr>
<tr>
<td>Rachel E. Scherr, W. Tali Hairston, and Sarah B. McKagan</td>
<td></td>
</tr>
<tr>
<td>Qualitative Analysis of Students' Epistemic Framing Surrounding Instructor's Interaction</td>
<td>478</td>
</tr>
<tr>
<td>Amogh Sirnoorkar, Christopher A. F. Hass, Qing X. Ryan, and Eleanor C. Sayre</td>
<td></td>
</tr>
<tr>
<td>“Let’s just pretend”: Students’ shifts in frames during a content-reinforcement lab</td>
<td>484</td>
</tr>
<tr>
<td>Emily M. Smith and N. G. Holmes</td>
<td></td>
</tr>
<tr>
<td>Toward a valid instrument for measuring physics quantitative literacy</td>
<td>490</td>
</tr>
<tr>
<td>Trevor I. Smith, Philip Eaton, Suzanne White Brahmia, Alexis Olsho, Charlotte Zimmerman, and Andrew Boudreaux</td>
<td></td>
</tr>
</tbody>
</table>
Exploring the contributions of self-efficacy and test anxiety to gender differences in assessments
Jared B. Stang, Emily Altiere, Joss Ives, and Patrick J. Dubois

Perspectives on informal programs: How site visits can help us learn more
Bryan Stanley, Dena Izadi, and Kathleen A. Hinko

What makes a person a physicist? Learning Assistant and physics major views
Jason T. Starita, Gary D. White, and Tiffany-Rose Sikorski

What does the Force and Motion Conceptual Evaluation pretest measure?
Dona Sachini Hewagallage and John Stewart

PhysPort as professional development to foster creativity in teaching
Linda E. Strubbe, Adrian M. Madsen, Sarah B. McKagan, and Eleanor C. Sayre

Student reasoning about sources of experimental measurement uncertainty in quantum versus classical mechanics
Emily M. Stump, Courtney White, Gina Passante, and N. G. Holmes

Impact on students' views of experimental physics from a large introductory physics lab course
Nidhal Sulaiman, Benjamin Pollard, and H. J. Lewandowski

Problematising in inquiry-based labs: how students respond to unexpected results
Meagan Sundstrom, Anna McLean Phillips, and N. G. Holmes

Extending Learning Beyond the Planetarium with the Dome+ Model
Jesica L. Trucks, Kathleen A. Hinko, and Shannon Schmoll

Comparing Unprompted and Prompted Student-Generated Diagrams
Michael Vignal and Bethany R. Wilcox

Connecting the dots: Student social networks in introductory physics labs
Cole Walsh, Daniyar Kushaliev, and N. G. Holmes

Investigating student use of a flexible tool for simulating and visualizing quantum mechanics
Carrie A. Weidner, Shaeema Z. Ahmed, Jesper H. M. Jensen, Jacob F. Sherson, and H. J. Lewandowski

Process of transforming of an introductory mechanics lab course at Fort Lewis College
Alexandra Werth and H. J. Lewandowski

Student evaluation of more or better experimental data in classical and quantum mechanics
Courtney White, Emily M. Stump, N. G. Holmes, and Gina Passante

Understanding the student experience with emergency remote teaching
Bethany R. Wilcox and Michael Vignal

Who Goes where: patterns in academic field switching of successful college graduates
Emily C. Wilson and Scott V. Franklin

A case of successful learning about magnetism through the use of evidence
Tamara G. Young, Lauren A. Barth-Cohen, Sarah K. Braden, and Sara Gailey

Changes to equipotential diagrams to improve student ranking of electric potential
Raymond Zich, Rebecca Rosenblatt, Amber Sammons, Andrew Princer, and Jeffrey Rosauer
Preface

The theme of the 2020 Physics Education Research (PER) Conference was “Insights, Reflections, & Future Directions: Emergent Themes in the Evolving PER Community.” This theme suffused both the organization and the communication regarding the conference: in the run-up to the conference, the organizing committee prepared and produced a blog touching upon various topics of import to the community, and -- despite the tremendous challenges wrought by the events of the year 2020 -- the conference theme was also apparent in the sessions and plenary sections of the conference.

The plenary bridging session took the format of a panel discussion moderated by the organizing committee and featuring community members from a variety of areas of expertise: Geraldine Cochran, Joseph Krajcik, Sarah B. McKagan, Valerie K. Otero, and Robert H. Tai. The lively panel discussion centered around the conference theme and touched upon issues such as defining and disrupting the idea of expertise within a discipline, questions that move beyond practice and policy, and even what -- and who -- defines physics.

PERC 2020 saw a huge departure from traditional conference implementation, as several professional organizations, including the PER community and its leadership, struggled to adapt to the changing constraints of the COVID-19 pandemic. PERC 2020 was hosted in an online format, with all of the modifications that implies. Dine & Discuss dinner groups were modified to Snack & Chat teleconference hangouts; game night was remote; hotel lobby conversations were hosted in a virtual game-like space; and many others. The organizing committee worked extremely hard to successfully adapt the bridging plenary and closing sessions, as well as the rest of the conference, to the online format. The latter also included a memorial tribute to the late Lillian McDermott from PERLOC member Stamatis Vokos.

The PERC 2020 organizing committee included Alexis Knaub, Beth Cunningham, Lin Ding, and Steve Maier. The committee was supported in their efforts by leadership from both the American Association of Physics Teachers (AAPT) and the PER Leadership and Organization Council (PERLOC).

The PERC Proceedings online submission and review process was supported by Lyle Barbato and Bruce Mason, who work closely with the editors to ensure smooth functioning of the online system. New to the 2020 Proceedings cycle was the implementation of a double-confidential format of peer review. The shift to this new format required hundreds of person-hours of effort beyond normal work, and the editorial team could not have made this implementation without Lyle’s guidance and logistical support. The editors also thank AAPT for their ongoing Proceedings sponsorship, and for allowing it to be published open-access through the ComPADRE website.

As in every year, the editors wish to thank the referees for volunteering their time and expertise to give feedback to papers submitted to the Proceedings. This year 262 reviewers made recommendations on 141 submitted Peer-Review Section papers -- both authors and reviewers
adapting quickly to the new double-confidential format, with its earlier submission deadline and shorter review turnaround time. The PERC Proceedings is both an important archive of findings and also a place where many new members of the field publish their first physics education research, and we are deeply appreciative of the authors reviewers who make this year’s cycle possible. Future cycles will improve upon the implementation of the double-confidential review process, but for a first-time implementation, the editorial team could not be more appreciative of the community for their efforts.

Finally, the Editors wish to express our special thanks to the PERC Coordination Committee co-chaired by Adrienne Traxler and Bethany Wilcox, who facilitated communications and coordinated logistics among multiple parties to streamline the process for future years.

See you in Summer 2021 (COVID-willing) in Washington DC!

Steven Wolf
Editor-in-Chief
Those engaging in PER bring with them their histories, which in large part inform their research endeavors. Our relationships with others in and outside of PER extend our vision and practices, and in doing so, expand the scope of PER itself. It is this “PER itself” we hoped the community would explore during PERC 20/20. While self-reflection likely demonstrates in each of us our individual professional growth, we sought to turn a lens to the broader PER community and profession as an exercise investigating PER’s evolution with the prospect of glimpsing at its future, both what is likely with our given trajectory and what could be with different choices. We believe this call was answered in many ways during PERC 20/20 as evidenced by: influences and importances of discipline-based education research (DBER) in general were acknowledged; overt attention to research biases and personal stories entered the fold demonstrating subjectivity and vulnerability of the work we complete; and techniques both emergent and borrowed from other fields were shared as viable means to conduct PER.

While we had anticipated there would be yet unknown emergent themes and had strategies for weaving these into the conference, 2020 was a year that was wrought with significant challenges: the COVID-19 pandemic with its far-reaching disruptions and impacts ranging from individual hardships to national instabilities; the transition to a virtual conference and working in an entirely new infrastructure; and precipitous social injustice events of long existing racism, especially anti-Black racism. The PERC 20/20 organizers are sincerely grateful for each contributor, as well as those whose circumstances may have prevented them from participating this year. We understand personal and professional challenges were significant, complex, and likely are continuing.

Organizers: Alexis Knaub (American Association of Physics Teachers), Steve Maier (Northwestern Oklahoma State University), Lin Ding (The Ohio State University), Beth Cunningham (American Association of Physics Teachers)

The PERC 20/20 organizing committee extends a sincere thank-you to the following for their input, assistance, and contributions to this year’s conference. The Plenary Panelists (Geraldine L. Cochran, Joseph Krajcik, Sarah B. McKagan, Valerie K. Otero, Susan R. Singer, Robert H.
Tai); PERC/PERLOC liaison Bethany Wilcox; PERC/PERLOC liaison and accessibility committee, Erin Scanlon; PERLOC members; Lyle Barbato of comPADRE; Tiffany Hayes and Cerena Cantrell of AAPT; PERC Proceedings Editors Mike Bennett, Brian Frank, Stephen Wolf; Underline.io staff; for the end of PERC 20/20 reflective eulogy, Stamatis Vokos; and too many others to list here (please see the final page of the PERC 20/20 program). Without the dedication and involvement of these individuals, PERC 20/20 would not have been possible.

PROGRAM

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Speakers/Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:30pm</td>
<td>Poster Session I</td>
<td></td>
</tr>
<tr>
<td>3:30pm</td>
<td>Snack & Chat (live breakout rooms)</td>
<td></td>
</tr>
</tbody>
</table>
| Thursday, July 23, 2020 | **Parallel Sessions Cluster I** | Juried Talks I: A. Cardinot, V. Gjerde, E. Langbeheim, J. Mellen
Students’ Understanding of Fluids: R. Lindell, D. Meredith, R. Rosenblatt
Expanding your network: IPER Community buildathon: C. Fracchiolla, K. Hinko, B. Prefontaine
Recent results on the classroom effectiveness of Virtual Reality and Augmented Reality technology: J. Canright, S. Greenwald, C. Orban, C. Porter, D. Rosengrant
What was, is and will be Physics Education Research: R. Barthelemy, A. Knaub, V. Otero, B. Zamarripa, I. Rodriguez
Establishing scientific norms in the lab: a spotlight on the instructor: D. Doucette, D. R. Dounas-Frazer, D. Langley, S. Levy, J. Rutberg, E. Yerushalmi |
<p>| 10:00am | Poster Session II | |
| 12:00pm | Parallel Sessions Cluster II | |</p>
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Vehicles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:00pm</td>
<td>Parallel Sessions Cluster III</td>
<td>Juried Talks III: P. C. Hamerski, B. Van Dusen, M. Vignal, T. Wan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>All things Get the Facts Out: Perceptions, emotionally compelling messages, and data mining: W. K. Adams, D. Isola, S. L. Logan, B. Pyper</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Promoting Successful Change in Physics Education and Research: E. Bertschinger, A. S. Hirsch, R. Lindell, K. Pitts, R. Rosenblatt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Measuring and improving Pedagogical Content Knowledge of student assistants in introductory physics classes: J. Wang, B. Thacker</td>
</tr>
<tr>
<td>2:00pm</td>
<td>Poster Session III</td>
<td></td>
</tr>
<tr>
<td>3:00pm</td>
<td>Closing Session</td>
<td></td>
</tr>
</tbody>
</table>
Introduction

The 2020 Physics Education Research Conference Proceedings papers consist of two different paper types: one peer-reviewed plenary paper and 99 peer-reviewed papers.

The peer-reviewed plenary paper was submitted by Dr. Geraldine L. Cochran and Dr. Mildred Boveda.

The peer-reviewed papers are written products of conference presentations including the juried talks, parallel sessions, and poster sessions. Each paper undergoes a rigorous peer review process in order to be published in the Proceedings. This year saw 141 submitted manuscripts, of which 100 (including the plenary paper) were accepted for final publication.

The readership of the Physics Education Research Conference Proceedings includes faculty, post-doctoral associates, and graduate and undergraduate students in physics education; scholars in other discipline-based science education or closely related fields, such as cognitive science; practitioners in physics or other sciences, such as teaching faculty at undergraduate and graduate levels, and high school physics teachers.