2015 Physics Education Research Conference

Table of Contents

Preface 9

Conference Overview 11

Conference Program 12

PLENARY PAPERS

Developing quantitative critical thinking in the introductory physics lab
N.G. Holmes 14

Challenges and opportunities for measuring student outcomes of undergraduate research
Sandra L. Laursen 18

PEER REVIEWED PAPERS

Can students learn from PhET sims at home, alone?
Wendy K. Adams, Zachary Armstrong, and Cynthia Galovich 23

Influence of visual cueing and outcome feedback on students’ visual attention during problem solving
Elise Agra, Drew Johnson, John Hutson, Lester C. Loschky, and N. Sanjay Rebello 27

How physics teachers model student thinking and plan instructional responses when using learning-progression-based assessment information
Alicia C. Alonzo and Andrew Elby 31

Student understanding of differentials in introductory physics
Nathaniel R. Amos and Andrew F. Heckler 35

Revealing effects of changes in middle school science teachers’ practices
Gordon J. Aubrecht, II, Jennifer Esswein, Jessica Creamer, and Bill Schmitt 39

Idea use curves
Alex Axthelm, Michael Wittmann, Carolina Alvarado, and Laura Millay 43

Applying analogical reasoning to introductory-level synthesis problems
Ryan Badeau, Daniel R. White, Bashirah Ibrahim, Andrew F. Heckler, and Lin Ding 47

Student thinking about the divergence and curl in mathematics and physics contexts
Charles Baily, Laurens Bollen, Andrew Pattie, Paul van Kampen, and Mieke De Cock 51

Identifying characteristics of pairs of questions that students answer similarly
Trevor A. Balint, Raluca Teodorescu, Kimberly Colvin, Youn-Jeng Choi, and David E. Pritchard 55
<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collaboration or copying? Student behavior during two-phase exams with individual and team phases</td>
<td>Ian D. Beatty</td>
<td>59</td>
</tr>
<tr>
<td>Interviews with upper-level undergraduates about representations of electromagnetic plane waves</td>
<td>Andrew J. Berger</td>
<td>63</td>
</tr>
<tr>
<td>The effect of giving explicit incentives to correct mistakes on subsequent problem solving in quantum mechanics</td>
<td>Benjamin R. Brown and Chandralekha Singh</td>
<td>67</td>
</tr>
<tr>
<td>Exploring student difficulties with observation location</td>
<td>Jaime Bryant, Rita Dawod, Susan M. Fischer, and Mary Bridget Kustusch</td>
<td>71</td>
</tr>
<tr>
<td>Algebra-based students and vector representations: arrow vs. ijk</td>
<td>John B. Buncher</td>
<td>75</td>
</tr>
<tr>
<td>Computation across the curriculum: What skills are needed?</td>
<td>Marcos D. Caballero</td>
<td>79</td>
</tr>
<tr>
<td>Validating the pre/post-test in a MOOC environment</td>
<td>Christopher Chudzicki, Zhongzhou Chen, Qian Zhou, Giora Alexandron, and David E. Pritchard</td>
<td>83</td>
</tr>
<tr>
<td>How accurate are physics students in evaluating changes in their understanding?</td>
<td>Therese Claire, Tija L. Tippett, and Andrew Boudreaux</td>
<td>87</td>
</tr>
<tr>
<td>Departmental action teams: empowering faculty to make sustainable change</td>
<td>Joel C. Corbo, Daniel L. Reinholz, Melissa H. Dancy, and Noah Finkelstein</td>
<td>91</td>
</tr>
<tr>
<td>The educational impact of smartphone implementation in introductory mechanics</td>
<td>Colleen L. Countryman</td>
<td>95</td>
</tr>
<tr>
<td>Sustainability in physics education: science agency beliefs and physics identity</td>
<td>John Christopher Doscher, Zahra Hazari, Geoff Potvin, and Leidy Klotz</td>
<td>99</td>
</tr>
<tr>
<td>The role of modeling in troubleshooting: an example from electronics</td>
<td>Dimitri R. Dounas-Frazer, Kevin L. Van De Bogart, MacKenzie R. Stetzer, and H. J. Lewandowski</td>
<td>103</td>
</tr>
<tr>
<td>In search of distinct graduate admission strategies in physics: An exploratory study using topological data analysis</td>
<td>Jacqueline Doyle and Geoff Potvin</td>
<td>107</td>
</tr>
<tr>
<td>Classical-ish: Negotiating the Boundary between Classical and Quantum Particles</td>
<td>Benjamin W. Dreyfus, Erin Ronayne Sohr, Ayush Gupta, and Andrew Elby</td>
<td>111</td>
</tr>
<tr>
<td>Compartmentalization of energy concepts -- definitions, ontologies, and word associations</td>
<td>Timothy A. French, Annette Sanchez, Lauren A. Macur Brousil, and Emma E. Balison</td>
<td>115</td>
</tr>
<tr>
<td>How personal effort, student interactions, and instructor support relate to physics</td>
<td>Jon D. H. Gaffney and Amy L. Housley Gaffney</td>
<td>119</td>
</tr>
<tr>
<td>Access to undergraduate research experiences at a large research university</td>
<td>S. 5 Hanshaw, Dimitri R. Dounas-Frazer, and H. J. Lewandowski</td>
<td>123</td>
</tr>
</tbody>
</table>
Identity, topical interest, and classroom dynamics as supports of transformative experiences
Kendra L. Hayes and Brian W. Frank

Facilitating model-building of electrostatics concepts related to conductors
Ryan L. C. Hazelton, Peter S. Shaffer, and Paula R. L. Heron

How an educator characterizes scientific domains and disciplinary relationships: A case of change
Deborah Hemingway, Vashti Sawtelle, and Chandra Turpen

Preliminary results for the development and deployment of Conceptual Learning Assessment Instruments Methodology Survey (CLAIMS)
Julia Henning, Kerrie Douglas, and Rebecca Lindell

Framework for students’ epistemological development in physics experiments
Dehui Hu and Benjamin M. Zwickl

A multidimensional analysis method for think-aloud protocol data
Paul Hutchison, Isabel Monaghan, and Rachael Morgan

Pathways to STEM: Understanding identity of adult physicists through narrative analysis
Simone Hyater-Adams, Kathleen Hinko, and Noah Finkelstein

Troubleshooting formative feedback in P3 (Projects and Practices in Physics)
Paul W. Irving, Vashti Sawtelle, and Marcos D. Caballero

Designing a lab course from the perspective of flow theory
Anna Karelina

Identifying and analyzing actions of effective group work
Jennifer Keil, Rebecca Stober, Emily Quinty, Bridget Molloy, and Nicholas Hooker

Characteristics of well-propagated undergraduate STEM teaching innovations
Raina Khatri, Charles Henderson, Renee Cole, Jeffrey Froyd, Debra Friedrichsen, and Courtney Stanford

Investigating student understanding of quantum entanglement
Antje Kohnle and Erica Deffebach

Evaluation of a summer bridge program using multivariate matching
Hagit Kornreich-Leshem, Eric Brewe, Zahra Hazari, Masoud Milani, Goeff Potvin, and Laird Kramer

Teachers’ conflicting conceptual models and the efficacy of formative assessments
Gregory D. Kranich, Michael C. Wittmann, and Carolina Alvarado

How prompting force diagrams discourages student use of adaptive problem-solving shortcuts
Eric Kuo, Nicole R. Hallinen, and Luke D. Conlin

Developing the next generation of physics assessments
James T. Laverty, Melanie M. Cooper, and Marcos D. Caballero

Redesigning a junior-level electronics course to support engagement in scientific practices
H. J. Lewandowski and Noah Finkelstein

Perspectives on astronomy: probing Norwegian pre-service teachers and middle school students
C. Lindstrom, V. Rajpaul, M. Brendehaug, and M. C. Engel
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Determining strategies that predict physics identity: Emphasizing recognition and interest</td>
<td>Robynne M. Lock, Jordan Castillo, Zahra Hazari, and Geoff Potvin</td>
<td>199</td>
</tr>
<tr>
<td>Quantitative reasoning skills in math methods</td>
<td>M. E. Loverude</td>
<td>203</td>
</tr>
<tr>
<td>Investigating transfer of learning in advanced quantum mechanics</td>
<td>Alexandru Maries, Ryan Sayer, and Chandrakaha Singh</td>
<td>207</td>
</tr>
<tr>
<td>Student Difficulties with quantum states while translating state vectors in Dirac notation to wave functions in position and momentum representations</td>
<td>Emily Marshman and Chandrakaha Singh</td>
<td>211</td>
</tr>
<tr>
<td>Potential relationship of chosen major to problem solving attitudes and course</td>
<td>Andrew J. Mason</td>
<td>215</td>
</tr>
<tr>
<td>Network analysis of students’ representation use in problem solving</td>
<td>Daryl McPadden and Eric Brewe</td>
<td>219</td>
</tr>
<tr>
<td>Learning from different styles of animated solutions among low-performing students</td>
<td>Jose P. Mestre, Jason W. Morphew, and Gary Gladding</td>
<td>223</td>
</tr>
<tr>
<td>Attention differences in viewing physics diagrams among experts and novices</td>
<td>Jason W. Morphew, Jose P. Mestre, Brian H. Ross, and Natalie E. Strand</td>
<td>227</td>
</tr>
<tr>
<td>Connection between participation in interactive learning environment and learning through teamwork</td>
<td>Binod Nainabasti, David T. Brookes, Yuehai Yang, and Yuhfen Lin</td>
<td>231</td>
</tr>
<tr>
<td>Pilot testing dichotomous classification questions for assessing student reasoning</td>
<td>Christopher M. Nakamura, Meagan A. Donnelly, Rajani Muraleedharan, and Marie Cassar</td>
<td>235</td>
</tr>
<tr>
<td>A case study: Novel group interactions through introductory computational physics</td>
<td>Michael J. Obsniuk, Paul W. Irving, and Marcos D. Caballero</td>
<td>239</td>
</tr>
<tr>
<td>"I got in trouble": A case study of faculty "doing school" during professional development</td>
<td>Alice Olmstead and Chandra Turpen</td>
<td>243</td>
</tr>
<tr>
<td>Investigating student understanding of perturbation theory and the inner products of functions</td>
<td>Gina Passante, Paul J. Emigh, Tong Wan, and Peter S. Shaffer</td>
<td>247</td>
</tr>
<tr>
<td>What can normalized gain reveal about individual learning on the FCI?</td>
<td>Andrew Pawl</td>
<td>251</td>
</tr>
<tr>
<td>Identification of a shared answer-making epistemic game in a group context</td>
<td>Alanna Pawlak, Paul W. Irving, and Marcos D. Caballero</td>
<td>255</td>
</tr>
<tr>
<td>Upper-division students’ use of separation of variables</td>
<td>Steven J. Pollock and Bethany R. Wilcox</td>
<td>259</td>
</tr>
<tr>
<td>Exploring student learning profiles in algebra-based studio physics: A person-centered approach</td>
<td>Jarrad W.T. Pond and Jacquelyn J. Chini</td>
<td>263</td>
</tr>
<tr>
<td>Connecting self-efficacy and nature of science shifts in undergraduate research</td>
<td>Gina M. Quan and Andrew Elby</td>
<td>267</td>
</tr>
</tbody>
</table>
Technology and research-based strategies: learning and alternative conceptions
Mónica Quezada-Espinoza, Valeria del Campo, and Genaro Zavala

Valuing student ideas morally, instrumentally, and intellectually
Amy D. Robertson

Faculty online learning communities to support physics teaching
Andy Rundquist, Joel C. Corbo, Stephanie Chasteen, Mathew “Sandy” Martinuk, Charles Henderson, and Melissa H. Dancy

Student difficulties with boundary conditions in electrodynamics
Qing X. Ryan, Steven J. Pollock, and Bethany R. Wilcox

Spin First instructional approach to teaching quantum mechanics in sophomore level Modern Physics courses
Homeyra Sadaghiani and James Munteanu

How to structure an unstructured activity: generating physics rules from simulation or contrasting cases
Shima Salehi, Martin Keil, Eric Kuo, and Carl Wieman

Understanding the nuance in disciplinary self-efficacy
Vashti Sawtelle and Angela Little

Developing and evaluating a tutorial on the double-slit experiment
Ryan Sayer, Alexandru Maries, and Chandralekha Singh

Physics teacher production: Patterns of institutional engagement and faculty theories
Rachel E. Scherr, Monica Plisch, and Renee Michelle Goertzen

Physics students’ epistemic framings for a conceptual test question
Tyler D. Scott, Catherine McGough, and Lisa Benson

Student difficulties with complex numbers
Emily M. Smith, Justyna P. Zwolak, and Corinne A. Manogue

Telling new stories by reanalyzing old data: FMCE edition
Trevor I. Smith

Because math: Epistemological stance or defusing social tension in quantum
Erin Ronayne Sohr, Benjamin W. Dreyfus, Ayush Gupta, and Andrew Elby

Whole class vs. small group settings for using animations in physics: Case study
A. Lynn Stephens and John J. Clement

Obstacles for learning introductory college physics in Japan: Identifying factors from a case study
Sachiko Tosa

Community structure in introductory physics course networks
Adrienne L. Traxler

Student ideas around vector decomposition in the upper division
Anna Turnbull, Leanne Doughty, Vashti Sawtelle, and Marcos D. Caballero
The role of metacognition in troubleshooting: An example From electronics

Learning Assistant Supported Student Outcomes (LASSO) study initial findings
Ben Van Dusen, Laurie Langdon, and Valerie Otero 343

ISLE-inspired design laboratory transformation at Princeton University: Year two results
Katerina Visnjic, Catherine Riihimaki, Carolyn Sealfon, and Evelyn Laffey 347

The use of representations in evidence-based and non-evidence-based physics activities
Joshua S. Von Korff, Chang Zhan, Birjoo Vaishnav, Jacquelyn J. Chini, Ashley Warneke, and Ozden Sengul 351

What the integral does: physics students' efforts at making sense of integration
Joseph F. Wagner 355

A kinesthetic circulatory system model for teaching fluid dynamics
Elizabeth Whitmore, David Grimm, Bradley Moser, Rebecca Lindell, and James Vesenka 359

Measuring the impact of introductory physics labs on learning and critical thinking
Carl Wieman and N.G. Holmes 363

Correlating students' beliefs about experimental physics with lab course success
Bethany R. Wilcox and H.J. Lewandowski 367

Observing teaching assistant differences in Tutorials and inquiry-based labs
Matthew Wilcox, Caleb C. Kasprzyk, and Jacquelyn J. Chini 371

Understanding centrality: Investigating student outcomes within a classroom social network
Eric Williams, Eric Brewe, Justyna Zwolak, and Remy Dou 375

Teacher responses to their multiple goals for teaching energy
Michael C. Wittmann, Carolina Alvarado, and Laura Millay 379

How do multimedia hints affect Students’ eye movements in conceptual physics
Xian Wu, John Hutson, Lester C. Loschky, and N. Sanjay Rebello 383

Effects of visual cues and video solutions on conceptual tasks
Tianlong Zu, Elise Agra, John Hutson, Lester C. Loschky, and N. Sanjay Rebello 387

Preparing students for physics-intensive careers in optics and photonics
Benjamin M. Zwickl, Javier Olivera, Kelly Norris Martin, and Kirk M. Winans 391

The impact of social integration on student persistence in introductory Modeling Instruction courses
Justyna P. Zwolak and Eric Brewe 395

List of Participants and E-mail Addresses
399

Index
404
The theme of the 2015 Physics Education Research Conference was “Critical examination of laboratory-centered instruction and experimental research in physics education.” This conference highlighted key areas of existing lab-focused research and established priorities for new PER related to laboratory and research experiences. The nearly 400 conference attendees were encouraged to gain a deeper understanding of how laboratory and research experiences influence student learning and to consider what PER can do to assist physics departments to incorporate these learning experiences into their curricula. This year’s conference presented 214 contributed posters over two sessions, six symposium sessions with 22 talks and 5 poster presentations, three workshops, and a “custom format” on Bridging Education Research and Practice: Supporting Undergraduate Research in Physics.

The AAPT/PERC Bridging Session highlighted work by Sandra Laursen on “Challenges and opportunities for measuring student outcomes of undergraduate research” and Natasha Holmes on “Developing quantitative critical thinking in the introductory physics laboratory.” The dinner presentation highlighted work of David Brookes on “The challenge of implementing education research: A holistic and dynamical systems perspective.” Dinner was also a time of celebration: Robert Beichner was honored for his contributions to the inception and 10-year success of the Physics Review Special Topics PER. The conference closed with Helen Quinn discussing “What does a vision for k-12 science education have to do with PER?” Many contributed papers in this volume also address this year’s theme with the remainder representing the diversity of directions within PER which help this volume fulfill its purpose of providing an annual snapshot of the field.

The Editors thank this year’s conference organizers Benjamin Zwickl, Bugenia Etkina, Heather Lewandowski, and MacKenzie Stetzer, the American Association of Physics Teachers (AAPT), and the Physics Education Research Leadership and Organizing Council (PERLOC). The eleventh-hour change in venue could have spelled disaster for this year’s conference, but they took it in stride and put together yet another successful and well-run meeting.

This marks the third year that the Proceedings will be published on-line through comPADRE with sponsorship by the American Association of Physics Teachers. The Proceedings’ online submission process for contributed papers and referee reports are supported each year by Lyle Barbato and Bruce Mason who work closely with the PERC Proceedings Editors to make improvements to the system and ensure that everything runs smoothly. We wish to thank Lyle and Bruce for their excellent work and ongoing commitment to the PER community and the PERC Proceedings.

Last but not least, this volume owes its existence to the referees, who volunteer their time and expertise to help improve the quality of the papers published in the Proceedings. This year we had 181 reviewers who reviewed the 128 papers submitted to the Peer Reviewed Section.

The Editors thank: Wendy Adams, Elise Agra, Saalih Allie, Alicia Alonzo, Carolina Alvarado, Nathaniel Amos, Gordon Aubrecht, Alex Axthelm, Charles Baily, Trevor Balint, Ian Beatty,

The Editors give special thanks to Robert Beichner, Paula Heron, David Maloney, Sytil Murphy and Colin Wallace for going above and beyond by completing reviews under extremely short notice after several authors either were unable to complete their reviews at the last minute or outright refused to review by non-compliance. Without their dedication, the 2015 PERC Proceedings would not be available in such a timely fashion.

See you next summer in Sacramento!

Alice D. Churukian
Editor-in-Chief
Conference Overview

CRITICAL EXAMINATION OF LABORATORY-CENTERED INSTRUCTION AND EXPERIMENTAL RESEARCH IN PHYSICS EDUCATION

Physics, as a disciplinary community, strongly values the pursuit of theoretical, computational, and experimental lines of research. The goal of PERC 2015 is to explore ways PER can investigate and support students' development around skills, abilities, and attitudes that foster success in experimental endeavors.

For over a century, the physics curriculum has emphasized laboratory-centered instruction, and more recently, undergraduate research experiences are becoming an integral component of the curriculum (see the 2014 APS Statement). Laboratory classrooms and undergraduate research environments are well-equipped for hands-on learning that involves the practices of scientists and engineers in ways that integrate conceptual and mathematical understanding. Beyond technical abilities, traditional and reformed laboratory courses often emphasize teamwork and oral and written communication skills. The breadth and diversity of goals and strategies that can be employed in lab courses is remarkable. The physics education community needs to better understand the impact of these courses on students' professional development, their identity, their retention in STEM fields, and their development of specific abilities around scientific practices. Lab-centered classroom instruction and undergraduate research experiences are relatively unexplored by the PER community. There is an expanse of intellectually fascinating and practically significant research questions that would benefit from the breadth of research expertise and methodology represented in the PER community.

The goal of PERC 2015 is to highlight key areas of existing lab-focused research and to establish priorities for new PER related to laboratory and research experiences. Not only will these efforts support students' success, but they will also help instructors and physics departments craft their curriculum for a holistic physics learning experience that values the broad range of abilities necessary for both theoretical and experimental physics.

Organizers:
Benjamin Zwickl, Rochester Institute of Technology
Eugenia Etkina, Rutgers University
Heather Lewandowski, University of Colorado Boulder and JILA
MacKenzie Stetzer, University of Maine

The organizing committee of the PERC 2015 would like to express gratitude to the following individuals for their invaluable assistance in creating this conference:

The plenary speakers: Sandra Laursen, Natasha Holmes, David Brookes, and Helen Quinn; Lyle Barbato and Bruce Mason with ComPADRE; Tiffany Hayes, Cerena Cantrell, Janet Lane, and Pearl Watson from AAPT; and the PERC Proceedings Editors: Alice Churukian, Dyan Jones, and Lin Ding.
PROGRAM

<table>
<thead>
<tr>
<th>Time</th>
<th>Event Description</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:30am –</td>
<td>Continental Breakfast</td>
<td>Annapolis and nearby spaces</td>
</tr>
<tr>
<td>10:00am</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:30am –</td>
<td>2nd Poster Session</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Odd-numbered posters will be presented during the first 45 minutes of the session.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Even-numbered posters will be presented during the second 45 minutes of the session.</td>
<td></td>
</tr>
<tr>
<td>10:30am –</td>
<td>Parallel Session I</td>
<td>Montpelier</td>
</tr>
<tr>
<td>12:00pm</td>
<td>Workshop: Examining metacognition and epistemology in introductory labs: Video Workshop</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Talk Symposium: New developments in high school labs</td>
<td>Salon D</td>
</tr>
<tr>
<td>12:00pm –</td>
<td>Lunch Break (food provided!)</td>
<td>Anywhere around the Marriott</td>
</tr>
<tr>
<td>1:30pm –</td>
<td>Parallel Session II</td>
<td></td>
</tr>
<tr>
<td>3:00pm –</td>
<td>Coffee Break</td>
<td></td>
</tr>
<tr>
<td>3:30pm –</td>
<td>Closing Plenary</td>
<td>Salon ABCD</td>
</tr>
<tr>
<td>4:15pm</td>
<td>Helen Quinn</td>
<td></td>
</tr>
<tr>
<td></td>
<td>What does a vision for K-12 science education have to do with PER?</td>
<td></td>
</tr>
</tbody>
</table>