APS Excellence in Physics Education Award
November 2019

Education Prize Logo
Science SPORE Prize
November 2011

NSF Logo
The Open Source Physics Project is supported by NSF DUE-0442581.

Website Detail Page

Item Picture
written by Kyle Forinash and Wolfgang Christian
This is a collection of interactive tutorials on the fundamentals of waves. The author's emphasis is on properties/behaviors of waves which are hard to understand by looking at a textbook page; for example, wave interference, collision with boundaries (reflection), the motion of water waves, and addition of linear waves.  Each of the 32 tutorials contains an interactive simulation of the wave process being discussed, plus a set of problems to encourage self-paced exploration. The lessons begin with very simple wave properties and end with an examination of nonlinear wave behavior.  They are available both as Java Applets and as JavaScript sims.

This Waves Tutorial is available as an online AAPT/ComPADRE book and in Apple iTunes.  

The JavaScript simulations in this tutorial were developed using the Easy Java/JavaScript Simulations (EjsS) version 5 authoring tool.  Although EjsS is a Java program, it can create stand alone JavaScript programs that run in almost any PC or tablet.
33 supplemental documents are available
3 source code documents are available
Subjects Levels Resource Types
Education Practices
- Active Learning
= Modeling
- Geometrical Optics
- Polarization
Oscillations & Waves
- General
- Wave Motion
= Doppler Effect
= Impedance and Dispersion
= Interference and Diffraction
= Longitudinal Pulses and Waves
= Phase and Group Velocity
= Reflection and Refraction (Sound)
= Standing Waves
= Transverse Pulses and Waves
- Upper Undergraduate
- High School
- Lower Undergraduate
- Collection
- Instructional Material
= Interactive Simulation
= Tutorial
Intended Users Formats Ratings
- Learners
- Educators
- application/java
- text/html
  • Currently 5.0/5

Rated 5.0 stars by 3 people

Want to rate this material?
Login here!

Access Rights:
Free access
© 2002 Kyle Forinash
fundamentals of waves, group velocity, wave behavior, wave dispersion, wave interference
Record Creator:
Metadata instance created August 17, 2005 by kyle forinash
Record Updated:
April 27, 2024 by Wolfgang Christian
Last Update
when Cataloged:
August 9, 2005
Other Collections:

AAAS Benchmark Alignments (2008 Version)

4. The Physical Setting

4F. Motion
  • 6-8: 4F/M4. Vibrations in materials set up wavelike disturbances that spread away from the source. Sound and earthquake waves are examples. These and other waves move at different speeds in different materials.
  • 6-8: 4F/M6. Light acts like a wave in many ways. And waves can explain how light behaves.
  • 6-8: 4F/M7. Wave behavior can be described in terms of how fast the disturbance spreads, and in terms of the distance between successive peaks of the disturbance (the wavelength).
  • 9-12: 4F/H5ab. The observed wavelength of a wave depends upon the relative motion of the source and the observer. If either is moving toward the other, the observed wavelength is shorter; if either is moving away, the wavelength is longer.
  • 9-12: 4F/H6ab. Waves can superpose on one another, bend around corners, reflect off surfaces, be absorbed by materials they enter, and change direction when entering a new material. All these effects vary with wavelength.
  • 9-12: 4F/H6c. The energy of waves (like any form of energy) can be changed into other forms of energy.

11. Common Themes

11B. Models
  • 6-8: 11B/M4. Simulations are often useful in modeling events and processes.

Common Core State Standards for Mathematics Alignments

High School — Algebra (9-12)

Creating Equations? (9-12)
  • A-CED.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.
  • A-CED.4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.

High School — Functions (9-12)

Interpreting Functions (9-12)
  • F-IF.4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship.?
  • F-IF.5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.?
  • F-IF.9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).
Trigonometric Functions (9-12)
  • F-TF.5 Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline.?

Common Core State Reading Standards for Literacy in Science and Technical Subjects 6—12

Craft and Structure (6-12)
  • RST.11-12.4 Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 11—12 texts and topics.
Range of Reading and Level of Text Complexity (6-12)
  • RST.11-12.10 By the end of grade 12, read and comprehend science/technical texts in the grades 11—CCR text complexity band independently and proficiently.
ComPADRE is beta testing Citation Styles!

Record Link
AIP Format
K. Forinash and W. Christian, (2002), WWW Document, (https://www.compadre.org/books/WavesIntTut).
K. Forinash and W. Christian, Waves: An Interactive Tutorial (2002), <https://www.compadre.org/books/WavesIntTut>.
APA Format
Forinash, K., & Christian, W. (2005, August 9). Waves: An Interactive Tutorial. Retrieved July 23, 2024, from https://www.compadre.org/books/WavesIntTut
Chicago Format
Forinash, Kyle, and Wolfgang Christian. Waves: An Interactive Tutorial. August 9, 2005. https://www.compadre.org/books/WavesIntTut (accessed 23 July 2024).
MLA Format
Forinash, Kyle, and Wolfgang Christian. Waves: An Interactive Tutorial. 2002. 9 Aug. 2005. 23 July 2024 <https://www.compadre.org/books/WavesIntTut>.
BibTeX Export Format
@misc{ Author = "Kyle Forinash and Wolfgang Christian", Title = {Waves: An Interactive Tutorial}, Volume = {2024}, Number = {23 July 2024}, Month = {August 9, 2005}, Year = {2002} }
Refer Export Format

%A Kyle Forinash %A Wolfgang Christian %T Waves: An Interactive Tutorial %D August 9, 2005 %U https://www.compadre.org/books/WavesIntTut %O application/java

EndNote Export Format

%0 Electronic Source %A Forinash, Kyle %A Christian, Wolfgang %D August 9, 2005 %T Waves: An Interactive Tutorial %V 2024 %N 23 July 2024 %8 August 9, 2005 %9 application/java %U https://www.compadre.org/books/WavesIntTut

Disclaimer: ComPADRE offers citation styles as a guide only. We cannot offer interpretations about citations as this is an automated procedure. Please refer to the style manuals in the Citation Source Information area for clarifications.

Citation Source Information

The AIP Style presented is based on information from the AIP Style Manual.

The APA Style presented is based on information from APA Style.org: Electronic References.

The Chicago Style presented is based on information from Examples of Chicago-Style Documentation.

The MLA Style presented is based on information from the MLA FAQ.

This resource and its subdocuments is stored in 51 shared folders.

You must login to access shared folders.

Waves: An Interactive Tutorial:

Is Based On Easy Java Simulations Modeling and Authoring Tool

Use the Easy Java Simulations Modeling and Authoring Tool to edit and to explore the source code for the Waves: An Interactive Tutorial.

relation by Wolfgang Christian

Know of another related resource? Login to relate this resource to it.
Save to my folders



Related Materials

Similar Materials

Featured By

Physics Front
Jan 10 - Sep 10, 2016

Physics Source
Jun 1 - Dec 31, 2020

OSP Projects:
Open Source Physics - EJS Modeling
Physlet Physics
Physlet Quantum Physics
STP Book