Reducing the Gender Gap in Introductory Physics using Interactive Tutorials

By: Ryan Massie
Alexandru Maries & Kathy Koenig, University of Cincinnati
Robert Teese, Rochester Institute of Technology

NSF IUSE DUE-1821396 NSF IUSE DUE-1821391
Well-Known Problems

• Students are not learning proper problem-solving skills in Introductory Physics
 • Hake, 1998, students completing a traditional lecture-based physics course, walk away without a good conceptual understanding of the material

• Students are not participating in Online Tutorials
 • Devore et al., 2017, students are not motivated to engage properly with online tutorials when completing them at home

• Women are underperforming in STEM
 • Binning et al., 2020, Stereotype threat causes students to miss important learning opportunities, but there are promising interventions to help mitigate this negative effect
 • Marshman et al., 2018, female students with a grade of A have similar self-efficacy as male students with C+/B- (physics 1) and C (physics 2)
Interactive Video-Enhanced Tutorials (IVETs)

• Using well-established research to create this online tutorial
• Explicit walk-through of a challenging real-world problem,
• Problem is broken down into conceptual subgroups
• Students are guided through the problem to follow an expert-like strategy
• Feedback is provided when an answer is given
 • Wrong answer: corrects students understanding
 • Right answer: reinforce correct reasoning
• Reflection problem at end of tutorial with no guidance to promote self-reliance
IVET Example Angular Momentum:
A large wooden wheel of radius R and moment of inertia I_w about its axis of symmetry is mounted on an axle so as to rotate freely. A bullet of mass m_b and speed v_b is shot and moves in a straight line (neglect gravity) tangential to the wheel and strikes its edge, lodging in it at the rim. If the wheel was originally at rest, what would its angular speed be after the collision between the bullet and the wheel?
Video Solution: Presenter Walks Through Problem

Angular Momentum Tutorial 1

Interactive Video-Enhanced Tutorials
Tutorial begins by asking about the system in question

Q1: What is the system that we want to analyze in this problem?
 - A. Only the wheel.
 - B. Only the bullet.
 - C. Both wheel and bullet taken together.
 - D. All of these are equally good choices.
Incorrect. Click Next Page to go back and try again.
Next: Tutorial asks which physics principles are applicable
Incorrect answer choices based on common student difficulties

Confusing angular momentum with linear momentum
No initial angular momentum because nothing is spinning
Making superficial connection between linear and angular momentum
Correct answer obtained from $\vec{L} = \vec{r} \times \vec{p}$
Tutorial responds to student affective states to help with motivation to engage
After working through the problem, the tutorial provides one last summary of the solution.
After working through the problem, the tutorial provides one last summary of the solution. This same summary is shown to the control group for evaluating the impact of the IVET.
IVET Implementation

- IVETs were given to students in Introductory Physics at the University of Cincinnati
- Fall Semester 2019 – Algebra Based
 - Two Sections
 - Two Teachers
 - One section is assigned IVET, one section is assigned Video Tutorial
- Fall Semester 2021 – Calculus Based
 - Two Sections
 - One Teacher
 - One section is assigned IVET, one section is assigned Video Tutorial

- Assignment is to complete the tutorial, then a problem is given (as a quiz) in the next class that uses the same principles as the tutorial
- Paired problems are graded with a rubric that accounts for following the steps of the problem-solving strategy
Paired Problem

A 20 kg boy stands at the edge of a small stationary (at rest) merry-go-round of radius 2.0 m. The total moment of inertia of the system including the merry-go-round with a fixed axis at the center and the boy standing on the edge is 120 kg m². While the merry-go-round is at rest, the boy jumps off in a tangential direction with a linear speed of 1.5 m/s.

Determine the angular speed of the merry-go-round at the instant the boy jumps off
Rubric Used

<table>
<thead>
<tr>
<th>Problem part/mistake</th>
<th>#of points to add/sub</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Use conservation of angular momentum</td>
<td>+1 points</td>
</tr>
<tr>
<td>1.1 Did not use conservation of angular momentum</td>
<td>-1 point</td>
</tr>
<tr>
<td>2. Find initial angular momentum</td>
<td>+1.5 points</td>
</tr>
<tr>
<td>2.1 Did not determine that $L_i = 0$</td>
<td>-1.5 points</td>
</tr>
<tr>
<td>3. Find final angular momentum</td>
<td>+6 points</td>
</tr>
<tr>
<td>3.1 Angular momentum of child</td>
<td>+2 points</td>
</tr>
<tr>
<td>3.1.1 Misstates $L_c = r \times p$</td>
<td>-1 point</td>
</tr>
<tr>
<td>3.1.2 Misstates $L_c = rmv$</td>
<td>-1 point</td>
</tr>
<tr>
<td>3.2 Angular momentum of merry-go-round</td>
<td>+4 points</td>
</tr>
<tr>
<td>3.2.1 Misstates $L_{mgr} = I_{mgr}\omega_f$</td>
<td>-1 point</td>
</tr>
<tr>
<td>3.2.2 Misstates $I_{total} = I_{mgr} + I_{child}$</td>
<td>-1 point</td>
</tr>
<tr>
<td>3.2.3 Misstates $I_{child} = m_{child}R^2$</td>
<td>-1 point</td>
</tr>
<tr>
<td>3.2.4 Has incorrect signs</td>
<td>-1 point</td>
</tr>
<tr>
<td>4. Find the answer</td>
<td>+1.5 points</td>
</tr>
<tr>
<td>4.1 Incorrect ω_f</td>
<td>-1 point</td>
</tr>
<tr>
<td>4.2 Incorrect/no units for ω_f</td>
<td>-0.5 point</td>
</tr>
</tbody>
</table>
Fall 2019 Results: Students Given IVET

Female Average: 7.51

Male Average: 6.94

Exam 3 Average
Male 78.45%
Female 64.84%
Effect Size .789 (Favors Male)
P-Value 0.016

P-Value: .120
Effect Size: - 0.315 (Favors Female)
Fall 2019 Results: Students Given Video

Exam 3 Average
- Male: 78.39%
- Female: 76.45%
- Effect Size: 0.117 (Favors Male)
- P-Value: 0.600

P-Value: 0.747
Effect Size: 0.116 (Favors Male)
Fall 2021 Results: Students Given IVET

Female Average: 3.14

Male Average: 2.93

Exam 3 Average
- Male: 73.11%
- Female: 73.01%

Effect Size: 0.023 (Favors Male)
P-Value: 0.918

Effect Size: -0.117 (Favors Female)
P-Value: 0.813
Fall 2021 Results: Students Given Video

Exam 3 Average
Male: 81.29%
Female: 78.77%
Effect Size: 0.174 (Favors Male)
P-Value: 0.575

Only 11 female students watched the video

P-Value: 0.390
Effect Size: 0.283 (Favors Male)
We have developed and evaluated IVETs involving

- 1D Kinematics
- Newton’s 2nd Law (force on two blocks)
- Static Equilibrium (person on ladder leaning against wall)
- Conservation of Energy (will string break on tire swing?)
- Linear Momentum and Energy (pendulum balls collide)
- Torque and Rotation
- Thermal Energy Transfer

Ivet.rit.edu/IVET

Under Development

- Adding Vectors
- Projectile Motion (“monkey gun” demonstration)
- Conservation of Energy (use of bar charts)
- Circular Motion
- Fluid Mechanics
- Thermal Processes and Laws of Thermodynamics

Goal is to have at least one IVET for each chapter in both semesters of introductory physics
Conclusions

• On exam following IVET, male students performed better than female students (moderate effect size)
• On IVET this effect size flipped showing women performing slightly better on the paired problem
• In Video group, the effect size remains about the same (slightly favoring male students)
• This suggests that IVET helped address the gender gap

Questions?