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Chapter 1

Dephasing: An introduction

In brief, “dephasing” denotes the destruction of quantum-mechanical interference effects
due to the influence of a fluctuating environment. It is a subject important not only
because of its connection to fundamental issues (the quantum measurement process and
the quantum-classical transition [Giulini96]) but also because of its role in the suppres-
sion of phenomena resulting from quantum interference effects, such as those studied in
mesoscopic physics (including Aharonov-Bohm interference, weak localization and uni-
versal conductance fluctuations) or in the field of quantum information processing. In
this chapter we will give a qualitative introduction to dephasing, which is also denoted as
“decoherence”. The major emphasis is on the physical picture, not on the mathematical
formalism. A more extended overview along these lines (with even less formulas) can be
found in [Marquardt01].

1.1 Some examples

In the following, a few simple examples will introduce the most important concepts con-
nected to dephasing.

Let us consider a version of the standard double-slit interference setup: Two wave
packets, representing one and the same particle, have been separated and travel along
two different paths, in order to be recombined later on. In the region where the wave
packets overlap, an interference pattern will develop in the probability density |Ψ(x)|2.
If a screen is placed at this point, the pattern becomes visible in the distribution of
particles hitting the screen, when the experiment is repeated many times. Now assume
a fluctuating force acts on the particle on its way towards the screen. An example is the
fluctuating electric field inside a metal. As a consequence, the pattern will become blurred
(see Fig. 1.1). Qualitatively, the pattern has become a classical superposition of many
different “ideal” patterns, each of them shifted by a random amount. This “washes out”
the pattern and decreases the difference between maxima and minima of the intensity. In
particular, if the situation is symmetric, then the intensity at the minima can have been
strictly zero in the ideal case, without fluctuations. This perfect destructive interference

7



8 1 Dephasing: An introduction

Figure 1.1: The interference pattern (black curve), that forms in the region where two wave
packets overlap, is blurred (gray curve) due to dephasing brought about by the fluctuating
environment.

is lifted.
Putting it in a more formal way, the major effect of the fluctuating force will be to

introduce an additional relative phase φ between the two paths, i.e. between the two wave
packets Ψ1 and Ψ2. Therefore, at the time when the wave packets overlap, the interference
term in the probability density will depend on an extra phase factor eiφ:

∣

∣Ψ1(x) + eiφΨ2(x)
∣

∣

2
= |Ψ1(x)|2 + |Ψ2(x)|2 +

2Re
[

Ψ∗1(x)Ψ2(x)e
iφ
]

. (1.1)

As the phase φ depends on the random force, it will fluctuate from run to run. The
interference pattern which is actually observed in many repeated runs of the experiment
will be determined by the average probability density. In general, the average over the
fluctuating phase factor exp(iφ) will be a number of magnitude less than one. Therefore,
the interference term in (1.1) is suppressed and the pattern is blurred. It is this ran-
domization of the phase, brought about by the fluctuating environment, which is called
“dephasing”. A more detailed account of the present example will be given in Section
(5.2).

Often, the phase φ can be taken to be a Gaussian random variable, at least approxi-
mately [Stern90]. In that case, one can evaluate explicitly the average over the fluctuating
phase factor (assuming 〈φ〉 = 0):

〈

eiφ
〉

= e−
1
2〈φ2〉 . (1.2)

The time interval during which the wave packets have been separated will influence
the variance of the phase. If the time interval grows, the effects of the random force
accumulate, the variance 〈φ2〉 grows, and the interference term is suppressed even further.
In the simplest possible case, this decay proceeds exponentially in time, with
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Figure 1.2: The fluctuations of the energy levels around their average value (dashed line) are
determined by a classical random process F (·) in Eq. (1.4).

〈

eiφ
〉

∝ e−t/τφ . (1.3)

That defines a “dephasing time” τφ. In other cases, one often simply chooses to define
τφ by the condition 〈φ2(τφ)〉 = 1, although the usefulness of such a definition depends on
whether the function describing the temporal decay has a single time scale associated to
it. A counter-example would be a power-law decay in time, ∝ t−γ .

As another simple example of dephasing, we will now discuss a spin in a fluctuating
magnetic field, i.e. a two-level system subject to noise. In general, the spin will be acted
upon by a fixed magnetic field as well, for example in an NMR experiment. Then, it is
obviously important whether the fluctuating component of the field points along the static
field or perpendicular to it. In the first case, the Hamiltonian of the two-level system is
given by:

Ĥ =
∆

2
σ̂z + F (t)σ̂z . (1.4)

Here we have assumed the fluctuating field F to be represented by a classical random
process, such that the Hamiltonian is actually time-dependent. This description is good
at higher temperatures or for nonequilibrium noise, but it fails at low temperatures, where
F has to be treated quantum-mechanically (see Section 2.2.1). Nevertheless, it allows us
to point out the most important features: The energy difference between the two levels
fluctuates, as it is given by ∆ + 2F (t) at each instant of time (see Fig. 1.2). Therefore, if
one starts out from a coherent superposition

1√
2
(|+〉 + |−〉) (1.5)

of the two levels at t = 0, the state at time t will be given by

1√
2

(

e−i(∆t+φ(t))/2 |+〉 + ei(∆t+φ(t))/2 |−〉
)

, (1.6)
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where the random phase φ is the time-integral over the fluctuating component of the
energy difference:

φ(t) = 2

∫ t

0

dt′ F (t′) . (1.7)

The situation considered here may be called “pure dephasing”, since the only effect of
the fluctuations is to randomize the relative phase between the two states, not to induce
any transitions. It will form the basis for a substantial part of the work described in this
thesis (Chapters 2 and 3).

Any observable that depends on the coherence between |+〉 and |−〉 (such as the
components of the spin perpendicular to z) will be affected. For example, the expectation
value of the x component is

〈σ̂x〉 (t) = cos(∆t + φ(t)) , (1.8)

for a given particular realization of the random process F (·). After averaging over
F (·), i.e. over the fluctuating phase difference φ(t), one observes decaying oscillations,
since the different spins in the ensemble get out of phase in the course of time:

〈〈σ̂x〉 (t)〉 = cos(∆t)e−
1
2〈φ2(t)〉 . (1.9)

The outer bracket stands for averaging over F (·), and we have assumed F (·) to be a
Gaussian random process, in order to be able to apply Eq. (1.2).

The strength of dephasing will be reduced whenever it is likely that positive fluctu-
ations of F will be followed by negative fluctuations, because then their effects on the
phase cancel. Formally, this may be observed most easily by noting that the variance of
the phase is directly connected to the correlation function of the field F :

〈

φ(t)2
〉

= 4

∫ t

0

dt1

∫ t

0

dt2 〈F (t1)F (t2)〉 . (1.10)

If the correlation function decays sufficiently rapidly, we may approximate this in the
long-time limit as

〈

φ(t)2
〉

≈ 4t

∫ +∞

−∞
ds 〈F (s)F (0)〉 , (1.11)

such that the decay rate will be given by the time-integral over the correlation function.
This will be reduced if the positive contribution at s = 0 is compensated by negative
tails. These things can be seen most clearly with the help of the power spectrum of the
fluctuations, which is defined as the Fourier transform of the correlator:

〈FF 〉ω ≡ 1

2π

∫ +∞

−∞
dt eiωt 〈F (t)F (0)〉 . (1.12)
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In terms of this spectrum, the decay rate is determined by the zero frequency compo-
nent:

〈

φ(t)2
〉

≈ 8π 〈FF 〉ω=0 t. (1.13)

The other important possibility consists in the fluctuating magnetic field being per-
pendicular to the static field. Then, we have a Hamiltonian of the form

Ĥ =
∆

2
σ̂z + F (t)σ̂x , (1.14)

and there will be transitions between |+〉 and |−〉 induced by F . In the case of a classical
noise field F , this corresponds to induced absorption and emission, both proceeding at
an equal rate which may be determined using Fermi’s Golden Rule in the case of weak
coupling. This rate is determined by the power spectrum of F , evaluated at the transition
frequency ω = ∆. Therefore, in contrast to the previous case of “pure dephasing”, the
physical picture does not depend qualitatively on the low-frequency properties of the bath
spectrum (as long as the coupling is weak enough).

In a quantum-mechanical treatment, F̂ is actually to be taken as an operator that
describes some variable of the environment. For example, in the case of crystal lattice
vibrations, F̂ may denote the deviation of an atom from its equilibrium position. In the
context of quantum dissipative systems, the environment is often called a “bath”, since it
takes the role of a heat bath which forces the system to relax to equilibrium and to “lose
its phase”. The Hamiltonian of the bath is to be included in the full Hamiltonian Ĥ, such
that the combined time-evolution of “system” and “bath” is unitary. If the bath consists
of a collection of harmonic oscillators (e.g. the normal modes of a crystal lattice or of
the vacuum electromagnetic field), then the quantum-mechanical version of a Hamiltonian
like (1.4) or (1.14) is an example of the so-called “spin-boson model” [Leggett87, Weiss00].

In the quantum version of Eq. (1.14), the system relaxes into its ground state by
spontaneous emission of energy into the bath, at T = 0.

1.2 Dephasing involves measurement

In the previous section a classical picture of the noise has been used, and dephasing
is introduced by the random fluctuations of the phase which are a consequence of the
fluctuating external field acting on the system. However, at low temperatures the bath is
to be treated quantum-mechanically, such that the field cannot be described as a classical
random process any longer. Then, it is often useful to change the perspective and to
ask what happens to the quantum-mechanical state of the bath when it is acted upon by
the force which is due to the system [Stern90]. In the example of the two wave packets
traveling along different paths, the bath will end up in either of two states |χ1〉 or |χ2〉,
depending on which way the electron has traveled. After taking the trace over the bath
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degrees of freedom, which corresponds to averaging over the classical fluctuating field, the
interference term of Eq. (1.1) will be changed into (compare Chapter 5):

2Re [Ψ∗1(x)Ψ2(x) 〈χ1|χ2〉] . (1.15)

Therefore, the supression factor 〈exp(iφ)〉 is now replaced by the overlap of the two
bath states (which is also a number of magnitude not larger than one). If the bath is
able to distinguish easily between the two paths that the electron takes, the bath states
will differ strongly, such that the overlap is very small and the interference is suppressed.
In such a case, the bath acts like a measuring device (or “which-way detector”), which
determines the path of the electron and therefore destroys the interference pattern. The
state of the electron (system) and that of the bath have become entangled.

Although this result is intuitively appealing, there are several important caveats: First
of all, this simple picture assumes the two paths are sufficiently separated (compared to
the extent of each wave packet), such that the quantum fluctuations around these paths
do not play a role and we only have to calculate two different bath states. Therefore, this
is essentially a semiclassical picture, as far as the treatment of the system-bath interaction
is concerned. Furthermore, it neglects the backaction of the bath onto the system. This
backaction will lead to effects like a renormalization of the particle’s effective mass or the
external potential, which will change the time-evolution of the wave packets themselves.
More importantly, the final bath states will be excited states in general, such that the
energy for this excitation will have to be provided by the system, leading to energy
relaxation (friction) within the system. In particular, if the system itself is a Fermi
system at low temperatures, this relaxation may be prohibited by the Pauli principle,
resulting in a suppression of dephasing. Finally, the formation of an entangled state of
system and bath does not necessarily imply dephasing. In some situations, the bath states
may be nearly orthogonal as long as the wave packets are separate, but they will evolve
back towards the same state once the wave packets approach each other and form an
interference pattern. This will be the case if the bath is sufficiently fast, such that it
can adapt instantaneously to the presence of the particle. This fact is illustrated in the
next section. The most well-known example is provided by the coupling of an electron
to optical phonons, where the resulting lattice distortion (i.e. the polaron) follows the
motion of the electron adiabatically.

All of these points will be made more explicit in concrete examples throughout this
thesis.

1.3 Entanglement does not imply dephasing

When the system is coupled to a bath, it is no longer in a “pure” quantum-mechanical
state. Instead, it has become entangled with the bath, which acts as a sort of measurement
device, as has been emphasized in the previous section. Therefore, the state of the system
itself has become a “mixed” state, which is described by the reduced density matrix of
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the system. However, this fact may be completely unrelated to dephasing, which can be
seen in a very simple example.

Consider a molecule made up out of two atoms. As long as the molecule remains in
the ground state of its relative motion, it will act as a single quantum-mechanical particle
that is able to show perfectly coherent interference effects. The total wave function of the
two atoms at x1 and x2 splits into center-of-mass and relative motion:

Ψ(x1, x2) = ΨCM(
x1 + x2

2
)Ψrel(x1 − x2) . (1.16)

However, we might take the point of view that atom 1 is our “system” in question,
which is coupled to a “bath” that consists of the other atom. The fact that this “bath”
does not contain infinitely many degrees of freedom, and therefore does not usually lead
to irreversible processes, is unimportant for the purposes of this example. The reduced
density matrix of atom 1,

ρ(x′1, x1) =

∫

dx2 Ψ(x′1, x2)Ψ
∗(x1, x2) , (1.17)

decays as a function of the distance |x1 − x′1|, due to the decay of the relative wave
function with respect to |x1 − x2| (see Fig. 1.3). Therefore, the situation is qualitatively
altered from that of an isolated atom in some extended pure state, where there is no such
decay of the off-diagonal elements.

Nevertheless, whenever an interference experiment is done, the resulting interference
pattern will not show any sign of dephasing. Of course, it will be different from what would
have been obtained with a single atom in the same setup, because the total mass of the
molecule is larger and its interaction with external potentials may be different. From the
point of view taken here, this only amounts to a renormalization of the effective mass and
the effective potential for atom 1. If the detector only accepts atom 1 (as this is considered
to be the “system” in our model), the interference pattern will appear smeared to a small
extent, since it is perfect only with respect to the center-of-mass coordinate, around which
atom 1 fluctuates . However, this effect does not become stronger with increasing length
of the interference paths traveled by the molecule, in contrast to what would be expected
if it were a genuine dephasing effect. Moreover, it becomes less important for increased
interaction strength (tighter binding), although then the decay of the off-diagonal elements
of the density matrix (with respect to the relative coordinate) is even stronger. Therefore,
this simple example shows why the appearance of a strongly mixed state (described by
the reduced density matrix of the system), as well as the resulting fluctuations in the
momentum or energy of the system alone, are not to be taken, by themselves, as signs of
dephasing.

It should also be mentioned that the decrease in visibility of the interference pattern
described here depends on the method of detection. The conclusions presented above hold
only for a “fast” detector, such as an idealized von Neumann projection measurement
(realized approximately by a fast particle hitting a screen). If the detection is carried
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Figure 1.3: The center-of-mass coordinate of a molecule will show perfectly coherent interference
(black line). If only the “system”, atom 1, is detected, the pattern is blurred on the scale of the
binding length (gray line). To the right, the reduced density matrix ρ(x′1, x1) of atom 1 is shown
without (top) and with (bottom) coupling to the other atom, for a superposition of plane waves:
Ψ(x1) ∝ cos(kx1) for the atom alone, and Ψ(x1, x2) ∝ cos(k(x1 + x2)/2) exp(−((x1 − x2)/σ)2)
for the molecule (kσ = 3; darker grayvalues indicate larger |ρ|).

out such that there is only a weak coupling to atom 1 and only a small amount of
energy is transferred to the system, then the detector effectively acts on the complete
molecule as a whole. Thus, the results may be qualitatively different, possibly leading
to an enhancement of the visibility of the interference pattern. Such an effect is actually
observed in models of transport interference experiments at low temperatures and bias
voltages, such as those discussed in Chapters 2 and 3 of this thesis.

1.4 Fluctuating environments

Any system with infinitely many degrees of freedom may take the role of an environ-
ment which leads to irreversible relaxation and dephasing when coupled to a quantum-
mechanical system.

In particular, for an electron, the fluctuating force may be due to electric or magnetic
fields. An electron moving through free space or around the nucleus of an atom is acted
upon by the fluctuations of the electromagnetic field in vacuum. For the atom, this
leads to spontaneous emission, giving a finite natural linewidth of the atomic levels. In
free space, energy and momentum conservation preclude emission of radiation, unless the
electron is accelerated or deccelerated by some external force.

Inside a metal or a semiconductor, the electron feels the fluctuating electric field
generated by all the other electrons and ions. This includes the coupling to the vibrating
crystal lattice, i.e. electron-phonon scattering, as well as electron-electron scattering. In
a dirty sample, the equilibrium electric field fluctuations due to the motion of the other
electrons represent the Nyquist noise, which at low frequencies is qualitatively stronger
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than the noise in a clean sample, since the charge redistribution proceeds only slowly,
in a diffusive manner. In the context of mesoscopic physics [Imry97], where one studies
interference effects in micrometer-sized electronic circuits, the electric field fluctuations
may also originate from the Nyquist noise in a nearby gate that is used to control the
static potential felt by the electrons. If a current runs through the system, the shot
noise will be an additional source of dephasing. In most investigations of dephasing in
mesoscopic systems, one tries to go to the linear response regime, where the applied bias
voltage is sufficiently low, such that effects of shot noise or electron heating do not play a
role. However, there have also been experiments in which such nonequilibrium dephasing
has been introduced deliberately, by capacitively coupling a quantum dot to a current-
carrying wire that acts both as a detector of charge on the dot and as a source of shot
noise [Buks98, Aleiner97]. Equilibrium and nonequilibrium current noise will also lead to
fluctuations of the magnetic field, which can influence interference effects mainly via the
Aharonov-Bohm phase.

Scattering off magnetic impurities, leading to spin flips, is another very important
source of dephasing. If there is no static magnetic field, the spin levels are degenerate,
such that this corresponds essentially to an environment with a power spectrum that has
all its strength concentrated at zero frequency. This is a particularly powerful dephasing
mechanism, as no energy transfer between system and bath is needed. Only at sufficiently
low temperatures these spins will be screened by the Kondo effect, such that they become
inert. Likewise, the electron may scatter off nonmagnetic two-level systems, which can
form when an electron or an ion at a defect site can tunnel between two adjacent positions.

1.5 Interference effects and measures of dephasing

There is no general definition of dephasing and no single measure of its strength. However,
in all cases dephasing is ultimately recognized by looking at some measurable quantity
and concluding that it deviates from its “ideal” behaviour, which would be observed with-
out coupling to a fluctuating environment and which should depend on some quantum-
mechanical interference effect.

Regarding simple systems with discrete levels, the linewidth observed in spectroscopy
can be taken as a measure of the dephasing rate, as it is not only affected by energy-
relaxation processes but also by the “pure dephasing” mentioned previously. Turning to
nonlinear response, one may prepare a two-level system in a coherent superposition of
ground state and excited state by applying a suitable pulse of resonant radiation (Rabi
pulse). After a time span of free evolution, another such pulse may be used to bring back
the system to its ground state, provided its intermediate time-evolution has been fully
coherent. The dependence of the ground state population after the second pulse on the
intermediate time interval will show an interference pattern (Ramsey fringes) whose decay
is due to dephasing. The decay time for this case is not necessarily simply related to that
determined by spectroscopy (a simple relation only holds if a master equation description
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applies).

The interference pattern in any kind of double-slit experiment will be blurred due to
dephasing, as has been explained above in a simple example. However, it must be kept
in mind that the interaction with the environment may also renormalize properties of the
particle or the effective potential that acts on the particle. This will alter the pattern
as well, and it is an important task to disentangle the effects of dephasing from “mere
renormalization” (see the discussion in Sections 1.2 and 1.3).

For electrons in mesoscopic systems, there are interference setups like an Aharonov-
Bohm ring, where the current through the device depends periodically on the applied
magnetic flux (see Chapter 3). In such devices, deviations of the interference pattern
from its “ideal” shape will often occur because of inaccuracies in the geometry or the
presence of impurities. More importantly, at finite temperatures the Fermi surface be-
comes smeared and the resulting average over a range of electronic wavelengths decreases
the visibility of the interference pattern. It requires some effort to distinguish this effect
from temperature-dependent dephasing (see [Hansen01] for an experiment in which this
analysis was performed).

Although the elastic scattering from impurities changes the interference pattern, it
does not really destroy the interference itself and is unrelated to dephasing [Imry97]. It is
completely analogous to the scattering of monochromatic light in a disordered medium.
This will lead to a complicated “speckle pattern”. Since the conductance of a phase-
coherent sample depends on the probability of transmission through the sample, it is
determined by the details of the interference pattern brought about by the particular
arrangement of impurities. Changes in the Fermi wavelength or an applied magnetic
field alter the phases of the different interfering paths and lead to reproducible, sample-
specific fluctuations of the conductance. As these fluctuations turn out to be of the same
size generically, given by the conductance quantum 2e2/h, they are termed “universal
conductance fluctuations”. If the size of contributing interference paths is very large, then
a very small change in magnetic field δB is sufficient to appreciably alter the conductance,
since it will completely change the Aharonov-Bohm phase for these paths. Therefore, δB
may be taken as a measure of dephasing, since it can be used to determine the typical
length Lφ of paths that are still able to interfere.

Another important mesoscopic interference effect is the phenomenon of “weak local-
ization” [Kramer93], where the resistance of the sample is (usually) enhanced beyond its
classical value due to constructive interference of electron waves that have been scattered
off the impurities in the disordered sample. This is analogous to the “coherent backscat-
tering” of radiation from any kind of disordered medium. The effect depends crucially
on the constructive interference between pairs of time-reversed scattering paths. There-
fore, the application of a magnetic field will suppress weak localization, as the resulting
Aharonov-Bohm phase will fluctuate randomly for long paths that enclose more than a
flux quantum Φ0 = hc/e. However, if the magnetic field is so weak that the respective
path lengths would have to be longer than the dephasing length Lφ, these paths do not
contribute to the effect anyway. Therefore, the magnetic field dependence of the conduc-
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tance may be used to extract the dephasing length Lφ or an associated dephasing time τφ.
In contrast to the interference effects mentioned previously, the weak-localization effect is
not affected by thermal averaging.

As the temperature gets lower, thermal fluctuations of the environment get weaker,
ultimately vanishing at T = 0. This means that the strength of dephasing decreases with
decreasing temperature. For this reason, it has come as a surprise when a saturation
of the dephasing time at low temperatures was observed some years ago [Mohanty97a,
97b,01] in a set of careful weak localization experiments. Such a saturation had been
measured in previous experiments as well. However, in the new experiments considerable
effort was made to rule out extrinsic effects such as heating of the sample by the current,
external microwave noise or the presence of magnetic impurities.

As the “orthodox” theory of dephasing in weak localization [Altshuler82, Chakravarty86]
predicts a vanishing dephasing rate at T = 0, these results have stirred a considerable
controversy. It was suggested [Mohanty97a, 97b] that zero-point fluctuations of the en-
vironment may be responsible for the findings, as they are present even at zero temper-
ature. A theory has been developed that maintains the finite dephasing rate at T = 0
to be a nonperturbative consequence of electron-electron interaction [Golubev98, 99,02a].
Qualitatively, it is consistent with the suggestion about the role of zero-point fluctua-
tions. It deviates strongly from the established theory at low temperatures and has been
the subject of severe criticism [Aleiner99, Vavilov99, Imry02]. A number of suggestions
for “extrinsic effects” have been put forward to explain the experimental observations
[Aleiner99, Zawadowski99, Imry99], such as 1/f noise due to two-level fluctuators or
weak nonequilibrium noise that does not heat the sample appreciably but leads to a sat-
uration of the dephasing rate. Subsequent experiments [Gougam00, Natelson01] seem to
be partly in contradiction with a generic saturation of the dephasing rate at low tem-
peratures, although that also seems to depend on the interpretation of the measurement
results [Golubev01]. In summary, the experimental results of [Mohanty97a, 97b] have not
yet been explained convincingly. In addition, a possible saturation of the dephasing rate
has also been reported for transport through quantum dots (see, e. g. [Pivin99]).

1.6 Some important questions

This controversy has led to renewed interest in dephasing of mesoscopic systems, partic-
ularly at low temperatures. Some questions of importance are the following ones:

How reliable is the simple classical picture of a phase being randomized by fluctuating
external noise? In particular, what is the meaning of the zero-point fluctuations of the
bath in this picture, as opposed to the thermal fluctuations dominating at frequencies
lower than the temperature? When do the former lead to “mere renormalization effects”
and how is it possible to distinguish these from “true” dephasing? Under which circum-
stances is the suppression of off-diagonal terms in the reduced system density matrix
itself already a good indicator of dephasing? How reliable are simple arguments based
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on Golden Rule and energy conservation, related to the connection between dephasing
and the trace left in the bath by the particle (“which-way” detection)? When does per-
turbation theory fail qualitatively? How does the dephasing rate depend on the energy
supplied by an external perturbation (frequencies excited in linear response, bias voltage
applied in a transport measurement)? What is the influence of the Pauli principle in a
system of degenerate fermions on these effects? How strong are the qualitative differences
in behaviour resulting from different bath spectra?

1.7 The role of simple model systems

Apart from investigations dealing directly with the problem of weak localization in a
disordered system of interacting electrons, several “toy models” have been analyzed
[Cedraschi00, Zaikin00, Nagaev02, Guinea02, Golubev02d] to address the question whether
decoherence at zero temperature is possible at all, contrary to the expectations based on
perturbation theory.

One of the difficulties faced by models involving discrete levels consists in the fact that
destruction of phase coherence for a superposition of excited states of finite excitation en-
ergy is perfectly possible even at zero temperature, due to spontaneous emission of energy
into the bath. An example is provided by an atom that has been prepared in a coherent
superposition of ground state and excited state. After some time, this superposition will
have been destroyed, because the atom in the excited state has relaxed by spontaneous
emission of a photon. This may be viewed as a consequence of the zero-point fluctua-
tions of the vacuum electromagnetic field acting on the atom (in addition to the radiation
reaction [Milonni94]). Therefore, “zero-temperature dephasing” is rather the rule than
the exception in such systems, whose coherence is studied in quantum computing, for
example. It is apparent in the finite decay rate of the correlator of the atom’s dipole
moment or similar quantities. However, if one were to reduce the level separation, the
Golden Rule decay rate would decrease as well, due to the decrease of the bath spectrum
at low frequencies, finally vanishing in the limit of zero level distance.

It is only in the zero-frequency limit of the linear response in a system with a con-
tinuous spectrum (relevant for weak-localization and other linear transport interference
experiments) that perturbation theory suggests in general a vanishing dephasing rate,
because then the external perturbation does not supply energy to the system. Therefore,
at T = 0 the system is not able to leave a trace in the bath (at least according to this
simple picture), which is a prerequisite for decoherence. Consequently, in several of the
models analyzed in this thesis, we have taken care to emphasize such features.

In Chapter 2, we will analyze dephasing in tunneling transport through localized levels
coupled to a bath, both for sequential tunneling and cotunneling. Although we are still
dealing with discrete levels, the tunnel coupling of these levels to the electron states
in the reservoirs introduces aspects of continuous spectra and enables us to discuss in
particular the behaviour in the limit of a vanishing energy supply (vanishing bias voltage



1.7 The role of simple model systems 19

and temperature). The Pauli principle comes into play indirectly, due to the blocking
of final states in the tunneling process. In Chapter 3, we discuss a model system of
a clean Aharonov-Bohm ring subject to a fluctuating magnetic flux. This is a kind of
generalization of Quantum Brownian motion to the many-particle case. For the model of
fermions in a damped harmonic oscillator (Chapter 4), the Pauli principle is also essential
in the dynamics of the isolated system itself, since the bath can induce transitions between
different levels, which may be blocked by the presence of other fermions.

Although the models analyzed in this thesis do not address the problem of dephasing
in weak localization itself, they do confirm that there is no hint of a “generic” mechanism
leading to dephasing at zero temperature, in contrast to what had been suggested in
the wake of the experimental findings on a possible saturation of the dephasing rate
(see above). In Chapter 5, we analyze in more detail the difficulties encountered in an
application of the Feynman-Vernon influence functional to dephasing at low temperatures,
which may be at the origin of the theoretical findings supporting the notion of generic
zero-temperature dephasing in weak localization.
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Chapter 2

Dephasing in tunneling through

localized levels

2.1 Introduction

The most obvious situation to consider when analyzing interference effects and their
destruction via dephasing is a double-slit experiment or some variation on this theme,
like the Mach-Zehnder interferometer. The analysis is relatively straightforward if we
deal with single photons, electrons, neutrons or atoms that pass through such a setup.
In these examples, the dephasing mechanisms include fluctuations in the refractive index,
absorption of photons, and fluctuations of the electric or magnetic field. In all of these
cases, we need to consider only a single particle at a time. Furthermore, this particle
is far above its ground state. Therefore, zero-point fluctuations of the environment will
definitely be able to spoil the coherence: spontaneous emission may take place, when the
particle transfers part of its energy to the bath, revealing its trajectory. In the example of
a single electron flying through an interference setup, this might be the “bremsstrahlung”
associated with the scattering from some potential (although the resulting dephasing effect
can be estimated to be extremely weak in realistic situations).

On the other hand, in a mesoscopic electronic transport interference experiment, we
usually have to care about the presence of the other electrons in the sample. In particular,
the Pauli principle may become important at lower temperatures, blocking transitions that
would otherwise have been induced by the coupling to the bath. Therefore, we are led to
a many-body problem, beyond that associated with the infinite number of bath degrees of
freedom. A full analysis of interacting electrons in a nontrivial interference geometry (like
the Mach-Zehnder setup) represents a very difficult problem, even within the Luttinger
model of interacting electrons in one dimension, which is exactly solvable only for the case
of pure forward-scattering.

In the present work, we have chosen to consider the simpler case of tunneling through
localized levels coupled to a bath. Then, the analysis simplifies at least in the regime
of small tunnel coupling, when tunneling may be treated as a perturbation while the

21
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interaction with the bath is taken into account completely. In the case of tunneling
through a double-dot configuration, the closest optical analogy would be a Mach-Zehnder
interference setup with Fabry-Perot cavities placed inside each interferometer arm. In this
analogy, dephasing would be brought about by fluctuations of the refractive index inside
the cavities, or simply fluctuations of the geometrical distance between the mirrors. Apart
from the double-dot geometry, we will also discuss tunneling through the discrete levels
on an Aharonov-Bohm ring coupled to a fluctuating magnetic flux (Chapter 3), which is
amenable to the same kind of analysis. In both cases, the coupling of the bath to the
electrons on the localized levels is diagonal, i.e. it does not induce transitions between the
different levels. This is called the “independent boson” model, which will be introduced
in the next section.

In all of the following discussion, we will be interested in dephasing of the electronic
motion alone. This has been the subject of attention in the debate on low-temperature
dephasing in weak-localization. We do not consider the electron’s spin degree of freedom.
This would be important both as a system to be dephased (with applications in quantum
information theory), as well as a kind of bath that may lead to dephasing itself (in the
form of localized spins).
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2.2 Preliminaries

In this section, we will introduce the “independent boson” model, which forms the basis
both for the analysis of dephasing in the double-dot setup, as well as in the Aharonov-
Bohm ring. The discussion will be rather detailed, because it provides much of the
background for later sections.

2.2.1 Spin-boson model with diagonal coupling

We start the discussion with the simplest version of the spin-boson model, which is ob-
tained if one assumes the coupling between spin and bath to be diagonal in the energy
eigenbasis of the spin [Weiss00]. This is the generalization of (1.4) to a quantum field F̂ :

Ĥ =
∆

2
σ̂z + σ̂zF̂ + ĤB . (2.1)

The fluctuating field F̂ is assumed to be linear in the coordinates (and momenta) of
the set of harmonic oscillators described by ĤB. As explained previously, it will lead
to fluctuations in the energy difference of the two levels, which give rise to dephasing of
an initially coherent superposition of these states. However, it does not transfer popu-
lation from one level to the other, i.e. there is no energy relaxation associated with this
kind of coupling to the environment. In this sense, it represents an example of “pure
dephasing”. The diagonally coupled spin-boson model is still exactly solvable, although
it already leads to nontrivial results for the time-evolution of the density matrix. These
results usually cannot be understood any more in terms of the simple Golden Rule cal-
culation of decay rates. It turns out that the power spectrum of the fluctuations in F̂ is
decisive for the qualitative long-time behaviour of the density matrix. In fact, this model
represents an example where the deviation from exponential decay is most pronounced.
This is in contrast to the case of non-diagonal coupling, where exponential decay takes
place generically and its rate may be calculated from the Golden Rule in the appropriate
regime of weak coupling and short bath correlation time. The diagonally coupled model
corresponds in many respects to a free particle coupled to a linear bath (“Quantum Brow-
nian motion” in the case of the “Ohmic” bath), while the non-diagonal model is rather
similar to a damped harmonic oscillator. Moreover, the mathematics of the diagonally
coupled spin-boson model is directly connected to the independent boson model, to the
“P (E) theory” of tunneling in a dissipative environment, and to the Luttinger model of
interacting electrons in one dimension.

The fluctuations of F̂ may be characterized completely by prescribing the spectrum
〈

F̂ F̂
〉T=0

ω
at zero temperature:

〈

F̂ (t)F̂ (0)
〉T=0

=

∫ ∞

0

dω
〈

F̂ F̂
〉T=0

ω
e−iωt . (2.2)
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As usual, it is understood that the expectation value is to be taken with respect to
the bath Hamiltonian ĤB alone, prior to coupling to the system. In the following, we will

refer to
〈

F̂ F̂
〉T=0

ω
≥ 0 as the “bath spectrum”. Since we are dealing with a linear bath

(i.e. a bath of harmonic oscillators), the bath spectrum contains enough information to
deduce the behaviour of the system under the action of the bath at any temperature, for
arbitrarily strong coupling. At finite temperatures, the correlator of F̂ is given by

〈

F̂ (t)F̂ (0)
〉

=

∫ ∞

0

dω
〈

F̂ F̂
〉T=0

ω
((2n(ω) + 1) cos(ωt) − i sin(ωt)) . (2.3)

The strength of the fluctuations
〈{

F̂ (t), F̂ (0)
}〉

/2 is given by the real-valued time-

symmetric (cosine) part of the correlator. It grows as 2n(ω) + 1 = coth(ω/2T ), with the
Bose-distribution function n(ω) = 1/(exp(βω) − 1), where β = 1/T and ~ ≡ kB ≡ 1.
In contrast, the response of the linear bath is determined, via Kubo’s formula, by the

commutator
〈[

F̂ (t), F̂ (0)
]〉

/2, which is equal to the imaginary antisymmetric (sine)

part. It is temperature-independent, since it is only determined by the masses and spring
constants of the oscillators.

Given the bath spectrum, we may calculate the time-evolution of the spin’s reduced
density matrix for an initial state that consists in a coherent superposition of the two
energy eigenstates, |−〉 and |+〉. In the simplest situation, bath and system have been
independent prior to t = 0, such that the total initial density matrix factorizes into that
of the system, ρ̂S

0 , and the thermal equilibrium density matrix of the bath, ρ̂B
eq. Since the

populations remain unchanged, we have to consider only the off-diagonal term,

ρS
+−(t) ≡ trB 〈+| Û(t)ρ̂S

0 ⊗ ρ̂B
eqÛ

†(t) |−〉 , (2.4)

where trB denotes the trace over the bath degrees of freedom and Û is the time-
evolution operator for the full Hamiltonian Ĥ. Now the important simplification brought
about by the diagonal coupling is that it does not lead to transitions between energy
eigenstates of the system. Therefore, we have

〈+| Û(t) |+〉 = e−i∆
2

tÛ+(t) , (2.5)

where Û+(t) = exp(−iĤ+t) describes the time-evolution of the bath under the in-
fluence of the system being in the state |+〉, with an analogous formula for the state
|−〉:

Ĥ± = ±F̂ + ĤB . (2.6)

The problem has been reduced to one concerning only the bath degrees of freedom:

ρS
+−(t) = ρS

+−(0) e−i∆t trB[ρ̂B
eqÛ

†
−(t)Û+(t)] . (2.7)
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The trace in this formula represents the thermally averaged overlap between the two
different bath states which evolve out of the initial bath state under the influence of the
system being either in state |−〉 or |+〉 (compare the discussion in Section 1.2). It is the
simplest example of the Feynman-Vernon influence functional, where, in the general case,
the time-evolution of the bath under the influence of an arbitrary system trajectory has
to be evaluated (see Chapter 5). Going over to the interaction representation with respect
to ĤB, the trace is equal to

trB[ρ̂B
eq

ˆ̃T exp(−i
∫ t

0

ds F̂ (s))T̂ exp(−i
∫ t

0

ds F̂ (s))] . (2.8)

Here T̂ ( ˆ̃T ) is the (anti-)time-ordering symbol. In general, such an expression may be
evaluated, for example, by introducing Keldysh time-ordering and using the linked-cluster
expansion to obtain an exponential containing the correlator of F̂ (generalizing Eq. (1.2)
to the quantum case). However, since we will solve the same kind of problem below using
a canonical transformation, we only quote the result:

exp

[

−
∫ t

0

dt1

∫ t

0

dt2

〈{

F̂ (t1), F̂ (t2)
}〉

]

. (2.9)

The exponent is given by a double time integral over the purely real symmetrized
bath correlator, describing the fluctuations (including the zero-point fluctuations). This
is a direct generalization of Eq. (1.10). In general, the magnitude of the exponent grows
in time, such that the off-diagonal element ρS

+−(t) of the density matrix is suppressed.
However, whether it is suppressed completely down to zero in the course of time, and
whether this decay is exponential or not, completely depends on the low-frequency be-
haviour of the bath spectrum. This point will be discussed further below. If there had
been an additional imaginary part of the exponent, it would have signalled a shift of the
transition frequency ∆ brought about by the coupling to the bath. For the Hamiltonian
given above, the transition frequency is unaltered, since both states couple to the bath
with equal strength, such that their energies are shifted by the same amount.

2.2.2 Independent boson model

The simplest kind of extension of the diagonal spin-boson model obviously consists in
considering more than just two levels, where each of them may couple to the bath fluc-
tuations with a different coupling constant. This remains exactly solvable as long as the
coupling remains diagonal in the energy eigenbasis of the system. More generally, we may
take the different levels to couple to different fluctuating variables F̂1,2,..., which may refer
to independent baths, but which may also be correlated. In the case discussed above, we
had two fully anticorrelated variables, ±F̂ . Finally, since we are interested in tunneling
transport, the different levels may actually be single-particle states which can be occupied
by a variable total number of particles. The most general Hamiltonian describing this
kind of situation is
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Ĥ =
∑

j

(εj + F̂j)n̂j + ĤB . (2.10)

Here j is the level index, εj the unperturbed level energy, and n̂j = d̂†jd̂j is the number
of particles on level j. In all of the following, we will consider fermions (i.e. electrons).
Again, the fluctuating variables F̂j are assumed to depend linearly on the coordinates

(and momenta) of the bath oscillators described by ĤB. They have to be characterized

by the spectra
〈

F̂lF̂j

〉T=0

ω
, which are defined like in Eq. (2.2). In the following discussion

of the general properties of this model, we will restrict ourselves to the case where the

different variables commute, [F̂l, F̂j] = 0. As a consequence, the spectrum
〈

F̂lF̂j

〉T=0

ω
is

real-valued. This represents only a slight restriction, since the different F̂l can still be
correlated. If we think of a set of localized states coupling to the distortion field of a
crystal lattice, this condition is fulfilled, since the charges only couple to the coordinates
(not the momenta) of the lattice atoms.

The Hamiltonian (2.10) is known as the “independent boson model” [Mahan81]. One
of its major (and earliest) applications is the ionization of an electron in a core-level of
an atom by an impinging X-ray. Since the electron charge couples via the Coulomb force
to the sea of other electrons, these will rearrange after a hole has been created inside
the atom. The density fluctuations of the electrons are described approximately by a
harmonic oscillator bath of the Ohmic fluctuation spectrum (see 2.2.5), such that one
ends up with (2.10), for the special case of a single level, and with F̂ representing the
potential energy of the given electron in the field of the other electrons. The coupling
to the bath of other electrons modifies the spectral density of the single level, which is
visible in the X-ray absorption spectrum. The Hamiltonian given above also arises in the
discussion of dephasing for a set of localized states, if the coupling to the bath (e.g. a
fluctuating gate voltage) cannot induce tunneling between these levels.

Most parts of the following discussion of the independent boson model can be found in
the book of [Mahan81], for the case of a single particle occupying any of the given states.

The most straightforward solution proceeds via a unitary transformation. One intro-
duces the fluctuating phases φ̂j, whose time-derivatives are given by the F̂j:

˙̂
φj ≡ i[ĤB, φ̂j] = −F̂j . (2.11)

The exponent generating the unitary transformation is defined as:

χ̂ =
∑

j

φ̂jn̂j . (2.12)

Applying the transformation to the Hamiltonian in Eq. (2.10) yields:

Ĥ ′ = e−iχ̂Ĥe+iχ̂ =
∑

j

εjn̂j −
∑

lj

Jljn̂ln̂j + ĤB . (2.13)
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The coupling between system and bath has been eliminated, resulting in an effective
interaction between particles on the different levels. Physically, this interaction may be
understood most easily in the case of coupling to a crystal lattice: The presence of a
particle on any level distorts the lattice, in such a way that the overall energy is reduced.
Although the distortions produced by different particles superpose linearly, the associated
energies do not. However, this Ising-type interaction is still comparatively simple, insofar
as it does not lead to transitions between the different levels. It is similar to the mean-
field interaction between quasiparticles in Landau’s Fermi liquid theory. The coupling
constants are given by:

Jlj =

∫ ∞

0

dω

〈

F̂lF̂j

〉T=0

ω

ω
. (2.14)

They are real-valued and independent of temperature. The effective interaction re-
duces to a simple energy shift for each level separately only in two cases: Either there is
at most one particle in the system, or the F̂j are uncorrelated, i.e. each level couples to a
different bath. Then, only the contributions l = j remain, and we can use n̂2

j = n̂j, since
we are dealing with fermions.

If this kind of effective interaction were the only change brought about by coupling to
the bath, there would be no dephasing. The problem would have become quite simple,
apart from calculating the partition function, which would still amount to an Ising problem
with arbitrary couplings. However, the canonical transformation also changes the particle
annihilation and creation operators,

d̂′j = e−iχ̂d̂je
+iχ̂ = eiφ̂j d̂j , (2.15)

and d̂′†j = d̂†je
−iφ̂j . This will affect all Green’s functions and, therefore, also the time-

evolution of the single-particle density matrix. In addition, it becomes important if a
tunneling part is added to the Hamiltonian, where the operators d̂

(†)
j appear, such that

they have to be transformed according to (2.15). However, since the phases φ̂j and the

particle operators d̂
(†)
j commute (even at different times, when evolved according to Ĥ ′),

the evaluation of Green’s functions always splits into a part referring to the particles
and a separate average over the bath operators. This is the major simplification brought
about by the diagonal coupling, and we have discussed it already in connection with the
diagonal spin-boson model.

2.2.3 Single-particle Green’s function

As an important example, consider a single-particle Green’s function like:

〈

d̂j(t)d̂
†
j(0)

〉

= tr[ρ̂eiĤtd̂je
−iĤtd̂†j] . (2.16)
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Here ρ̂ = exp(−βĤ)/Z is a canonical density matrix. If a grand-canonical aver-
age is desired, the trace also refers to a sum over different particle numbers, Ĥ in the
exponent has to be replaced by Ĥ − µN̂ , and ρ̂ is the grand-canonical density matrix
ρ̂gc = exp(−β(Ĥ − µN̂))/Zgc, normalized by the grand-canonical partition function Zgc.
Apart from that, nothing changes in the following derivation.

Introducing the unitary transformation from above, we find

〈

d̂j(t)d̂
†
j(0)

〉

= tr[
e−βĤ′

Z
eiĤ′td̂′je

−iĤ′td̂′†j (0)]

=
〈

d̂j(t)d̂
†
j(0)

〉

el

〈

eiφ̂j(t)e−iφ̂j(0)
〉

. (2.17)

In the second line, the splitting into electronic and bath contributions has been per-
formed. The bath average and the time-evolution of φ̂j are determined by ĤB alone.
Furthermore, we have defined the electronic part as:

〈

d̂j(t)d̂
†
j(0)

〉

el
≡ tr[

e−βĤ′
el

Z ′el
eiĤ′

el
td̂je

−iĤ′
el

td̂†j] . (2.18)

Here Ĥ ′el ≡ Ĥ ′ − ĤB contains the original energies of the single-particle levels as well
as the effective interaction, and Z ′el ≡ tr exp(−βĤ ′el). Although there is no scattering
between different levels, the electronic part is not simply related to the original Green’s
function (without interaction to the bath). Only in the case of a single particle, we have
the relatively simple result

〈

d̂j(t)d̂
†
j(0)

〉

el
=
〈

d̂jd̂
†
j

〉

el
e−i(εj−Jjj)t . (2.19)

This formula incorporates the shift of the level energy, −Jjj, as well as a possible
change in the equilibrium occupation of the level due to this shift (in the grand-canonical
case). In general, the energy of the extra particle in the field of the other particles will
depend on the configuration of these particles, over which a thermal average has to be
performed, according to Eq. (2.18). If the temperature is so low that only the ground-
state configuration (assumed to be non-degenerate) contributes, we have

〈

d̂j(t)d̂
†
j(0)

〉

el
=
〈

d̂jd̂
†
j

〉

el
e−i(εj+δEj)t , (2.20)

with a level shift determined by the occupation numbers nl = 〈n̂l〉 in the ground state:

δEj = −Jjj − 2
∑

l 6=j

Jljnl . (2.21)

Turning now to the bath correlator in Eq. (2.17), we may evaluate it using the relation

〈

eÂeB̂
〉

= e(〈Â2〉+〈B̂2〉+2〈ÂB̂〉)/2 , (2.22)
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which is valid for operators Â and B̂ that are linear in the bosonic variables of the har-
monic oscillator bath and have a vanishing expectation value. It is derived by employing

the Baker-Hausdorff identity eÂeB̂ = eÂ+B̂e[Â,B̂]/2 and the relation
〈

eÂ+B̂
〉

= e〈(Â+B̂)2〉/2

(see Appendix A.1). This yields the important formula:

〈

eiφ̂l(t)e−iφ̂j(0)
〉

= exp(
〈

φ̂l(t)φ̂j(0)
〉

−
〈

φ̂lφ̂j

〉

) ≡ eKlj(t) . (2.23)

In the evaluation of the Green’s function (2.17), we have l = j:

〈

d̂j(t)d̂
†
j(0)

〉

=
〈

d̂j(t)d̂
†
j(0)

〉

el
eKjj(t) . (2.24)

The real part of the correlator Kjj(t) in the exponent determines the decay of the
single-particle Green’s function. This decay is solely due to the fluctuations of the phase
brought about by coupling to the bath, as the population of a level cannot change. The
magnitude of exp(Kjj(t)) is never larger than one, since it can be represented as a ther-
mally averaged overlap of two different bath states (compare the discussion for the diag-
onal spin-boson model).

In order to evaluate Klj(t) in terms of the bath spectrum, we employ the relation

(2.11) between the phase φ̂j and the fluctuating field F̂j:

Klj(t) =

∫ ∞

−∞
dω
〈

φ̂lφ̂j

〉

ω
(e−iωt − 1)

=

∫ ∞

−∞
dω

〈

F̂lF̂j

〉

ω

ω2
(e−iωt − 1) . (2.25)

The imaginary part of the exponent Klj(t) is determined by the linear response of
the bath and describes the resulting shift of the system’s energy. At short times we have
Klj(t) = −itJlj, since the antisymmetric part of the correlator is temperature-independent
(compare (2.3)):

〈

F̂lF̂j

〉

ω
=
〈

F̂lF̂j

〉T=0

|ω|
(θ(ω) + n(|ω|)). (2.26)

Therefore, the term Kjj(t) in the exponent compensates the contribution from the
energy shift +itJjj at short times, compare Eq. (2.19). It means that the particle’s
energy is not reduced instantaneously after it has entered the level: the bath first has to
adapt to the presence of the extra particle. One might wonder why the same cannot be
said about the contributions to the energy shift due to the interaction Jlj (l 6= j) with
other particles, see Eq. (2.21). However, these derive from the energy of the additional
particle in the field F̂j whose average has already been shifted to a nonzero value by the
presence of the other particles.

The density of states (DOS) for level j, which may be probed in a tunneling exper-
iment, is given by the imaginary part of the retarded Green’s function, −ImGR

jj(ω)/π,
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with GR
jj(ω) ≡

∫∞
0
dt eiωtGR

jj(t). Since we are dealing only with one level, we will omit the

level index j in the following formulas, i.e. K(t) ≡ Kjj(t), d̂ ≡ d̂j etc. We have:

iGR(t) = θ(t)
〈{

d̂(t), d̂†(0)
}〉

= θ(t)
(〈

d̂(t)d̂†(0)
〉

el
eK(t) +

〈

d̂†(0)d̂(t)
〉

el
eK(−t)

)

(2.27)

Note K(−t) = K∗(t), according to Eq. (2.25).
The DOS is related to the integral

1

π
Re

∫ ∞

0

dt eK(t)eiωt =
1

2π

∫ +∞

−∞
dt eK(t)eiωt ≡ P (ω) . (2.28)

Here we have introduced the quantity P (ω), which can be interpreted as a probability
density of emitting an energy ω into the bath while tunneling onto the level (see below).
Formally, this interpretation is possible since P (ω) is real-valued and fulfills the properties
[Ingold92, Schön98]:

∫

dω P (ω) = eK(0) = 1 (2.29)

P (ω) ≥ 0 (2.30)

In terms of P (ω), the DOS may be written as

− 1

π
ImGR(ω) =

∫

dω̃ A+(ω̃)P (ω − ω̃) + A−(ω̃)P (−(ω − ω̃)) , (2.31)

where A±(ω) denote the Fourier transforms of the electronic parts of the Green’s
function in (2.27) (without θ(t)).

In the simplest case of at most one particle in the system, we have A+(ω) =
〈

d̂d̂+
〉

δ(ω−

εj + Jjj) and A−(ω) =
〈

d̂†d̂
〉

δ(ω− εj + Jjj), compare Eq. (2.19). Then, the lineshape of

the level is determined completely by the shape of P (ω).
In particular, at zero temperature, P (ω) vanishes for ω ≤ 0, which can be deduced

from the fact that the same holds for
〈

φ̂φ̂
〉

ω
entering K(t) (see Eq. 2.25). In the case of an

initially empty level (
〈

d̂†d̂
〉

el
= 0), one therefore obtains a DOS which vanishes below the

renormalized energy. This has a simple physical interpretation - at zero temperature, it
is only possible to feed extra energy into the bath while tunneling onto the level, whereas
no energy can be received from the bath. Formally, this is expressed by the fact that
the quantum correlator of the fluctuating field, Eq. (2.2), is asymmetric in frequency
space. Although qualitatively it is correct to think of the zero-point fluctuations of the
environment as being responsible for a certain “smearing” of the level energy (expressed



2.2 Preliminaries 31

by P (ω)), it would be wrong to keep only the symmetrized, real-valued “fluctuation” part
of the bath correlator in Eq. (2.3). This would amount to replacing the quantum bath
with a classical fluctuating field of the same fluctuation spectrum (but with vanishing
linear response). Then, energy can both be fed into or taken out of the system in equal
measure by the bath, resulting in a symmetric DOS.

In the general case, the average over electronic configurations with varying effective
level energy will yield several delta peaks in the spectral functions A±(ω), which means
the DOS consists of a weighted superposition of several copies of the lineshape P (ω), each
shifted by a different amount.

2.2.4 Dephasing and two-particle Green’s function

However, the single-particle Green’s function is not the quantity to look at in discussions
of dephasing. In fact, there are situations when the single-particle Green’s function shows
some decay due to coupling to the environment, while the dephasing rate is actually zero.
Instead, one usually analyzes the time-evolution of the single-particle reduced density
matrix in some nonequilibrium situation. For example, one might imagine preparing
the system initially in an arbitrary coherent superposition of its unperturbed energy
eigenstates and observe the decay of the off-diagonal terms in the density matrix which
describe the interference between these states (see the example of the diagonal spin-boson
model above). A less arbitrary (and usually more physical) way of preparing the system
in a nonequilibrium state consists in applying some small perturbation and observing the
subsequent relaxation of the density matrix. According to Kubo’s formula, this involves
calculating the commutator of the observable with the perturbation. The single-particle

density matrix at time t is given as
〈

d̂†j(t)d̂l(t)
〉

, such that the observable in our case

may be taken as d̂†j(t)d̂l(t). In most cases, the external perturbation can be expressed

by single-particle operators, i.e. a linear combination of d̂†i d̂k. Therefore, we are led to
calculating the two-particle Green’s function

〈

d̂†j(t)d̂l(t)d̂
†
l (0)d̂j(0)

〉

. (2.32)

Since the bath does not change the state of the particles, only two different level indices
may occur in this expression, otherwise it vanishes. The only other possibility of pairing

indices would be
〈

d̂†j(t)d̂j(t)d̂
†
l (0)d̂l(0)

〉

= 〈n̂jn̂l〉el .
The evaluation of (2.32) proceeds as before, with splitting into the electronic part and

an average over exponentials of the form exp(iφ̂l(t)). Since we have assumed that the
phases commute when taken at the same time, [φ̂l(t), φ̂j(t)] = 0, the exponentials acting
at the same time may be combined:

exp[−iφ̂j(t)] exp[iφ̂l(t)] = exp[i(φ̂l(t) − φ̂j(t))] . (2.33)

This yields for Eq. (2.32):
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〈

d̂†j(t)d̂l(t)d̂
†
l (0)d̂j(0)

〉

el

〈

ei(φ̂l(t)−φ̂j(t))e−i(φ̂l−φ̂j)
〉

. (2.34)

Again, the electronic expectation value is calculated with respect to Ĥ ′el = Ĥ ′ − ĤB,
which contains the effective interaction between electrons. In particular, this means that
Wick’s theorem cannot be applied to rewrite it in terms of pairwise combinations of the
electron operators. The average over the fluctuating phases is evaluated just as for the
single-particle Green’s function, with the phase difference φ̂l − φ̂j taking the place of the
phase itself. It yields:

exp
[〈

(φ̂l(t) − φ̂j(t))(φ̂l − φ̂j)
〉

−
〈

(φ̂l − φ̂j)
2
〉]

=

exp[Kll(t) +Kjj(t) −Klj(t) −Kjl(t)] (2.35)

The decay of the two-particle Green’s function in time leads to a decay of the single-
particle density matrix, which is due to “pure” dephasing in this model. By comparing
(2.35) with the corresponding result (2.24) for the single-particle Green’s function, it may
be noted that dephasing of the superposition between levels l and j may be strongly
suppressed compared with the decay of each single level itself. This will be the case if the
phase difference φ̂l − φ̂j is small, although the fluctuations of φ̂l and φ̂j individually are
large. Physically, it means that the bath cannot distinguish easily between levels l and j.
In the extreme case, they might even couple to the same bath operator, φ̂l = φ̂j, which
means there will be no dephasing at all. This may also happen in more complicated models
of dephasing, involving transitions between different states induced by the bath. If the
coupling is such that transitions from l to l′ and j to j ′ are accompanied by the emission
of one and the same quantum into the bath (with equal transition amplitude), then a
coherent superposition of l and j, such as (|l〉+ |j〉) |χ〉, will be transferred into a coherent
superposition of l′ and j ′, (|l′〉+ |j ′〉) |χ′〉, where χ(′) denotes the initial (final) state of the
bath. For example, long-wavelength phonons may scatter an electron and yet be ineffective
in dephasing if the distance between the paths that contribute to electronic interference
is sufficiently smaller than the wavelength. A similar situation occurs in the case of
“bremsstrahlung” of a single electron going through an interference setup, mentioned
before. There will always be a large (and, in the long-time limit, even infinite) number
of infrared photons emitted by the electron. However, those photons whose wavelength is
much larger than the distance between the two slits in a double-slit experiment will not
deteriorate the interference pattern on the screen.

Note that the opposite situation cannot occur: If dephasing takes place, one always
necessarily has a decay of the single-particle Green’s function as well. More quantitatively,
we have derived the following inequality between the real part of the exponent governing
the decay of the two-particle Green’s function and that of the single-particle Green’s
function:

Re[
〈

(φ̂l(t) − φ̂j(t))(φ̂l − φ̂j)
〉

−
〈

(φ̂l − φ̂j)
2
〉

] ≥
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2Re[
〈

φ̂l(t)φ̂l

〉

−
〈

φ̂lφ̂l

〉

+
〈

φ̂j(t)φ̂j

〉

−
〈

φ̂jφ̂j

〉

] . (2.36)

In this sense, the decay of the single-particle Green’s functions of levels l and j provides
an upper bound on the strength of dephasing (note that both sides are nonpositive, so the
inequality for the magnitudes would be reversed). The inequality (2.36) can be proven by
bringing everything to the left hand side and using

〈

φ̂2
〉

− 1

2

〈

{φ̂(t), φ̂}
〉

≥ 0 , (2.37)

which holds for any hermitean operator φ̂, with φ̂ ≡ φ̂l + φ̂j in our case. (Eq. (2.37)
itself may be derived directly by writing down the thermal equilibrium correlator in terms
of the matrix elements of φ̂, and using cos(ωt) ≤ 1). Dephasing becomes of maximum
strength if the two levels couple to the bath with equal strength but opposite sign: F̂l =
−F̂j. In that case, the inequality becomes an equality. On the other hand, for independent

bath fluctuations F̂l and F̂j, another equality holds, with the factor of 2 dropped on the
right hand side. Then, the bath part of the two-particle Green’s function factorizes into
the corresponding single-particle expressions, as expected.

Formally, the decay of the two-particle Green’s function is usually overestimated by
looking at that of the single-particle Green’s function because of vertex corrections that are
able to reduce the decay of the former. Put more simply, averaging a wave function over a
fluctuating field leads to a larger reduction in magnitude than averaging a density matrix.
Although qualitatively the same can be said in general, not just for the independent boson
model, I am not aware of any similar relation between dephasing rate and single-particle
decay rate for the general case.

Summarizing, the temporal evolution of any Green’s function in the independent boson
model is governed by exponentials of phase-correlatorsKlj(t), which are directly connected

to the power spectrum
〈

F̂lF̂j

〉

ω
of the fluctuating fields F̂l, see Eq. (2.25). The DOS of a

single level j is determined by Pjj(ω), which is the Fourier transform of exp(Kjj(t)), see
Eq. (2.28).

2.2.5 Time-evolution of Green’s functions

We will conclude this section by discussing briefly the time-evolution of exp(Kjj(t)) for
different bath spectra. A more detailed analysis of the resulting Fourier transform Pjj(ω)
is contained in the next section, dealing with dephasing in sequential tunneling through
a double-dot system. Again, we omit the level index j in the following, for brevity.

In general, K(t) starts from 0 at t = 0 and decays towards −
〈

φ̂2
〉

in the long-time

limit. Whenever this value is finite, the decay of the Green’s function is incomplete, i.e.
it does not decay towards zero. Correspondingly, P (ω) contains a “quasiparticle” delta

peak of strength exp(−
〈

φ̂2
〉

) over an incoherent background. From



34 2 Dephasing in tunneling through localized levels

〈

φ̂2
〉

=

∫ +∞

−∞
dω

〈

F̂ F̂
〉

ω

ω2
, (2.38)

we observe that this is the case whenever the bath spectrum
〈

F̂ F̂
〉T=0

ω
rises like ωs

at low frequencies, with s > 1 (s > 2) at T = 0 (T > 0), or if it vanishes at low ω
(gapped bath, Einstein oscillator). In contrast, for s ≤ 1 (s ≤ 2) at T = 0 (T > 0), the
decay is complete and the DOS shows no delta peak any more. For s < 1 (s < 2), one
has K(t) ∝ −t1−s (−t2−s) in the long-time limit. In the special cases s = 1 (s = 2), the
increase of K(t) with time turns out to be logarithmic: K(t) ∝ − ln(ωct) (− ln(T t)), where
ωc denotes a cutoff-frequency beyond which the bath spectrum falls off towards zero. In
that case, the Green’s function decays with a power-law in time, the exponent being given
by the strength of the bath fluctuations. Exponents s ≤ 0 lead to an infrared divergence
of the energy shift Jjj and the coupling constants Jlj (see Eq. (2.14)). An example
is provided by 1/f -fluctuations (s = −1), which may occur due to defect tunneling of
charges in a solid, if the tunnel barriers are randomly distributed. However, for such a
spectrum it is questionable whether the bath itself is really in equilibrium at the lowest
frequencies, as we are assuming it here.

The case of s = 1 is known as the “Ohmic bath”. It is of particular importance, since
it describes the equilibrium electric field fluctuations in a disordered conductor (Nyquist
noise) and the fluctuations of the electron density in a clean Fermi liquid (at a given point
of space, in any dimension). Moreover, it is the force spectrum that, in the treatment of
Quantum Brownian motion of a free particle [Caldeira83], leads to velocity-proportional
friction and to normal diffusion at finite temperatures.

We may write the Ohmic spectrum as

〈

F̂ F̂
〉T=0

ω
= 2αω (2.39)

at low frequencies, with α a dimensionless parameter characterizing the strength of the
fluctuations (known as the Kondo parameter in some applications; see [Weiss00], where
it is denoted by K). From the general discussion given above, it follows that, at finite
temperature T > 0, the temporal decay of the Green’s function in the long-time limit
proceeds exponentially, with the rate given by 2παT . At T = 0, it turns into a power-law
decay (ωct)

−2α.
From these examples, it is observed that an exponential decay with a finite decay rate

is rather the exception than the rule in the case of a diagonal coupling between system
and bath. In all the other cases, with an incomplete decay, a power-law decay or a decay
of the form exp(−c tν) (ν 6= 1), a calculation of the rate according to the Golden Rule (i.e.
like in Eq. (1.11)) yields either zero or infinity. In contrast, a non-diagonal coupling leads
to transitions between different levels, which, at T = 0, simply correspond to spontaneous
emission of energy into the bath. Then, the Golden Rule picture usually describes most
of the qualitative physics correctly over a wide range of coupling strengths.
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Figure 2.1: The double-dot “double-slit” setup under the influence of a fluctuating environment,
with a fixed phase difference ϕ between the two paths.

2.3 Dephasing in sequential tunneling through a double-

dot

In this section, we will present a model that is able to give insights into most of the ques-
tions raised in the introduction (Chapter 1), concerning the role of zero-point fluctuations
and the Pauli principle in low-temperature dephasing.

The model is a kind of very simple mesoscopic double-slit setup. It consists of two
single-level quantum dots which are tunnel-coupled to two leads, with a possible phase
difference between the two interfering paths (see Fig. 2.1). Due to destructive interference,
the tunneling current may be completely suppressed. Coupling the dots to a bath may
partly destroy the phase coherence and enable the electron to go through the setup. If
the coupling strength to the bath is the same for the two dots, and the levels have been
degenerate, mere renormalization effects will not be able to lift the destructive interference.
Thus, a finite tunneling current may be taken as a genuine sign of dephasing. This criterion
for dephasing has been employed before in a model of dephasing due to spin-flip transitions
in first-order tunneling transport through one or two dots [König02]. It will also be used
in our analysis of cotunneling transport through localized levels in general (Section 2.4),
and an Aharonov-Bohm ring coupled to a fluctuating magnetic flux (Chapter 3).

The presence of the Fermi sea in the leads introduces some aspects related to the
Pauli principle and to the behaviour of systems with a continuous spectrum that cannot
be analyzed in simpler models of discrete systems coupled to a bath. In [Aleiner97], a
somewhat related discussion has been given of dephasing in a which-way interferometer,
consisting of an Aharonov-Bohm ring with a quantum dot embedded in one of its arms
and coupled to an external quantum point contact acting as a measuring device, although
there the emphasis was placed on dephasing by nonequilibrium current fluctuations in the
point contact.

The influence of phonons on sequential tunneling through two quantum dots in series
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has been studied experimentally in [Fujisawa98]. There, inelastic transitions induced by
piezoelectric coupling to acoustic phonons in GaAs have been essential for obtaining a
finite current for off-resonant levels. This kind of setup has been analyzed theoretically
in [Stoof96, Brandes99, Keil02]. Recent experimental work on double-dots in parallel
[Holleitner02] puts emphasis on the states of the “artificial molecule” generated by in-
troducing a tunnel-coupling between the dots, including the resulting spin physics. This
has been motivated in part by suggestions to use such a setup for quantum computation
[Loss98]. Recent theoretical works considering a double-dot geometry have investigated
spin and Kondo physics [Loss00, Boese02, König02]. For a recent work, where the destruc-
tion of interference in resonant tunneling through an Aharonov-Bohm ring was studied
numerically in a tight-binding model with coupling to optical phonons, see [Haule99].

Our analysis of dephasing in sequential tunneling through a double-dot will take into
account exactly the system-bath coupling (employing the independent boson model in-
troduced before), while we treat the tunnel-coupling only in leading order.

In the following sections, we will first consider only the coupling to one lead. By
calculating the tunneling decay rate for an electron that has been placed on the two dots
in a symmetric superposition of states, we can emphasize the most important physical
effects that are relevant for dephasing in the sequential tunneling situation. We will derive
the general formula for this rate, building on the concepts of the P (E) theory of tunneling
in a dissipative environment [Ingold92, Schön98]. Following this, we will evaluate the
dependence of the tunneling rate on the bias voltage and the bath spectra, concentrating
mostly on the case T = 0. We will interpret the results in terms of “renormalization
effects” and “true dephasing”. In the final section, we will derive a master equation for
the case of weak tunnel coupling, which allows us to calculate the sequential tunneling
current as a function of bias voltage, temperature, and phase difference.

2.3.1 The model

We consider a Hamiltonian describing two degenerate single-level quantum dots, with
respective single-particle states |+〉 and |−〉 (spin is excluded for simplicity, since we are
interested in dephasing of the electronic motion). Each of them is tunnel-coupled to the
same lead with the same strength, but involving a possible phase difference between the
tunnel amplitudes (see Fig. 2.1). The phase difference ϕ is assumed not to depend on
the final electronic state k in the lead. This means we assume the dots to couple to the
same point, to within less than a Fermi wavelength. In addition, the particle number on
each dot couples to a fluctuating potential F̂ , whose dynamics is derived from a linear
bath. This represents an example of the independent boson model introduced above. The
coupling strength is taken to be the same for both dots, while the sign is assumed to be
opposite, such that the bath can distinguish between an electron being on dot |+〉 or |−〉:

Ĥ = ε(n̂+ + n̂−) + F̂ (n̂+ − n̂−) + Un̂+n̂− +
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ĤL + ĤR + ĤB + V̂ (2.40)

Here n̂± are the particle numbers on the two dots (equal to 0 or 1), and ĤB is the bath
Hamiltonian, governing the dynamics of the fluctuating potential F̂ . U is the Coulomb re-
pulsion energy, which we will take to be infinite, such that double-occupancy is forbidden.
ĤL, ĤR contain the energies of the electrons in the left and right reservoirs:

ĤL(R) =
∑

k

εkâ
†
L(R)k âL(R)k . (2.41)

The tunneling between the dots and the leads is described by V̂ = V̂L + V̂R, with

V̂R =
∑

k

tRk â
†
Rk(d̂+ + eiϕd̂−) + h.c. (2.42)

for the right junction, and

V̂L =
∑

k

tLk â
†
Lk(d̂+ + d̂−) + h.c. (2.43)

for the left junction.
Here d̂± are the annihilation operators for the two dots (n̂± = d̂†±d̂±) and the phase-

factor of eiϕ controls the interference between tunneling events along either the upper or
lower path. The tunneling phase difference might be thought of as arising due to the
Aharonov-Bohm phase from a magnetic flux penetrating the region between the quantum
dots.

2.3.2 Qualitative discussion

In this and the following three sections, we first analyze the escape of a single electron into
the right lead, where the electron is assumed to start out in a symmetric superposition of
the two dot levels, which is formed by an electron tunneling onto the dots from the left
lead. In the situation without any bath, this is the state |e〉 ≡ (|+〉 + |−〉)/

√
2. Without

dephasing, the tunneling decay is made impossible in the case of perfect destructive
interference, which will be obtained for ϕ = π, while maximal constructive interference is
present for ϕ = 0. Therefore, we will only consider the coupling V̂R to the right lead and
drop the index R for now. It should be noted that the attribution of the phase factor to
one of the tunnel couplings represents a certain choice of gauge, which affects the wave
functions but no physically observable quantities.

For simplicity, we will assume a zero-temperature situation throughout the following
qualitative discussion, with a bias eV > 0 applied between the two dots and the lead in
such a way that the electron is allowed to tunnel into the lead (see Fig. 2.2).

Without the bath and for perfect constructive interference (ϕ = 0), the tunneling
decay rate Γ will take on its maximum value of 2Γ0, with
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Figure 2.2: The ground state |χ+〉 (|χ−〉) which the bath assumes in the presence of an electron
on dot |+〉 (|−〉), shown schematically for a single bath oscillator (see main text). After the
electron has tunneled into the lead, |χ−〉 becomes a superposition of excited states (dashed),
while the state |χ0〉 represents the ground state of the bath in the new potential.

Γ0 ≡ 2πD
〈

|tk|2
〉

, (2.44)

where D is the lead density of states at the Fermi energy,
〈

|tk|2
〉

is the average of |tk|2
at this energy, and the bias voltage V does not enter in this case, as long as it is positive
(permitting decay). For ϕ = π, Γ vanishes due to perfect destructive interference. In
general, we have

Γ = Γ0(1 + cosϕ) . (2.45)

If the bath is included in the description, the following happens:
First of all, the energy of a single extra electron on any of the two dots will be

renormalized from its initial value of ε, since the bath relaxes to a ground state of lower
energy in presence of the electron. We will assume that the value of ε has been chosen

exactly to compensate for this energy change, which is given by −
∫∞
0
dω
〈

F̂ F̂
〉

/ω, see

Eqs. (2.13) and (2.14). Then, the energy of an electron on the dot (and the bath in
its new ground state) is the same as that of the electron being in the lead, at the Fermi
energy of εF ≡ 0 (for V = 0). Since we consider only a single electron, we may also
disregard the effective interaction between electrons on the different dot levels, which is
induced by the bath (see Eq. (2.13)).

Tunneling of an electron from the dots to the lead will not change the bath state, but it
will displace the origin of the harmonic oscillators comprising the bath, since the coupling
to F̂ is switched off (n̂+ − n̂− changes to zero). Therefore, the original ground state of
the bath will become a superposition of excited states in the new bath potential (see Fig.
2.2). On the other hand, since energy conservation has to be fulfilled with respect to the
total energy of the electrons and the bath before and after the tunneling event, only those



2.3 Dephasing in sequential tunneling through a double-dot 39

excited bath states can be reached whose energies are not greater than eV , the energy
supplied to the electron by the bias voltage. This leads to the Coulomb-blockade type
suppression of the tunneling rate at low bias voltages, for ϕ = 0. Physically, this effect
is just the same as that described by Franck-Condon overlap integrals evaluated between
vibronic states for electronic transitions in molecules.

In contrast, for the case of destructive interference (ϕ = π), the bath may actually
enhance the tunneling rate from its initial value of 0, since it partly destroys the phase
coherence that is a presupposition for perfect interference. An electron coming from the
left lead will form the following entangled state with the bath, instead of the symmetric
superposition |e〉 = (|+〉 + |−〉)/

√
2:

(|+〉 |χ+〉 + |−〉 |χ−〉)/
√

2 . (2.46)

Here the states |χ±〉 denote the respective ground states of the bath for a bath Hamil-
tonian given by ĤB ± F̂ , which are related to each other by a parity transformation (This
also means we assume there to be no phase factor between these states). Actually, the
entangled state considered here will be formed only if the electron is given barely enough
energy to enter the double-dot at all. Otherwise, excited bath states may be created at
this step. These complications will be taken care of in the complete discussion of the
sequential tunneling current (Section 2.3.6).

The bath measures (to some extent) which dot the electron resides on, such that the
reduced system density matrix (for the electron on the two dots) becomes mixed and its
off-diagonal elements get suppressed by the overlap factor 〈χ+|χ−〉. Put differently, the
phase factor between the two dot states in the wave function of the electron (initially
equal to +1) becomes uncertain. Therefore, there is a finite probability of

Po = (1 − Re 〈χ+|χ−〉)/2 (2.47)

to find the electron in the odd state |o〉 ≡ (|+〉 − |−〉)/
√

2. This state is allowed
to decay into the lead at ϕ = π, at the rate 2Γ0. In this way, the interference-induced
blockade of electron tunneling is lifted by dephasing.

However, this simple picture is true only for large bias voltages, when energy con-
servation permits any final state of the bath after the tunneling event. If the maximum
energy supplied to the electron is limited, the suppression discussed above (for the case
of ϕ = 0) will apply again. In particular, if the bias voltage is turned to zero, energy
conservation only allows the state |χ0〉 to be reached, which is the ground state of the
bath in the absence of any electrons on the dots. Then, the tunneling rate is exactly zero
again, despite the fact that the reduced density matrix of the electron may be mixed to
a strong extent. The reason is the following: When the overlap of the entangled state
(2.46) with the state |χ0〉 is taken, the two overlap factors 〈χ0|χ+〉 and 〈χ0|χ−〉 turn out
to be the same, if the coupling of the bath to the two dots is symmetric (i.e. of equal
strength, only of opposite sign), which we have assumed in writing down the Hamilto-
nian, Eq. (2.40). Therefore, the electronic state resulting from the projection onto |χ0〉
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is equal to the symmetric combination, whose decay is forbidden. Thus, energy conser-
vation and Pauli blocking prevent a finite tunneling rate at zero bias voltage, in spite of
the mixed state of the electron coupled to the bath. If the coupling were asymmetric,
then destructive interference would be lost even without dephasing, just as it would be
the case for initially asymmetric bare tunnel couplings, rendering this case uninteresting
for our purposes of distinguishing renormalization effects from real dephasing.

However, whether we are indeed able to claim that dephasing actually vanishes in the
limit of low bias voltages will depend on the behaviour of the tunneling rate as a function
of V and on the comparison of the cases ϕ = 0 and ϕ = π. Here, the bath spectrum,
and, above all, its low-frequency properties, enter. In order to be able to discuss Γ(V, ϕ)
quantitatively, we will make use of the concepts of the P (E) theory of tunneling in a
dissipative environment.

2.3.3 Decay rate and connection to P (E) theory

The tunneling rate Γ will be calculated using the standard Fermi Golden Rule, i.e. lowest
order perturbation theory in the bare tunneling rate Γ0, but taking into account exactly
the bath coupling. In deriving the formula for Γ, it turns out to be useful to assume
that the bath oscillators do not get shifted in the tunneling event (unlike the qualitative
considerations from above), but it is rather the bath states which get displaced (in the
opposite direction). Obviously, this amounts to the same, as long as we are interested only
in overlap integrals of different bath states after the event. We define the displacement
operator, which transforms the bath ground state of ĤB into that of ĤB + F̂ , as exp(iφ̂),
with a suitable hermitian operator φ̂ that is linear in the bosonic variables of the bath. In
fact, this amounts to performing the canonical transformation (2.13) of the independent
boson model, introduced in Section 2.2.2. In terms of the two dot states + and −, we
have F̂+ = F̂ and F̂− = −F̂ , as well as φ̂+ = φ̂ and φ̂− = −φ̂. The transformation leads

to d̂′± = e±iφ̂d̂± (compare Eq. (2.15)) in the transformed tunnel Hamiltonian V̂ ′R.

We will assume the tunnel-coupling to be sufficiently weak, such that we can use
lowest-order perturbation theory to calculate the tunneling decay rate:

Γ = 2π
∑

f

∣

∣

∣

〈

f |V̂ ′R|i
〉
∣

∣

∣

2

δ(Ef − Ei) , (2.48)

where the initial state |i〉 is given by the configuration involving the electron residing
in the symmetric superposition on the dots, the unperturbed Fermi sea in the lead and
the bath in its ground state |iB〉 (which has become independent of the position of the
electron, due to the above-mentioned transformation). At finite temperatures, an addi-
tional thermal average over the initial bath state and the initial state of the electrons
in the lead has to be performed. The energies and eigenstates refer to the Hamiltonian
without tunnel coupling. Applying the new tunneling Hamiltonian V̂ ′R to the initial state,
we obtain the following expression:



2.3 Dephasing in sequential tunneling through a double-dot 41

Γ = π
∑

kfB

|tk|2 (1 − f(εk + eV ))×

∣

∣

∣

〈

fB|e+iφ̂ + eiϕe−iφ̂|iB
〉
∣

∣

∣

2

δ(EB
f − EB

i + εk) , (2.49)

Here f(·) is the Fermi function (for chemical potential equal to zero), and EB
f,i are the

energies of the initial and final bath states. The energy supplied to the bath is equal to
the energy lost by the electron (given by −εk, since the renormalized dot energy is zero).
Following the usual derivation of the P (E) theory [Ingold92, Schön98], we express the
energy-conserving δ function as an integral over time and also replace the sum over lead
states k by an integral over the energy E = −εk supplied to the bath, finally yielding:

Γ = Γ0

∫ +∞

−∞
dE(1 − f(−E + eV ))

∫ +∞

−∞

dt

2π
eiEt×

1

2

〈

(e−iφ̂(t) + e−iϕeiφ̂(t))(eiφ̂ + eiϕe−iφ̂)
〉

(2.50)

For the case of arbitrary T , the brackets denote a thermal average over the initial bath
state |iB〉. We introduce the definitions (compare Eq. (2.28), where P (E) has already
been defined):

P(−)(E) =
1

2π

∫ +∞

−∞
dt eiEt e±〈φ̂(t)φ̂〉−〈φ̂2〉 . (2.51)

This permits us to write down our final result for the tunneling decay rate in terms of
P(−)(E):

Γ = Γ0

∫ +∞

−∞
dE (1 − f(−E + eV )) (P (E) + cos(ϕ)P−(E)) (2.52)

The formula given here constitutes the basic expression for the decay rate as a function
of bias voltage and interference phase ϕ. We will evaluate it for different types of bath
spectra in the next section.

By using the definitions

γ(−) ≡ Γ0

∫

dE (1 − f(−E + eV ))P(−)(E) , (2.53)

we can write

Γ = γ + cos(ϕ)γ− . (2.54)

The strength of the dependence of Γ on the phase ϕ may be taken as a signature of
phase coherence in our model. We define the “visibility” of the interference pattern by
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υ ≡ (Γmax − Γmin)/(Γmax + Γmin), (2.55)

which is equal to the ratio

υ =
γ−
γ
. (2.56)

The visibility υ will be 1 whenever the destructive interference is perfect, and it is zero
if there is no dependence of Γ on ϕ.

The effects of the bath on the decay rate are encoded in the functions P (E) and
P−(E), whose general properties we will discuss now.

As usual, the function P (E) describes the probability (density) that an electron will
emit the energy E into the bath while tunneling into the lead. It is real, nonnegative and
normalized to unity [Schön98, Ingold92], see Eqs. (2.29),(2.30).

At large times |t| → ∞, the correlation function
〈

φ̂(t)φ̂
〉

in the exponent of the

integral (2.51) will decay towards zero, for a continuous bath spectrum. This means that

the integrand of P (E) approaches the value of z ≡ exp(−
〈

φ̂2
〉

), starting from 1 at t = 0.

Therefore, P (E) contains a “quasiparticle δ peak” of strength z at E = 0, if z does not
vanish. It corresponds to the probability z of having no energy transfer at all from the
electron to the bath (similar to the recoil-free emission of a γ ray by a nucleus inside a
crystal, i.e. the Mössbauer effect).

The function P−(E) in front of the cos(ϕ) term in Eq. (2.52) is different: The integrand
of P−(E) will increase at large times, towards the value of z, starting from z2 at t = 0.
This means that P−(E) can become negative (as demonstrated below), while it is still

real-valued, because of
〈

φ̂(t)φ̂
〉

=
〈

φ̂φ̂(t)
〉∗

. Therefore, it cannot be interpreted as a

probability density, in contrast to P (E). Its normalization is given by:

∫

dE P−(E) = z2 . (2.57)

If z is nonzero, P−(E) also has a δ peak at E = 0, of weight z, just as P (E). As
a consequence, in the case of destructive interference (ϕ = π), the tunneling rate Γ at
V → 0, T = 0 still vanishes even in the presence of the bath, since the δ peaks contained
in P (E) and P−(E) cancel exactly in the integral (2.52). The physical reason for this has
been discussed above.

In the case of constructive interference (ϕ = 0), at T = 0 and for V → 0, the
integration over E will only capture the δ peaks contained in P(−)(E), yielding Γ = 2zΓ0.
Thus, the tunneling rate is suppressed by the constant factor z from its noninteracting
value. However, this may be interpreted as a mere renormalization of the effective tunnel
coupling, since the visibility υ of the interference pattern is still equal to unity. In order
to connect this result to the qualitative discussion from above, we note that the overlap
of the two different bath ground states that are adapted to the absence or presence of an
electron on dot ±, is given by:
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〈χ0|χ±〉 =
〈

χ0

∣

∣

∣
e±iφ̂

∣

∣

∣
χ0

〉

= exp(−
〈

φ̂2
〉

/2) = z1/2 , (2.58)

Therefore, the magnitude squared of this overlap, that determines the probability of
tunneling without exciting any bath mode, is equal to z.

On the other hand, for sufficiently large bias voltages (much larger than the cutoff
frequency of the bath spectrum), the normalization conditions for P(−)(E) yield

Γ = Γ0(1 + z2 cos(ϕ)) . (2.59)

The visibility is given by υ = z2. In this limiting case, where the restrictions due
to energy conservation and the Pauli principle are no longer important, the tunneling
rate Γ at the point ϕ = π of destructive interference does not vanish. It takes the value
Γ0(1 − z2), which is small if the effects of the bath are weak (z near to 1) and is equal
to one half the ideal maximum value 2Γ0 for a bath that is sufficiently strong to destroy
phase coherence completely (z = 0), leading to an incoherent mixture of symmetric and
antisymmetric states on the two dots. In the latter case, the visibility vanishes (even for
arbitrary voltages), since then P−(E) is equal to zero, which makes Γ independent of ϕ.
This will be true for the Ohmic bath, to be discussed in the next section.

As explained above, the reduced density matrix of the electron on the dots coupled
to the bath predicts a finite probability of (1 −Re 〈χ+|χ−〉)/2 to find the electron in the
antisymmetric state if one starts out from the symmetric superposition before coupling
it to the bath. The overlap factor of the bath states involved in this probability can be
expressed as

〈χ+|χ−〉 =
〈

χ0|(e−iφ̂)2|χ0

〉

= z2 . (2.60)

Comparing with the result Γ(ϕ = π) = Γ0(1−z2) given above, it may be observed that
the decay rate at sufficiently large bias voltages is determined directly by the probability to
find the electron in the state whose decay is not forbidden by destructive interference. It is
only in this limiting case, where an arbitrary amount of energy is available for excitation of
the bath, that the suppression of interference effects in the transport situation is correctly
deduced from the electron’s reduced density matrix in the presence of the bath. Formally,
this holds because the sum over final bath states fB in Eq. (2.49) is not restricted any
more and corresponds to the insertion of a complete set of basis states. Thus, one obtains,
directly from Eq. (2.49):

Γ =
Γ0

2

〈

χ+ + e−iϕχ−|χ+ + eiϕχ−
〉

, (2.61)

which reduces to Eq. (2.59) when the overlaps are evaluated, using Eq. (2.60). Phys-
ically, the case of high bias voltage corresponds to a kind of infinitely fast von Neumann
projection measurement that determines the state of the electron, revealing the fluctua-
tions due to the bath (compare the qualitative discussion in Section 1.3). In contrast, at
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low bias voltages (low energy supply), a kind of “weak” measurement is carried out that
takes a longer amount of time, such that only the low-frequency fluctuations of the bath
are important for dephasing.

2.3.4 Evaluation for different bath spectra

We will restrict the discussion to T = 0 at first.

The simplest example for the bath is a single harmonic oscillator of frequency ω.
This offers an approximate description of the interaction with optical phonon modes
(“Einstein model”). In this case, P (E) and P−(E) can be obtained easily by expanding the

exponential in a Taylor series and using
〈

φ̂(t)φ̂
〉

=
〈

φ̂2
〉

exp(−iωt), before the integration

over time is performed. For P (E), the resulting series of δ peaks at harmonics of ω
corresponds to all possible processes where the electron emits any number n of phonons
into the bath while tunneling into the lead. The expression for P−(E) is the same, apart
from alternating signs in front of the δ functions:

P(−)(E) = z
∞
∑

n=0

〈

±φ̂2
〉n

n!
δ(E − nω) . (2.62)

Thus, every process involving the transfer of an even number of quanta to the bath will
not ruin the destructive interference at ϕ = π, since the corresponding contributions from
P (E) and P−(E) cancel in Eq. (2.52). This is because the coupling between electron and
bath is of the type (n̂+−n̂−)F̂ , which gives a different sign of the interaction amplitude for
a phonon emission process, depending on the dot. Therefore, the amplitude of emission
of an even number of phonons will not depend on the dot, it is insensitive to the state
of the electron, and the amplitudes of the electron tunneling from |+〉 and |−〉 will still
interfere destructively.

In contrast, emission processes involving an odd number of quanta introduce a negative
sign for an electron starting in state |−〉, “detecting” the path (or rather, the initial state)
of the electron and interfering constructively with the processes from |+〉. This lifts the
destructive interference and makes Γ 6= 0 at ϕ = π. However, below the frequency ω of
the oscillator, destructive interference at ϕ = π is still perfect since no quantum can be
emitted, while the magnitude of Γ at ϕ = 0 is renormalized by the factor z, as has been
discussed above in general for the limiting case V → 0. The same holds true for any bath
with a finite excitation gap, at T = 0. This is shown in Figs. 2.4 and 2.5, to be discussed
in the next section.

We now pass on to arbitrary bath spectra. At first, we will cover the case z 6= 0 (“weak
baths”), when we can apply perturbation theory to discuss the behaviour of P(−)(E) at
low energy transfers E (and, consequently, that of Γ at low voltages). A Taylor-expansion
of the exponent in Eq. (2.51) yields:
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P(−)(E) =
z

2π

∞
∑

n=0

1

n!

∫ +∞

−∞
dt eiEt

[

±
〈

φ̂(t)φ̂
〉]n

= z
∞
∑

n=0

(±1)n

n!
(
〈

φ̂φ̂
〉

ω
∗ . . . ∗

〈

φ̂φ̂
〉

ω
)(E) (2.63)

The repeated convolution product contains n times the correlator
〈

φ̂φ̂
〉

ω
, for n = 0 it

is to equal δ(E), and the negative sign holds for P−(E).
For the following discussion, we prescribe the spectrum of the fluctuating potential F̂

to be a power-law in frequency ω (at T = 0), with exponent s:

〈

F̂ F̂
〉T=0

ω
= 2αωc

(

ω

ωc

)s

θ(ωc − ω)θ(ω), (2.64)

The dimensionless parameter α characterizing the bath strength has been introduced
before in the case of the Ohmic bath, s = 1 (see Eq. (2.39)). In order to be able to

rely on perturbation theory, we have to ensure z > 0. Since
〈

φ̂φ̂
〉

ω
=
〈

F̂ F̂
〉

ω
/ω2, the

variance of the fluctuating phase,
〈

φ̂2
〉

, will be finite only for s > 1 (at T = 0, otherwise

s > 2). In that case, we have z = exp(−2α/(s−1)). This means the perturbative analysis
presented above is restricted to a super-Ohmic bath, s > 1. The case of the Ohmic bath
will be discussed separately further below.

After keeping only terms up to second order in the expansion of P(−)(E) given in Eq.
(2.63), we get

P (E) + P−(E) = z(2δ(E) + (
〈

φ̂φ̂
〉

ω
∗
〈

φ̂φ̂
〉

ω
)(E) + . . .) , (2.65)

for the symmetric combination, that will determine the prefactor of 1 + cos(ϕ) in the
expression for Γ, Eq. (2.52), and

P (E) − P−(E) = 2z
〈

φ̂φ̂
〉

E
+ . . . (2.66)

for the antisymmetric combination (determining the prefactor of 1−cos(ϕ)). Inserting

these into (2.52), using the power law for
〈

φ̂φ̂
〉

ω
=
〈

F̂ F̂
〉

ω
/ω2 given by (2.64), and

performing the energy integrals, we find, for sufficiently low voltages (2α(eV/ωc)
s−1 �

s− 1):

Γ ≈ Γ0

2
z{(1 + cos(ϕ))(1 +

α2Cs

(s− 1)

(

eV

ωc

)2(s−1)

)+

(1 − cos(ϕ))
2α

s− 1

(

eV

ωc

)s−1

} . (2.67)
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The numerical prefactor Cs is defined as
∫ 1

0
(y(1 − y))s−2dy.

From Eq. (2.67), we see that the destructive interference at ϕ = π is perfect at V = 0,
but gets lifted when increasing the bias voltage, with a power V s−1. In contrast, the
decay rate Γ at ϕ = 0 starts out from the constant value of 2zΓ0 and grows as V 2(s−1).
Therefore, the visibility υ starts out at 1 for V = 0 but decreases as:

υ ≈ 1 − 4α

s− 1

(

eV

ωc

)s−1

. (2.68)

For s ↓ 1, the range in bias voltage V where these approximate expressions hold shrinks
to zero (at constant α and ωc). At s = 1, i.e. for the Ohmic bath, the probability z of not
emitting energy into the bath vanishes completely. As discussed above, this means that
there is no ϕ-dependence at all in Γ, and, consequently, the visibility is zero at all bias
voltages. Furthermore, the tunneling rate vanishes for eV → 0, even at ϕ = 0. This is
the well-known Coulomb-blockade type of behaviour for tunneling in presence of Ohmic
dissipation [Devoret90]. At higher bias voltages, the blockade is removed and Γ grows
towards Γ0. The growth at low voltages is determined by the power-law behaviour of
P (E), which rises as cω−2α

c E2α−1, where the exponent is determined by the bath-strength
rather than the exponent s = 1 of the bath spectrum. The dimensionless prefactor c must
be found from the normalization condition for P (E) and depends only on α (and the type
of cutoff in the bath spectrum). Therefore, in the case of the Ohmic bath we have, at low
V and T = 0:

Γ(V ) = Γ0
c

2α

(

eV

ωc

)2α

. (2.69)

Finally, we briefly discuss the case of finite temperatures, T > 0.
In that case, the variance of φ̂ is given by

〈

φ̂2
〉

=

∫ ∞

0

dω
〈

φ̂φ̂
〉(T=0)

ω
coth

( ω

2T

)

, (2.70)

which yields

〈

φ̂2
〉

≈
〈

φ̂2
〉(T=0)

+ 4α

(

T

ωc

)s−1 ∫ ∞

0

ys−2

ey − 1
dy . (2.71)

The approximation of extending the integral to infinity holds for temperatures much
smaller than the bath cutoff ωc. This formula gives the temperature-dependence of the

renormalization factor z = exp
(

−
〈

φ̂2
〉)

. The second integral diverges for s ≤ 2, because

z = 0 for these cases, in contrast to T = 0 where z = 0 only for s ≤ 1. Again, this results
in complete absence of the interference effect in the tunneling rate Γ(V, ϕ) (because P−(E)
vanishes). It may seem surprising that an infinitesimally small temperature can yield such
a drastic qualitative change compared to the zero-temperature case, since the difference
should be observable only at very large times t� 1/T . However, it must be remembered
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that our analysis is carried out for the limit Γ0 → 0, where the average decay time of
the given state is inifinitely large. At finite Γ0, the transition from one to the other case
should turn out to be smooth.

Apart from the change in z with temperature, there are two other important differences
to the case T = 0: First of all, even at V → 0 the electron may emit energy into the bath,
due to the thermal smearing of the Fermi surface in the lead. Secondly, it may now also
absorb some energy during the tunneling process. Both facts will, in general, lead to a
finite tunneling decay rate at ϕ = π, V → 0 for any bath, where, at T = 0, the rate had
vanished in any case.

We can approximate the visibility υ at V → 0 and finite T by using the expansion
(2.63). Inserting the resulting expressions for γ(−) (2.53) into υ = γ−/γ, we obtain

υ(T, V → 0) ≈ 1 − 4

∫

dε
〈

φ̂φ̂
〉

ε
f(ε) . (2.72)

We evaluate the integral for a power-law bath spectrum in the limit T � ωc:

∫

dε
〈

φ̂φ̂
〉

ε
f(ε) =

=

∫ ∞

0

dε

〈

φ̂φ̂
〉T=0

ε

sinh(βε)

≈ 2αω1−s
c

∫ ∞

0

dε
εs−2

sinh(βε)
. (2.73)

This yields:

1 − υ(T, V → 0) ≈ 32α

(

T

ωc

)s−1

(
1

2
− 2−s)Γ(s− 1)ζ(s− 1) , (2.74)

where Γ is the Euler gamma function, and ζ the Riemann zeta function. Therefore,
the decrease of the visibility with increasing temperature T (and V → 0) is governed by
the same power-law as that for increasing bias voltage V at T = 0, see Eq. (2.68).

2.3.5 Discussion of the results

The following discussion relates to the results obtained for T = 0, that are plotted in the
figures.

In Fig. 2.3, several different types of bath spectra
〈

F̂ F̂
〉

E
are shown. Cases (a),(b),(d)

and (e) are power-laws of the form given in Eq. (2.64), for a cutoff frequency of ωc = 1.
The last two (d,e) are of Ohmic type (s = 1, z = 0), which corresponds physically to gate
voltage fluctuations due to Nyquist noise. Case (c) represents a bath with an excitation
gap (for example optical phonons), with a spectrum given by an inverted parabola. In the
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Figure 2.3: The bath spectrum
〈

F̂ F̂
〉

E
(bottom) and the resulting functions P (E) (top) and

P−(E) (middle), plotted vs. energy E, for different baths. Energies are measured in units of
the “bath cutoff” ωc. Energy axis is the same in all panels (starting at E = 0, horizontal tick
distance: 1); vertical tick distance in all panels is 0.5. a: s = 1.5, α = 0.25; b: s = 3, α = 1;
c: Bath with gap; d : s = 1, α = 0.25; e: s = 1, α = 0.75 (d,e are Ohmic baths of different
strength, z = 0)
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Figure 2.4: Decay rate Γ as a function of bias voltage V for the case of constructive interference
(ϕ = 0), at T = 0. Curves correspond to different bath spectra shown in Fig. 2.3. Dashed lines
correspond to approximation Eq. (2.67).
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Figure 2.5: Decay rate Γ(V ) for the case of destructive interference (ϕ = π). Dashed lines refer
to Eq. (2.67).
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Figure 2.6: Visibility υ = (Γϕ=0 − Γϕ=π)/(Γϕ=0 + Γϕ=π) as a function of bias voltage V for
different bath spectra (see Fig. 2.3). For the Ohmic bath (cases d,e) υ ≡ 0. Dashed lines
correspond to Eq. (2.68).
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limit of infinitely small spectral bandwidth, it would correspond to the single harmonic
oscillator (Einstein mode) discussed above. Case (b), with a bath spectrum rising as
ω3, corresponds to the experimentally relevant case of piezoelectric coupling to acoustic
phonons, which was determined to be the major inelastic mechanism in the experiments
of [Fujisawa98] on double-dots in GaAs (see [Brandes99] for a theoretical analysis deriving
this spectrum for wavelengths larger than the dot distance). The spectra for the first three
cases (a,b,c) have been chosen to give the same renormalization factor, z = 1/e. The same
figure shows the resulting functions P (E) and P−(E). These have been obtained using the
integral equation described in [Minnhagen76, Ingold92]. We recall that the low-energy

behaviour of P (E) is given by
〈

φ̂φ̂
〉

E
=
〈

F̂ F̂
〉

E
/E2 for the cases with z 6= 0, where

perturbation theory may be applied. In case (c), the alternating signs of the different
contributions to P−(E) may be observed, whose physical meaning has been explained
above for the limiting case of the harmonic oscillator.

The resulting behaviour of Γ(ϕ, V ) at T = 0, calculated from Eq. (2.52), is shown
in Figs. 2.4 and 2.5. In the case of constructive interference (ϕ = 0, Fig. 2.4), the
decay rate for the “weak baths” (a,b,c) starts out from Γ/2Γ0 = z at V = 0 and goes to
Γ/2Γ0 = (1+z2)/2 at eV/ωc � 1. The initial deviation from the constant value of z at low
voltages is given by the power-law V 2(s−1) contained in Eq. (2.67). In contrast, the decay
rate for the Ohmic bath (d,e) starts at Γ = 0, rising with a power-law and saturating at a
value of Γ/2Γ0 = 1/2, corresponding to an equal admixture of odd and even states in the
reduced density matrix of the electron coupled to the bath. For destructive interference
(ϕ = π, Fig. 2.5), the behaviour of (a) and (b) at low voltages is given by V s−1 (see Eq.
(2.67)), while the decay rate of the Ohmic bath (d,e) remains the same as that for ϕ = 0.
In the special case (c) of the gapped bath, we observe perfect destructive interference
up to the excitation threshold of the bath at eV = ωc, where Γ(ϕ = π, V ) increases in
a stepwise manner for the first time, with the next increase at eV = 3ωc. Note that,
on the other hand, Γ(ϕ = 0, V ) increases at even multiples of the excitation gap. The
difference comes about because it is only the emission of an odd number of phonons into
the bath that reveals the location of the electron, as discussed above. This feature would
be absent, if the two dots were coupled to two independent baths, whereas the other
qualitative properties would remain the same.

From the decay rates at ϕ = 0 and ϕ = π, we may calculate the visibility υ of the
“interference pattern” that is defined by the dependence of Γ on ϕ. The result is shown in
Fig. 2.6. As we have noted before, the visibility is always zero for the Ohmic bath. On the
other hand, for the “weak baths”, it is perfect (equal to 1) at V → 0, due to the perfect
destructive interference, regardless of the suppression factor z appearing in Γ(ϕ = 0).
In general, the visibility decreases towards higher bias voltages before saturating at the
limiting value of z2. However, in contrast to intuitive expectation, the decrease may be
nonmonotonous, i.e. the visibility of the interference effect may actually be enhanced
by increasing the supply of energy available to the electron, although the decay rate Γ
always increases monotonously at any V . This is particularly striking in case (c), where
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the visibility drops down to zero in a certain range before rising again. The decrease

down to the exact value of 0 is related to the special choice of
〈

φ̂2
〉

= 1 (z = 1/e),

which gives equal strengths of the peak at E = 0 and the first peak around E = ωc,
which then are able to cancel in the integral γ− over P−(E) that is proportional to the
visibility. However, the physical reason for a dip in visibility is rather generic: In that
energy range, the decay rate Γ for ϕ = π has already increased due to dephasing, while
the blockade-type suppression of the value of Γ for ϕ = 0 has not yet been lifted. This is
a consequence of the even-odd effect discussed above.

2.3.6 Sequential tunneling through the double-dot

Up to now, we have discussed in detail the influence of the bath on the tunneling decay rate
of an electron which has been placed onto the two dots in the symmetric superposition.
In order to complete the picture, we have to calculate the sequential tunneling current
through such a double-dot interference setup. This will be done by deriving and solving
a master equation for the reduced density matrix of the double-dot system, taking into
account the system-bath coupling exactly, while the tunnel-coupling is assumed to be
infinitesimally small. However, in order to facilitate the understanding of the results, we
first turn to a qualitative description of the situation without the bath.

At ϕ = π, tunneling is completely blocked, since the left reservoir only couples to the
even state |e〉, while the right reservoir couples to the antisymmetric (odd) superposition,
|o〉. At ϕ = 0, both reservoirs couple to |e〉, whereas |o〉 is completely decoupled from
the leads (compare the discussion in [Boese02]). This means that a current may flow if
|o〉 is empty. However, if |o〉 is filled, the current vanishes, because double-occupancy
is forbidden in our model. Since there is no way to change the occupation of |o〉, the
stationary density-matrix of the double-dot will be any convex combination of these two
possibilities. At any value of ϕ in between these extremes, there is always the state
|Ψ〉 = (|+〉 − e−iϕ |−〉)/

√
2, whose decay into the right lead is blocked by destructive

interference. As there is a nonvanishing overlap between |Ψ〉 and the state |e〉 which is
reached by tunneling from the left lead, one will observe an accumulation of population in
|Ψ〉, until the current is blocked again. This holds at T = 0, while at finite temperatures
the electron can decay towards the left lead and make a new attempt. Therefore, in
this simple picture, the stationary current at T = 0 would be zero at any ϕ except for
ϕ = 0, where it is undefined. However, one has to take into account that the coupling
to the reservoirs does not only lead to decay but also to an effective tunnel coupling
between |+〉 and |−〉. Although this cannot change the blockade of the current at ϕ = π
(leading only to an energy shift of |e〉 vs. |o〉), it does lift the blockade at other values
of ϕ. This is because the blocked state |Ψ〉 is no longer stationary, such that an electron
will not remain there forever. The degeneracy at ϕ = 0 still remains. Therefore, in the
ideal case without coupling to a bath, we expect the current to vanish at ϕ = π and
to rise towards a maximal amplitude near ϕ = 0 which is determined by the effective
tunnel-coupling. Introducing the bath will then lead to renormalization effects and spoil
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the perfect destructive interference at higher values of the bias voltage (or temperature),
qualitatively in the same way as it has been explained above. We will show that the
actual visibility υI of the interference pattern I(ϕ) is given by a monotonous function of
the visibility υ introduced above (at symmetric bias).

We start with the Hamiltonian that is obtained after applying the unitary transfor-
mation of the independent boson model (2.13) onto our Hamiltonian (2.40):

Ĥ ′ = ε′(n̂+ + n̂−) + U ′n̂+n̂− + ĤB + ĤL + ĤR + V̂ ′ (2.75)

Here ε′ is the (renormalized) energy of the two states, which we will take to be ε′ = 0
from now on. U ′ is the interaction constant that involves both the Coulomb repulsion as
well as the effective attractive interaction induced by the bath. Because of U = U ′ = ∞,
double-occupancy is forbidden.

The term which we will treat as a perturbation is given by V̂ ′, describing the tunneling
to the left and the right leads in the presence of the bath. It is the transformed version
of V̂ , where the additional fluctuating phase factors exp(±iφ̂) have been introduced:

V̂ ′ =
∑

j=l,r

∑

α=+,−
ĵαd̂α + h.c. , (2.76)

where

l̂± = e±iφ̂l̂ (2.77)

l̂ =
∑

k

tLk â
†
Lk (2.78)

r̂+ = e+iφ̂r̂ (2.79)

r̂− = e−iφ̂eiϕr̂ (2.80)

r̂ =
∑

k

tRk â
†
Rk . (2.81)

As usual, the current through the device does not only depend on the rates for electrons
to tunnel into and out of the dots, but also on the stationary state which the system
assumes in the nonequilibrium situation, i.e. under an applied bias voltage.

We will now derive a master equation for the reduced density matrix ρ̂ of the double-
dot system, which contains the populations ρ++, ρ−−, ρ00 (“0” denoting “no electron”)
and the coherences ρ+− and ρ−+ (with ρ00 = 1− ρ++ − ρ−−, ρα0 = ρ0α = 0 for α 6= 0, and
ρ−+ = ρ∗+−). We cannot simply use the standard kind of master equation, since we have
to deal with two degenerate levels |+〉 and |−〉, and it is important that a tunneling event
may create a coherent superposition of |+〉 and |−〉 (for example the even state |e〉).

Given the initial reduced density matrix ρ̂(0), and assuming the state of the environ-
ment (bath and reservoirs) to be independent of the electronic state on the dot at t = 0,
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we obtain the time-evolution ρ̂(t) by tracing over the environmental degrees of freedom
(“E”):

ρ̂(t) = trE[T̂ e−i � t

0 ds V̂ ′(s)ρ̂(0) ⊗ ρ̂E
˜̂
Tei � t

0 ds V̂ ′(s)]

= ρ̂(0) −
∫ t

0

dt1

∫ t1

0

dt2 trE[V̂ ′(t1)V̂
′(t2)ρ̂(0) ⊗ ρ̂E + h.c.]

+

∫ t

0

dt1

∫ t

0

dt2 trE[V̂ ′(t1)ρ̂(0) ⊗ ρ̂EV̂
′(t2)] + . . . (2.82)

Physically, by using factorized initial conditions, we neglect correlations between sub-
sequent tunneling events which could be due to excitations in the electrodes or in the
bath: Since the tunneling rate is very small, these excitations will have traveled away
from the double-dot until the next event takes place. The entanglement between electron
and bath (discussed in the previous sections) would preclude factorized initial conditions,
if it were not treated indirectly in this approach (via the unitary transformation). Note
that we do not have to make any secular approximation at this point, unlike the usual
derivation of a master equation [Blum96]. It turns out that all contributions only depend
on the time-difference t1 − t2 anyway, because the dot levels are degenerate. Therefore,
in the long-time limit t → ∞, the integration over (t1 + t2)/2 results in a factor t, and
the endpoints of the integrals over t1 − t2 may be extended to ∞. This yields the desired
master equation that will determine the stationary ρ̂, as well as the current, in the limit
of weak tunnel coupling.

In the expectation values of products V̂ ′V̂ ′ only those contributions remain which
combine d̂αĵα (tunneling out of the dots) with ĵ†βd̂

†
β (tunneling onto the dots):

dρ̂

dt
= −

∑

α,β,j

∫ ∞

0

ds
{

d̂α(s)d̂†βρ̂
〈

ĵα(s)ĵ†β

〉

+ h.c.

+d̂†α(s)d̂βρ̂
〈

ĵ†α(s)ĵβ

〉

+ h.c.
}

+
∑

α,β,j

∫ +∞

−∞
ds
{

d̂α(s)ρ̂d̂†β

〈

ĵ†β ĵα(s)
〉

+

d̂†α(s)ρ̂d̂β

〈

ĵβ ĵ
†
α(s)

〉}

. (2.83)

(Note that there is no minus sign from fermion operator re-ordering in this factorization
of dot and reservoir part, as the reservoir fermion operators are dragged past an even
number of dot operators; compare e.g. [Schoeller99]; alternatively, it is also possible to
define them as commuting operators, since there is no interaction between them). We get
for the individual matrix elements (for brevity, the summation over j = l, r is implied):

ρ̇++ = −ρ++

∫ +∞

−∞
ds
〈

ĵ†+(s)ĵ+

〉
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+ρ00

∫ +∞

−∞
ds
〈

ĵ+ĵ
†
+(s)

〉

−ρ−+

∫ ∞

0

ds
〈

ĵ†+(s)ĵ−

〉

− h.c. , (2.84)

ρ̇+− = −ρ+−

∫ ∞

0

ds
〈

ĵ†+(s)ĵ+

〉

−ρ+−

∫ ∞

0

ds
〈

ĵ†−ĵ−(s)
〉

+ρ00

∫ +∞

−∞
ds
〈

ĵ−ĵ
†
+(s)

〉

−ρ++

∫ ∞

0

ds
〈

ĵ†+ĵ−(s)
〉

−ρ−−
∫ ∞

0

ds
〈

ĵ†+(s)ĵ−

〉

. (2.85)

The equation for ρ−− follows from that for ρ++ by interchanging indices + and −.
Now we have to evaluate environment correlators, such as the prefactor of ρ++ in the

second equation (e.g. for j = r):

〈

r̂†+r̂−(s)
〉

= eiϕ
〈

e−iφ̂e−iφ̂(s)
〉

〈

r̂†r̂(s)
〉

. (2.86)

By introducing the bare tunneling rates ΓR(L)0 = 2πDR(L)

〈

∣

∣

∣
t
R(L)
k

∣

∣

∣

2
〉

(compare Eq.

(2.44)), we get, using Eq. (2.81) (remember r̂ creates a reservoir electron):

〈

r̂†r̂(s)
〉

=
ΓR0

2π

∫

dε (1 − fR(ε)) e+iεs . (2.87)

Here we have neglected any energy-dependence of the tunnel-coupling and electrode
DOS, assuming the relevant voltages and temperatures to be sufficiently small (but see

below). The bath correlator evaluates to exp(−
〈

φ̂φ̂(s)
〉

−
〈

φ̂2
〉

), which can be expressed

by using the definition (2.51) for P−(ω). There, we have to set s 7→ −s because of the
reversed order in the φ̂-correlator:

e−〈φ̂φ̂(s)〉−〈φ̂2〉 =

∫

dω P−(ω)eiωs . (2.88)

Therefore, we obtain:

∫ ∞

0

ds
〈

r̂†+r̂−(s)
〉

=

eiϕ ΓR0

2

∫

dε (1 − fR(ε)) P̃ ∗−(−ε) , (2.89)
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with

P̃−(ε) =
1

π

∫

dω P−(ω)

∫ ∞

0

ds ei(ε−ω)s =

P−(ε) +
i

π

∫

dω
P−(ω)

ε− ω
. (2.90)

In order to abbreviate expressions like this, we introduce the following definitions for
the effective in- and out-tunneling rates as well as the effective tunnel couplings generated
by the electrodes:

γL(−) ≡ ΓL0

∫

dε (1 − fL(ε))P(−)(−ε) (2.91)

γin
L(−) ≡ ΓL0

∫

dε fL(ε)P(−)(ε) (2.92)

∆L ≡ −ΓL0

π

∫ Λ

−∞
dε (1 − fL(ε))

∫

dω
P−(ω)

ε+ ω
(2.93)

γ̃L− ≡ γL−[P 7→ P̃ ] = γL− + i∆L . (2.94)

Analogous definitions hold for L 7→ R. Eq. (2.91) is equivalent to the definition
(2.53) used for γ(−) in previous sections. Note that the effective tunnel coupling ∆L(R)

depends on P−, because it arises from transitions between the states |+〉 and |−〉, via an
intermediate lead state. In the expression for ∆L(R), the energy-dependence of the density
of states and the tunnel coupling to the reservoir electrode should be kept in order to have
a convergent integral. We will take this into account by introducing an effective upper
energy cutoff Λ in the integral. Using these definitions, (2.89) is equal to exp(iϕ)γ̃∗R−/2.

One might wonder why the effective tunnel couplings ∆L(R) do depend on the occupa-
tion of electron states in the reservoirs. After all, in the non-interacting case, it is possible
to calculate such a change of the single-particle Hamiltonian prior to filling in the electron
states. Alternatively, in a calculation that already takes into account occupation factors,
there would be two contributions which add up to an integral that does not depend on the
Fermi function. However, we consider the interacting case U = ∞, such that (even with-
out the bath) one of these contributions is missing (since it would involve intermediate
states with double occupancy).

The general master equation for the reduced density matrix of the double-dot, derived
in the limit of weak tunnel coupling but arbitrary electron-bath coupling, follows by
inserting these definitions into Eqs. (2.84) and (2.85):

ρ̇++ = −ρ++(γL + γR)

+ρ00(γ
in
L + γin

R )

−ρ−+

2
(eiϕγ̃R− + γ̃L−) − h.c. , (2.95)
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ρ̇−− = −ρ−−(γL + γR)

+ρ00(γ
in
L + γin

R )

−ρ+−
2

(e−iϕγ̃R− + γ̃L−) − h.c. , (2.96)

ρ̇+− = −ρ+−(γL + γR)

+ρ00(e
iϕγin

R− + γin
L−)

−ρ++

2
(eiϕγ̃∗R− + γ̃∗L−)

−ρ−−
2

(eiϕγ̃R− + γ̃L−) . (2.97)

The ingredients of the master equation obtained here may be interpreted as follows:
The imaginary part of the right hand side corresponds to the unitary time-evolution
generated by the effective tunneling Hamiltonian

ĤT
eff =

1

2
(eiϕ∆R + ∆L) |+〉 〈−| + h.c. . (2.98)

The in-tunneling contributions in the equations for ρ++ and ρ−− depend on P (E),
while that for ρ+− is determined by P−(E), since it describes the creation of a coherent
superposition of |+〉 and |−〉 (which is hindered by the bath). This term would be absent
in the usual master equation. In particular, if γin

L− → γin
L , which will be the case at

T = 0 for vanishing bias between the dots and the left electrode, an electron tunneling
from the left lead will end up in the coherent superposition where ρ+− = ρ++ = ρ−−.
Taking into account that we are working in a transformed basis, this describes just the
entangled state (2.46), confirming the starting point of our earlier discussion. Note that
the out-tunneling contribution for ρ++ also depends on ρ+−, for example. This reflects
the fact that a superposition between the two states may be blocked from decaying into
the lead, while each state separately can decay.

The stationary density matrix is obtained by demanding dρ̂/dt = 0 (and using the
relations ρ00 = 1− ρ++ − ρ−− and ρ−+ = ρ∗+−). We get the current from the contribution
of the left electrode to the change ρ̇++ + ρ̇−− in the double-dot occupation (which is equal
to the right-going current in the stationary limit):

I

e
= (ρ̇++ + ρ̇−−)L =

2ρ00γ
in
L − γL(ρ++ + ρ−−) − 2γL−Re[ρ+−] . (2.99)

In order to evaluate the current as a function of temperature T , bias voltage V and
phase difference ϕ, we will now specialize to the case of symmetric bias and left-right
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Figure 2.7: The shape of the “interference pattern” I(ϕ) at T = 0, without coupling to a bath,
for different values of the effective tunnel couplings −δL = −δR = 0.5, 1, 2, 4 (from bottom to
top).
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Figure 2.8: The current I for different values of the visibility υ = γ−/γ =
0.8, 0.9, 0.99, 0.999, 0.9999 (from top to bottom). The limits ϕ → 0 and υ → 1 do not commute.
Other parameters held fixed: λ = e−βµ = 0.2 and δL = δR = −1.



58 2 Dephasing in tunneling through localized levels

symmetric tunnel couplings (ΓR0 = ΓL0 = Γ0). All essential features (in particular the
perfect destructive interference in absence of the bath) are independent of this assumption.

We find from Eqs. (2.91)-(2.94), using f(ε) = 1 − f(−ε):

γR(−) = γin
L(−) = γ(−) ≡ Γ0

∫

dε f(ε− µ)P(−)(ε) , (2.100)

where µ = eV/2 is the chemical potential of the left reservoir. This is definition (2.53),
with eV replaced by µ (since we deal with the symmetric bias case). Furthermore, we
use the condition of detailed balance, P(−)(−E) = exp(−βE)P(−)(E) (see, for example,
[Ingold92]), which leads to

γL(−) = γin
R(−) = e−βµγ(−) . (2.101)

The effective tunnel couplings are still different (because of the different Fermi distri-
butions):

∆L(R) = −Γ0

π

∫ Λ

−∞
dε f(−(ε∓ µ))

∫

dω
P−(ω)

ε+ ω
. (2.102)

The lower sign belongs to the right electrode.
For the special case of T = 0, electrons always enter from the left and go to the right,

such that we have γL = γL− = γin
R = γin

R− = 0 and γR(−) = γin
L(−) = γ(−), with

γ(−) = Γ0

∫ µ

0

dε P(−)(ε) . (2.103)

The effective tunnel couplings are, at T = 0:

∆L(R) = −Γ0

π

∫

dω P−(ω) ln

[

Λ + ω

|µ± ω|

]

. (2.104)

Note that ∆L(R) will have a logarithmic singularity at µ → 0, for T = 0. The cutoff
Λ may be on the scale of the bandwidth of the reservoir’s electronic energy band, for
example. We assume Λ � µ, ω.

In the the limit of high bias voltages (ω � Λ, µ), we obtain effective tunnel couplings
whose magnitude goes as z2 and decreases logarithmically with µ:

∆L ≈ ∆R ≈ −Γ0

π
ln

[

Λ

µ

]
∫

dω P−(ω) = −z2 Γ0

π
ln

[

Λ

µ

]

. (2.105)

By solving the master equation for the stationary density matrix and inserting into
Eq. (2.99), we obtain the expression for the current through the double dot in terms of
all of the quantities mentioned previously. In general (at arbitrary T ), it is found that the
current may be written as the product of γ with a dimensionless function of the phase
difference ϕ and the ratios υ = γ−/γ, δL(R) = ∆L(R)/γ and βµ:
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I = eγ I0[ϕ, βµ, υ, δL, δR] . (2.106)

The complete expression for I0 is very cumbersome (it is listed for T = 0 in Appendix
A.2). Therefore, let us first discuss the situation without coupling to a bath. In that case,
we obtain

δL = δR ≡ δ = −Γ0

π

∫ Λ

−∞

dε

ε
f(µ− ε) (2.107)

and γ = γ− = Γ0f(−µ). The current turns out to be (with λ ≡ e−βµ):

I

eγ
=

4(1 − λ)(δ2 + λ) cos2(ϕ
2
)

3δ2 + 2(1 + λ+ λ2) + 3δ2 cos(ϕ)
. (2.108)

Several points should be noticed about this expression: Firstly, the destructive in-
terference at ϕ = π remains perfect regardless of temperature, because there are no
current-carrying states at all. At zero temperature (λ = 0), the maximal amplitude of
the current is Imax/eγ = 2δ2/(3δ2 +1), which vanishes when the effective tunnel coupling
δ goes to zero. This has been explained above as a consequence of the possible transition
into a current-blocking state, which can only be undone by the effective tunnel coupling.
At finite temperatures (λ > 0), the maximal current is nonzero even for δ → 0, where it
approaches the value of Imax/eγ = 2λ(1−λ)/(1+λ+λ2). This has a maximum at around
T ∼ µ. It vanishes for larger temperatures as µ/T , which is to be expected for tunneling
through a localized level (decreasing derivative of the Fermi function). In addition, the
shape of I(ϕ) depends on δ and λ, with a sharper minimum at ϕ = π in the case of larger
|δ|. In the limit of δ → 0, the current becomes a pure cosine. This is shown in Fig. 2.7 for
the case of T = 0. At finite temperatures (as well as for υ 6= 1) the behaviour is similar,
except for the finite amplitude of the current at δ → 0.

Now we turn to the situation including the bath. The general expression for the
current is very lengthy, and we will omit it here. However, it turns out that the maximal
and minimal current are functions merely of υ and λ = e−βµ, while they are independent
of δL,R.

The amplitude of the minimal current (at ϕ = π) is given by

I(ϕ = π)

eγ
=

2(1 + λ)(1 − λ2)(1 − υ2)

3(1 + λ)2 + (1 − λ)2υ2
, (2.109)

while the maximal current (at ϕ = 0) is

I(ϕ = 0)

eγ
=

2

3
(1 − λ) . (2.110)

It should be noted that the expression (2.108) for the current in the ideal case seems to
contradict this simple formula. However, that is because the limits ϕ → 0 and υ → 1
do not commute. This is shown in Fig. 2.8. It means that for T = 0 and δL,R → 0 the
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maximal current calculated according to (2.110), which is independent of δL,R, and the
“typical” amplitude of the current (∝ δ2

L) may deviate strongly. The peculiar behaviour
near ϕ = 0 seems to be connected to the physical degeneracy of the case ϕ = 0, υ = 1
which has been discussed above.

The dependence of the interference pattern I(ϕ) on the bias voltage is shown in Fig.
2.9, for one specific example of a particular bath and at some finite temperature.

From these formulas, we obtain the visibility, defined in terms of the current:

υI ≡
I(ϕ = 0) − I(ϕ = π)

I(ϕ = 0) + I(ϕ = π)
. (2.111)

It can be expressed entirely by the visibility υ defined previously, as well as λ:

υI =
2(1 + λ+ λ2)υ2

3(1 + λ)2 − (1 + 4λ+ λ2)υ2
. (2.112)

This is a monotonous mapping of υ to the interval [0, 1], with only a weak dependence
on λ. The other parameters δL, δR only modify the amplitude and shape of the current
pattern I(ϕ). Therefore, all the statements about the visibility made in the previous
discussion of the tunneling decay out of the symmetric superposition continue to hold
qualitatively (with eV replaced by µ = eV/2). In particular, at T = 0, we have

υI =
2υ2

3 − υ2
. (2.113)

The dependence of the visibility υI on the bias voltage eV = 2µ, the temperature T
and the bath spectrum is displayed in Fig. 2.10, for bath spectra of type (b) and (c). The
decrease of υI at µ = 0 with increasing temperature T in case (b) is well approximated
by Eq. (2.74) for υ(T, V → 0) (employing the relation υI = υ2/(2− υ2) for µ = 0). (The
functions P(−)(E) for finite temperatures have been calculated numerically using the fast
Fourier transform, from the defining equation (2.51)).

Note that at any finite temperature, the bath spectrum (a) (rising as ω1.5) has z = 0,
just as the Ohmic bath (d,e). Therefore, the visibility vanishes entirely (at any V ) for
these spectra, as has been explained in the previous sections. We have already pointed
out that this picture is expected to change if one treats the tunnel-coupling to higher
order. However, we have to leave this analysis for the future. A promising approach to
a nonperturbative (but still approximate) treatment of both the tunnel-coupling and the
system-bath coupling at the same time seems to be the numerical “real-time renormal-
ization group” scheme [Schoeller99].
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Figure 2.9: The current I(ϕ) as a function of bias voltage eV = 2µ, with µ/ωc = 0.02, 0.04, . . . , 1
(from bottom to top) for the case of the acoustic-phonon type bath (b) (see above, spectrum
rising like ω3). The temperature T has been chosen as T/ωc = 0.1. For better clarity, the
current has been scaled by γ, whose dependence on µ is displayed in the inset.
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Figure 2.10: The visibility υI of the pattern I(ϕ), for the acoustic phonon bath (b) (solid line)
and the optical phonons (c) (dashed line), plotted vs. µ = eV/2, at different temperatures
T/ωc = 0.01, 0.05, 0.1, 0.2, 0.4 (top to bottom).
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2.4 Cotunneling and connection to the Feynman-Vernon

influence functional

The analogy between a conventional double-slit experiment and a mesoscopic transport
interference experiment becomes closer in a cotunneling setup, where the traveling elec-
tron cannot stay on the central island, because it does not have enough energy. In that
situation, the electron is forced to tunnel from the left electrode to the right electrode in
an uninterrupted two-step process, via a virtual intermediate state on the island. Con-
structive or destructive interference between cotunneling through different states is similar
to the interference between different paths in the double-slit experiment, and it may be
affected by the fluctuations of the environment. According to Heisenberg’s uncertainty
relation, the intermediate state is only occupied for a short amount of time, on the order
of 1/∆E, where ∆E is the typical energy barrier separating the intermediate state from
the energy of an electron at the Fermi level of the reservoirs. An optical analogy consists
in evanescent light waves leaking from one medium into another, across a region of space
where they are subject to a fluctuating index of refraction.

We will also explain how the two-particle Green’s function and the cotunneling current
can be related to the Feynman-Vernon influence functional in the case of the independent
boson model, affording a somewhat clearer physical picture. Usually, there is no simple
generalization of the influence functional from the single-particle to the many-particle
case (disregarding a purely formal treatment, where the whole many-particle system is
treated as the “system” in question). Although just such a generalization has been derived
recently [Golubev99], evaluating the resulting expressions in a reliable way leads to great
difficulties. We treat the independent boson model, which is an exceptionally simple
case, since no transitions are induced by the bath, that would lead to complicated many-
particle physics. Nevertheless, the Pauli principle still becomes important for cotunneling
through a set of localized levels coupled to a bath. Energy conservation and Pauli blocking
of final states suppress the dephasing effects of the bath’s zero-point fluctuations at low
bias voltages and temperatures, as has been demonstrated for sequential tunneling in the
previous section. Therefore, the treatment explained below is a particularly simple special
example of a slightly modified influence functional applied to a situation where the Pauli
principle matters.

2.4.1 Two-particle Green’s function and influence functional

An introduction to the Feynman-Vernon influence functional [Feynman63, 65] will be
given in Chapter 5. Here we merely point out that it encodes the complete influence
of a dissipative bath onto a quantum system coupled to that bath. Knowledge of the
influence functional suffices in principle to calculate the time-evolution of the reduced
system density matrix under any circumstances. Formally, it is obtained as the overlap
between two different bath states, |χ>〉 and |χ<〉, that arise out of a given initial state |χ0〉
under the action of the system passing along the trajectories q>(·) and q<(·), respectively.
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In this notation, q is the system variable that couples to the bath, and q>(·), q<(·) are
to be treated as c-number functions of time. The functional must be known for arbitrary
pairs of trajectories, since, in the end, it is to be used in a path integral expression where
one has to integrate over all such pairs of paths in order to obtain the time-evolution
of the reduced density matrix of the system. At zero temperature, the state |χ0〉 is the
ground state of the unperturbed bath, which is not yet coupled to the system. At finite
temperatures, a thermal average over |χ0〉 has to be performed in order to obtain the
influence functional.

We would like to interpret the two-particle Green’s functions of the independent boson
model, such as (2.32), in terms of the influence functional. As explained above, the elec-
tronic part becomes (nearly) trivial, and it is the remaining average over bath operators
exp(iφ̂j) (see Eq. (2.35)) which we want to rewrite as an overlap between bath states.

In order to do so, we will use that exp(iφ̂j) is the displacement operator which produces
the ground-state of the bath in presence of a particle on level j out of the ground-state
in absence of the particle (all other particles being spectators). More generally, from a
specialization of the canonical transformation in Eq. (2.13), we find for any bath eigenstate
|B〉:

(F̂j + ĤB[{nk}])eiφ̂j |B〉 = (EB + δEj)e
iφ̂j |B〉 . (2.114)

Here EB is the energy of the state |B〉, which is assumed to be an energy eigenstate
of the bath for a given configuration {nk} of occupation numbers (with nj = 0), i.e. for

the Hamiltonian ĤB[{nk}] ≡ ĤB +
∑

k nkF̂k. The energy shift δEj upon introduction of
particle j has been given in Eq. (2.21), and it depends on the initial configuration {nk}.

In the time-evolution of a coherent superposition of states l and j, we expect the
suppression of the off-diagonal elements of the density matrix to be governed by the
overlap between bath states |χl〉 and |χj〉 that evolve out of the initial state |χ0〉 in
presence of an extra particle on level l or j (compare the discussion for the diagonal
spin-boson model around Eq. (2.7)). In our case, these states are given by:

|χj(t)〉 ≡ e−i(F̂j+ĤB [{nk}])t |χ0〉 =

e−iδEj teiφ̂je−iĤB [{nk}]te−iφ̂j |χ0〉 =

e−i(δEj+δE[{nk}])tei � k nkφ̂keiφ̂je−iĤBte−iφ̂je−i � k nkφ̂k |χ0〉 . (2.115)

We have employed the canonical transformation (2.114) twice and denoted by δE[{nk}]
the difference in ground state energies between the Hamiltonians ĤB[{nk}] and ĤB. If
|χ0〉 has been an energy eigenstate of ĤB[{nk}], then

e−i � k nkφ̂k |χ0〉 (2.116)

in the last line of (2.115) is an eigenstate of ĤB itself, according to Eq. (2.114). We
denote it by |0B〉. Therefore, the overlap is equal to
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〈χj(t)|χl(t)〉 = e−i(δEl−δEj)t
〈

0B|eiφ̂je−iφ̂j(t)eiφ̂l(t)e−iφ̂l |0B

〉

. (2.117)

Here, the time-evolution of φ̂j(t) is governed by ĤB alone, and any reference to the
initial configuration is only in the values of the energy shifts δEj,l. At zero temperature,
|0B〉 refers to the bath ground state, while a further thermal average over |0B〉 is necessary
at finite T .

However, by comparing (2.117) to the expression for the two-particle Green’s function
that describes the decay of a superposition of levels l and j, Eq. (2.34), we find that
they differ in the order of operators. This has a straightforward physical reason: In the
Green’s function, l and j do not enter on an equal footing. It describes a situation where,
initially, level j has been occupied, such that the bath has adapted to the presence of a
particle on j. Then a perturbation creates a small admixture of level l. After some time t,
the resulting off-diagonal element of the density-matrix is read out. In contrast, what we
have employed up to now amounts to a version of “factorized” initial conditions, in which
the initial states of bath and system are assumed to be uncorrelated. More precisely, the
initial bath state |χ0〉 has been assumed to be affected only by the fixed configuration of
particles on levels other than l and j. Now we have to define |χ0〉 as the ground state
of ĤB[{nk}′], with nj = 1 in {nk}′, instead of ĤB[{nk}] with nj = 0. In (2.117), this

amounts to replacing |0B〉 by exp(iφ̂j) |0B〉. This replacement then leads to

〈

χ′j(t)|χ′l(t)
〉

= e−i(δEl−δEj)t
〈

e−iφ̂j(t)eiφ̂l(t)e−iφ̂leiφ̂j

〉

, (2.118)

where we take the angular brackets on the right hand side to denote a thermal average.
Consequently, the result for the two-particle Green’s function, Eq. (2.34), can be identified
as:

〈

d̂†j(t)d̂l(t)d̂
†
l (0)d̂j(0)

〉

=

e−i(εl−εj)t
〈

(1 − nl)nj

〈

χ′j(t)|χ′l(t)
〉〉

{nk}
. (2.119)

The overlap of bath states (i.e. the influence functional) still has to be averaged over
configurations {nk} (employing Ĥ ′el, see Eq. (2.18)), since the energies δEl and δEj depend
on the configuration. For the same reason, we cannot simply pull out a factor referring
to the unperturbed Green’s function, as the occupation numbers nl,j may be changed
in thermal equilibrium due to coupling to the bath. If the bath expectation value of
Eq. (2.118) is pulled out of the configuration average in (2.119), the remaining factor
just reproduces the “electronic” part 〈·〉el introduced earlier in Eq. (2.18). This formula
simplifies at sufficiently low temperatures, when only the single ground-state configuration
is occupied. Nevertheless, in spite of the configurational average, (2.119) is of course far
simpler than usual applications of the influence functional, because the integration over
pairs of system paths may be omitted, due to the diagonal coupling.
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The original overlap (2.117) of bath states that evolve under the action of a particle
being either in level l or in level j, comes into play in situations where initially neither l
nor j are occupied. Formally, it enters Green’s functions like

〈

d̂j(0)d̂†j(t)d̂l(t)d̂
†
l (0)

〉

=
〈

d̂j(0)d̂†j(t)d̂l(t)d̂
†
l (0)

〉

el

〈

eiφ̂je−iφ̂j(t)eiφ̂l(t)e−iφ̂l

〉

=

e−i(εl−εj)t 〈(1 − nj)(1 − nl) 〈χj(t)|χl(t)〉〉{nk} . (2.120)

Physically, it occurs in situations that are comparable to a double-slit experiment,
where an electron passes through either state l or j while traveling through the set of
localized levels coupled to a bath. The appropriate mesoscopic realization is a cotunnel-
ing setup, where two-particle Green’s functions and, therefore, the influence functional
directly enter the cotunneling current as an observable quantity. This is the subject of
the next section.

2.4.2 Cotunneling expressions for the independent boson model

For a general review on cotunneling, we refer the reader to [Averin92]. Cotunneling in the
presence of dissipation, stemming from a resistor in series with the tunnel junctions, has
been treated in [Odintsov92]. General formulas for cotunneling through localized levels
that are coupled to a bath in the form of the independent boson model, such as those
derived below, have been derived previously in [Chen93]. However, the bath-induced
effective interaction was not treated properly, no discussion of interference effects was
given, and the treatment was restricted to electronically inelastic cotunneling. In earlier
work by Wingreen et al. [Wingreen88], an exact result for the transmission coefficient of
an electron tunneling through a single level subject to a fluctuating potential was derived,
for arbitrary tunnel coupling (see also [Groshev91]). Unfortunately, this does not imply
an exact result for the current, due to possible correlations between subsequent tunneling
events (see also the discussion of this point in [König96]). Nevertheless, in the limit of
small tunnel coupling, the expression for the current in [Wingreen88] coincides with the
appropriate expression given below (cf. Eq. (2.143)), when the latter is specialized to a
single level.

The Hamiltonian to be considered is the sum of the independent boson Hamiltonian
ĤIB (2.10), describing localized levels coupled to a bath, the Hamiltonian ĤLR describing
the left (L) and right (R) reservoir electrodes, and a tunneling Hamiltonian ĤT :

Ĥ = ĤIB + ĤLR + ĤT , (2.121)

with
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ĤIB =
∑

j

(εj + F̂j)n̂j + ĤB (2.122)

ĤLR =
∑

r=L,R

εrkâ
†
rkârk (2.123)

ĤT = L̂+ + L̂− + R̂+ + R̂− . (2.124)

Here L̂+(−) describes tunneling onto (off) the localized levels through the left junction,
and R̂+(−) stands for tunneling onto (off) these levels through the right junction,

L̂+ =
∑

kj

TL
jkd̂
†
jâLk

L̂− = (L̂+)† , (2.125)

and the same with L 7→ R.
We assume a Coulomb blockade situation, where it is not possible for the number of

charges on the central island to change permanently, since the resulting state would have
an energy larger than the energy available to electrons in the reservoirs. The goal is to
calculate the cotunneling current that flows from the left to the right electrode if a bias
voltage is applied between the electrodes, i.e. when the chemical potentials differ by an
amount µL − µR = eV . In the limit of small tunnel couplings, the cotunneling current
can be derived either by solving for the nonlinear response of the current to the tunneling
perturbation [Averin92, Odintsov92, Chen93], or by employing the Golden Rule. We will
start from the Golden Rule, since it allows a clearer physical picture.

According to the standard second-order Golden Rule expression [Landau77], transi-
tions from some initial state |i〉 to a final state |f〉 via any intermediate state |ν〉 occur at
the rate

Γf←i = 2π

∣

∣

∣

∣

∣

∑

ν

VfνVνi

Eν − Ei

∣

∣

∣

∣

∣

2

δ(Ef − Ei) , (2.126)

which is to be summed over the appropriate set of final states in the end. This holds
as long as there are no direct transitions from |i〉 to |f〉 (Vfi = 0) and if the intermediate
energies Eν are different from the initial energy Ei, such that |ν〉 represents a barrier.

In the present case, the perturbation V̂ is given by the tunnel Hamiltonian ĤT . The
states |i〉 , |f〉 and |ν〉 refer to energy eigenstates of the complete system, comprised out
of the island levels coupled to the bath, together with the electron reservoirs, but without
the tunnel coupling. In particular, |f〉 differs from |i〉 by an electron having moved from
the left to the right reservoir (or vice versa), in order to contribute to the current flow. In
addition, |f〉 may contain an electron-hole excitation left over on the island (electronically
inelastic cotunneling) and/or an excitation in the bath (inelastic cotunneling with respect
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to the bath). In the intermediate state |ν〉, the number of electrons on the central island
is changed by ±1, relating to an extra electron (extra hole) being present. Although
the tunneling by itself does not change the state of the bath, Vνi and Vfν nevertheless
connect to bath states that differ from the initial one. This is because in the presence of an
extra electron (or hole) the Hamiltonian acting on the bath is changed, such that the bath
energy eigenstates occuring in |ν〉 are different from the eigenstates in |i〉 and |f〉 (compare
Fig. 2.2). Physically, we may imagine the extra electron to shift the bath oscillators,
while leaving their ground state wave functions (at T = 0) unperturbed initially. In the
displaced oscillator potentials, these wave functions start to oscillate back and forth in the
form of coherent states. After the electron has left the island, the potentials are back to
their initial position, but the wave function now contains a superposition of excited states.
Obviously, these inelastic cotunneling processes may lead to dephasing of the interference
between different tunneling paths |ν〉, since the electron can leave a trace in the bath.

As we are to employ expressions involving averages of bath operators at different
times (such as those discussed in the previous section), we go over from the sum over
intermediate energies to a time-integral:

∑

ν

VfνVνi

Eν − Ei

= i
∑

ν

∫ ∞

0

dτ Vfνe
−i(Eν−Ei)τVνi

= i

∫ ∞

0

dτ
〈

f
∣

∣

∣
V̂ V̂ (−τ)

∣

∣

∣
i
〉

. (2.127)

We denote by Γ+ the total tunneling rate where electrons move from left to right.
There are exactly two possible processes that enter (2.127) in that case: Either an electron
hops onto the island through the left junction, and then leaves through the right junction
(extra electron in |ν〉), or an electron first leaves through the right junction, creating an
extra hole on the island, and afterwards another electron enters from the left. Therefore,
we have to replace V̂ V̂ (−τ) in (2.127) by

L̂+R̂−(−τ) + R̂−L̂+(−τ) , (2.128)

in order to obtain Γ+. Since this selects the correct final states, we are allowed to sum
over all |f〉. In addition, a thermal average over initial states |i〉 has to be carried out:

Γ+ =
〈

Γ+
f←i

〉

fi

≡ 2π

〈

∑

f

∣

∣

∣

∣

∫ ∞

0

dτ
〈

f
∣

∣

∣
L̂+R̂−(−τ) + R̂−L̂+(−τ)

∣

∣

∣
i
〉

∣

∣

∣

∣

2

δ(Ef − Ei)

〉

i

≡ Γ+
pp + Γ+

ph + Γ+
hp + Γ+

hh . (2.129)

The four contributions in the last line arise from expanding the square and are clas-
sified according to whether they contain an extra particle or hole in the first or second



68 2 Dephasing in tunneling through localized levels

intermediate state. We discuss the evaluation of Γ+
pp, which relates to the simplest pos-

sibility of interference between two states through which an electron can tunnel. The
energy-conserving δ function is expressed as a time-integral:

Γ+
pp =

∫ +∞

−∞
dt

∫ ∞

0

dτ>

∫ ∞

0

dτ<
〈

L̂−(t− τ<)R̂+(t)R̂−(0)L̂+(−τ>)
〉

(2.130)

We employ the explicit expressions for the tunneling operators, Eq. (2.125), and use
Wick’s theorem to evaluate the contribution from the reservoir fermion operators. This
gives

Γ+
pp =

∑

kL,kR

fL(1 − fR)
∑

j1j2j3j4

TL∗
j1
TR

j2
TR∗

j3
TL

j4
×

∫ +∞

−∞
dt ei(εL−εR)t

∫ ∞

0

dτ>

∫ ∞

0

dτ< ×
〈

d̂j1(t− τ<)d̂†j2(t)d̂j3(0)d̂†j4(−τ
>)
〉

eiεL(τ>−τ<) . (2.131)

Here kL is the electronic state in the left electrode that has been emptied, kR is the
state in the right electrode which the electron has gone into, and we have introduced
the abbreviations εL ≡ εLkL

, fL = f(εL − µL) (with f the Fermi function at the given
temperature T ), and T L

j ≡ TL
jkL

. This expression is still general and holds for cotunneling

through any interacting system, whose two-particle Green’s function
〈

d̂d̂†d̂d̂†
〉

has to be

calculated in order to obtain Γ+
pp.

Now we specialize to the independent boson model. In contrast to an arbitrary inter-
acting system, at most two different states can occur in the two-particle Green’s function.
There are two possibilities for pairing the indices. The first case, j1 = j2, j3 = j4, refers to
an electronically elastic cotunneling process, where the final state of the island coincides
with the initial state. Then, the energy of the electron going through the system can only
change due to interaction with the bath. We have (with j1 ≡ j and j3 ≡ l):

〈

d̂j(t− τ<)d̂†j(t)d̂l(0)d̂†l (−τ>)
〉

=
〈

d̂j(t− τ<)d̂†j(t)d̂l(0)d̂†l (−τ>)
〉

el
×

〈

eiφ̂j(t−τ<)e−iφ̂j(t)eiφ̂l(0)e−iφ̂l(−τ>)
〉

(2.132)

Again, the average of bath operators can be evaluated with the help of a generalization
of Eq. (2.22) to the case of four exponents. It yields an exponential expKlj[τ

>, τ<, t],
with:
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Figure 2.11: Illustration of the process described by Eq. (2.132): The crosses denote tunneling
between the indicated electronic states. The left diagram shows the six phase-correlators (gray
lines) that arise in Eq. (2.133) by connecting these vertices. This stands for an infinite series of
diagrams such as that shown to the right, with an arbitrary number of bath correlators (dashed
lines).

Klj[τ
>, τ<, t] ≡ Kjj(−τ<)−Kjl(t−τ<)+Kjl(t−τ< +τ>)+Kjl(t)−Kjl(t+τ

>)+Kll(τ
>) .

(2.133)
This is shown schematically in Fig. 2.11.
In particular, if the bath fluctuations coupling to j, l are independent, this reduces

to the sum of the exponents from the corresponding single-particle Green’s functions, as
expected (for j 6= l):

Kjj(−τ<) +Kll(τ
>) = K∗jj(τ

<) +Kll(τ
>) (2.134)

In the case of j = l or for F̂j = F̂l, no further simplification of (2.133) is possible
(other than Kjj = Kll = Kjl).

The case of electronically inelastic cotunneling (j1 = j4, j2 = j3) can be evaluated in
the same manner. However, it will not be described here, since we will not be interested
in dephasing by electronic inelastic transitions, which become important at bias voltages
and/or temperatures comparable to (or larger) than the level spacing on the island.

The other contributions to the total forward-tunneling rate Γ+, such as Γ+
ph, are de-

scribed in Appendix A.3. The backward-tunneling rate Γ− is obtained by interchanging
L with R in all the expressions.

2.4.3 Generalized influence functional for cotunneling

We can show the relation to the Feynman-Vernon influence functional by inserting a set
of bath eigenstates |fB〉 into the bath average of Eq. (2.132)

∑

fB

〈

e−i(EB
f
−EB

i )t
〈

iB

∣

∣

∣
eiφ̂j(−τ<)e−iφ̂j(0)

∣

∣

∣
fB

〉〈

fB

∣

∣

∣
eiφ̂l(0)e−iφ̂l(−τ>)

∣

∣

∣
iB

〉〉

iB
=
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〈

∑

fB

e−i(EB
f
−EB

i )teiEB
i (τ>−τ<)−iJllτ

>+iJjjτ< 〈χj(τ
<)|fB〉 〈fB|χl(τ

>)〉
〉

iB

. (2.135)

Here the bath state that evolves under the influence of an extra electron on state j is
defined as (compare the more general version in (2.115)):

|χj(τ)〉 ≡ e−i(ĤB+F̂j)τ |iB〉 =

eiφ̂je−i(ĤB−Jjj)τe−iφ̂j |iB〉 . (2.136)

Note that in this section |iB〉 and |fB〉 always refer to eigenstates of ĤB alone, without
any “initial electronic configuration” taken into account; this only enters the electronic
part of the Green’s function.

We can define a kind of “generalized influence functional” that is equal to the spectral
decomposition of the overlap between the two bath states that evolve under the presence
of an extra electron on j or l, respectively:

Flj[τ
>, τ<, ω] ≡

∑

fB

〈

eiEB
i (τ>−τ<) 〈χj(τ

<)|fB〉 δ(ω − (EB
f − EB

i )) 〈fB|χl(τ
>)〉
〉

iB
.

(2.137)
The overlap between bath states is taken only between those components of these states

that belong to an excitation energy of ω. This will be equal to the energy transferred
from the electron to the bath, and it will determine the supression of dephasing at low
temperatures and bias voltages, due to Pauli blocking of final states in the right electrode.
Note that this feature is absent in the usual single-particle influence functional, where one
does not care about the energy transferred to the environment. Therefore, in applying
the standard functional to situations involving the Pauli principle, it has been suggested
to drop the contribution of zero-point fluctuations of the bath in order to account for
Pauli blocking in a phenomenological way [Cohen99]. In our particularly simple special
case, we do not need any such considerations. Furthermore, this example shows that
the conclusion drawn in [Golubev99] from a generalized influence functional about the
irrelevance of the Pauli principle for dephasing in weak localization cannot be a generic
feature, even if it were true for that physical situation (see Chapter 5).

If any possible excitation energy ω is allowed, and, in addition, the two bath states are
evolved for the same time, τ> = τ<, we recover the usual influence functional, which enters
dephasing in terms of the decay of the density matrix (compare the previous section):

Flj[τ ] ≡ 〈χj(τ)|χl(τ)〉 =

∫ +∞

−∞
dω Flj[τ, τ, ω] . (2.138)

Using F , we may express the electronically elastic contribution to Γ+
pp (cf. (2.131) with

(2.132)) in the following form:
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Γ+
pp(el.el.) = 2π

∑

kL,kR

fL(1 − fR)
∑

jl

TL∗
j TR

j T
R∗
l TL

l ×
∫ ∞

0

dτ>dτ<eiεL(τ>−τ<)−iJllτ
>+iJjjτ<

〈

d̂j(−τ<)d̂†j(0)d̂l(0)d̂†l (−τ>)
〉

el
×

Flj[τ
>, τ<, εL − εR] . (2.139)

We have carried out the t-integral and made use of the fact that the electronic con-
tribution in (2.132) does not depend on t. This reflects the physical fact that, in the
electronically elastic process, no energy is transferred to the electronic state of the island.
The electron emits the energy εL − εR into the bath (or absorbs it, if εL − εR is negative).

2.4.4 Dephasing in cotunneling: General discussion

Formally, quantum-mechanical interference results from the superposition of complex
probability amplitudes, whose magnitude squared gives the probabilities. In the sim-
plest description of an interference experiment, we deal with several different paths whose
amplitudes are superposed:

∣

∣

∣

∣

∣

∑

j

Aj

∣

∣

∣

∣

∣

2

=
∑

j,l

A∗jAl . (2.140)

The terms |Aj|2 describe classical probabilities, while the cross terms are responsible
for interference. In the case of cotunneling, the sum over amplitudes is given by the sum
over intermediate states |ν〉 in expression (2.126). Coupling to a fluctuating environment
will, in general, alter all the terms that contribute to the probability or the cotunneling
current. However, if dephasing occurs, the cross terms will be reduced compared to the
“classical” contributions. Thus, interference is destroyed.

It is important and not always straightforward to distinguish the effects of dephasing
from other effects related to the bath, such as energy shifts, mass renormalization or
a change in the effective potential seen by the particle. All of these can change the
interference pattern, i.e., in our case, the cotunneling current as a function of some external
parameter.

However, such a distinction becomes possible if, instead of constructive interference,
we consider the case of perfect destructive interference, where cotunneling is completely
blocked without coupling to a bath. This has already been pointed out in the previous
section on sequential tunneling through a double-dot. Then, the appearance of a finite
cotunneling current may be interpreted as a genuine sign of dephasing. This holds as
long as the bath couples symmetrically to the different paths, in such a way that energy
shifts (and effective interactions) will only change the magnitudes |Aj| by the same factor,
without, by themselves, lifting the destructive interference.
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Let us consider these issues in more detail for the case of electronically elastic cotun-
neling, employing the formulas for the cotunneling rate and the “influence functional”
given in the previous section. Assuming all the levels to be empty in equilibrium, we can
express the rate Γ+

pp in the following form, similar to Eq. (2.140):

Γ+
pp =

∑

l,j

A∗jAlγjl , (2.141)

where the amplitude Aj to tunnel from the left to the right electrode via state j is
given as

Aj = TR∗
j TL

j , (2.142)

and the factors γjl contain the influence of the bath (as well as that of the level
energies). We evaluate the electronic contribution in Eq. (2.139), taking into account the
energy renormalization. This yields:

γjl ≡ 2πDLDR

∫

dεLdεRfL(1 − fR)

∫ ∞

0

dτ>dτ<e−i(εl−εL)τ>+i(εj−εL)τ<×

Flj[τ
>, τ<, εL − εR]

= DLDR

∫

dεLdεRfL(1 − fR)

∫ ∞

0

dτ>dτ<e−i∆lτ
>+i∆jτ<×

∫ +∞

−∞
dt ei(εL−εR)t eKlj [τ

>,τ<,t] . (2.143)

We have assumed the transmission matrix elements to be independent of the wave
vectors kL,R in the relevant energy region. Therefore, we can also pull out the density
of states DL(R) of the left (right) electrode at the Fermi level in Eqs. (2.131), (2.139).
The second line follows directly from (2.131)-(2.133). Furthermore, we have defined the
activation energy for tunneling through level l as:

∆l ≡ εl − Jll − εL . (2.144)

If the voltage and temperature are sufficiently low (much smaller than the activation
energies), we may set εL = εR = εF everywhere, except for the energy difference ω =
εL − εR. Then, we can rewrite the integration over Fermi functions by defining a weight
for the energy transfer ω:

S(ω) ≡
∫

dεLdεRfL(1 − fR) δ(ω − (εL − εR))

=
ω − eV

eβ(ω−eV ) − 1
. (2.145)



2.4 Cotunneling and connection to the Feynman-Vernon influence functional 73

In this way, γjl can be expressed as a weighted average of the “influence functional”
at different possible energy transfers ω:

γjl = 2πDLDR

∫

dω S(ω)

∫ ∞

0

dτ>dτ<e−i(εl−εF )τ>+i(εj−εF )τ<

Flj[τ
>, τ<, ω]

= DLDR

∫

dω S(ω)

∫ ∞

0

dτ>dτ< e−i∆lτ
>+i∆jτ<

∫ +∞

−∞
dt eiωteKlj [τ

>,τ<,t] (2.146)

At T = 0, we have S(ω) = 0 for ω > eV , since the electron cannot supply more energy
than provided by the bias voltage. At ω < eV , we get S(ω) = eV − ω, favoring smaller
energy transfers. The case ω < 0 is irrelevant, since the bath cannot feed energy to the
electron at zero temperature, it can only be excited by the electron.

As has been explained above, the backward tunneling rate Γ−pp can be obtained by
interchanging L with R in the expression for Γ+

pp. In terms of Eq. (2.141), this means
that Aj is to be replaced by A∗j (see Eq. (2.142)). Furthermore, by assuming fR(ε, V ) =
fL(ε,−V ) and renaming εL into εR in Eq. (2.143), we find that γjl is to be replaced by
γjl[V 7→ −V ]. Therefore, we have for the total tunneling rate:

Γ = Γ+
pp − Γ−pp =

∑

j,l

A∗jAl(γjl − γlj[V 7→ −V ]) ≡
∑

j,l

A∗jAlγ
tot
jl . (2.147)

In expression (2.146) for γjl, the bias voltage only enters S(ω).
This concludes our general discussion of dephasing in cotunneling transport. In the

remainder of this section, we discuss a few special cases, in which the structure of the
general results may be simplified.

First of all, if l 6= j and F̂l, F̂j are independent, we have Klj = Kjl = 0, such that the
exponent Klj[τ

>, τ<, t] becomes Kll(τ
>) +Kjj(−τ<). Therefore, Eq. (2.146) reduces to:

γjl = 2πDLDRS(0)GR∗
jj (εF )GR

ll (εF ) , (2.148)

where GR
jj(εF ) is the Fourier transform of the level’s retarded Green’s function, eval-

uated at the Fermi level (see Eq. (2.27)). However, for l = j, the expression cannot be
simplified in this way. Therefore, S(ω) at ω 6= 0 will enter the expression for γll, effectively
enhancing the terms l = j over the interference terms l 6= j.

There are two cases in which definitely no dephasing occurs: Either the bath cannot
distinguish between different paths (F̂l = F̂j), or there is not enough energy to be trans-
ferred, such that the electron cannot leave a trace in the bath. In both cases, perfect
destructive interference will not be lifted, provided both the initial energies and the cou-
pling strengths have been symmetric for the different paths. In contrast, the cotunneling
current at any point away from perfect destructive interference will be altered and no
conclusion about the presence or absence of dephasing could be drawn from that fact.

In the first case, F̂l = F̂j, one obtains γll = γlj = γjl = γjj, if ∆l = ∆j. Therefore,
the common factor γll can be pulled out of the sum in Eq. (2.141), and the destructive
interference, with

∑

l Al = 0, is preserved regardless of coupling strength.
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Figure 2.12: Inelastic cotunneling (with respect to coupling to the bath): Emission of a bath
“phonon” of frequency ω leads to an incoherent contribution to the tunneling current, where the
destructive interference between the two paths shown here is lost. The probability of emission

depends on the bath spectrum
〈

F̂lF̂j

〉

ω
.

The other case, where the electron cannot pass any energy into the bath, may be
discussed by assuming a bath with an energy gap much larger than the available energies.
In this case, only ω = 0 contributes, such that initial and final bath states are the
same. Consequently, the influence functional (2.137) and γjl (2.143) factorize into separate
contributions from the two states j and l, again leading to Eq. (2.148), now also for l = j.

This means that the complete rate Γ+
pp can be written in the form

Γ+
pp = 2πDLDRS(ω = 0)

∣

∣

∣

∣

∣

∑

l

AlG
R
ll (εF )

∣

∣

∣

∣

∣

2

. (2.149)

This corresponds to the result without coupling to the bath, but with renormalized
amplitudes. Again, this means that destructive interference is preserved, if both the initial
energies as well as the coupling to the bath have been symmetric for all the levels, or for
pairs of levels l, j with Al = −Aj. In that case, from εl = εj, Jll = Jjj and Kll = Kjj, we
have GR

ll = GR
jj, such that the sum over amplitudes still vanishes.

2.4.5 Perturbative evaluation of the cotunneling rate

Although evaluation of the cotunneling current has been reduced to integrations via Eqs.
(2.133), (2.147), and (2.143), these usually cannot be carried out analytically, even when
the expression for the exponential exp(Klj[τ

>, τ<, t]) is known explicitly (see Appendix
A.4 for the Ohmic bath). Therefore, in this section, we will evaluate Γpp to first order in
the coupling to the bath. We use Eq. (2.146) for γjl as a starting point and expand the
exponential up to first order in Klj. The 0th order expression gives
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γ
(0)
jl = 2π

DLDR

∆l∆j
S(0) . (2.150)

Note that the energy differences, as defined in Eq. (2.144), still contain the level shift

−Jll induced by coupling to the bath, such that γ
(0)
jl contains higher order contributions

of the system-bath coupling, which have to be combined with those from γ
(1)
jl (see below).

The first order γ
(1)
jl (with respect to the exponential) is found with the help of Eq.

(2.133) for Klj[τ
>, τ<, t]. We denote by Kjl(ν) the Fourier transform of Kjl(t) (see Eq.

(2.25)):

Kjl(t) =

∫

dν e−iνtKjl(ν)

Kjl(ν) =

〈

F̂lF̂j

〉

ν

ν2
− δ(ν)

∫

dω

〈

F̂lF̂j

〉

ω

ω2
. (2.151)

Then, the integrations over τ>, τ<, t in Eq. (2.146) (or Eq. (2.143)) yield:

2πδ(ω)

∫

dν

{

Kjj(ν)

(∆j + ν)∆l
+

Kll(ν)

(∆l + ν)∆j

}

+

2πKjl(ω)
ω2

∆l(∆l + ω)∆j(∆j + ω)
. (2.152)

From the expression (2.151) for Kjl(ν), we find:

∫

dν
Kll(ν)

∆l + ν
= −

∫

dν

〈

F̂lF̂l

〉

ν

ν∆l(∆l + ν)
. (2.153)

Since we want to use Eq. (2.146) for γjl, where S(ω) has been introduced by approx-
imating εL ≈ εR, we have to set ∆l + ω ≈ ∆l for consistency of the approximation. In

that case,
〈

F̂ F̂
〉

ν
in (2.153) may be replaced by the zero-temperature correlator, since

the frequency-symmetric finite temperature contribution (see Eq. (2.26)) cancels. This
leads to the expression (2.14) for the energy shift Jll. Furthermore, we replace ω2Kjl(ω)

in (2.152) by
〈

F̂jF̂l

〉

ω
(see Eq. (2.151)), since the δ-peak at ω = 0 is suppressed. Thus:

γ
(1)
jl = 2π

DLDR

∆j∆l







−S(0) (
Jll

∆l
+
Jjj

∆j
) +

∫

dν S(ν)

〈

F̂jF̂l

〉

ν

∆j∆l







. (2.154)

In combining this with (2.150), we set ∆j ≡ ∆j0−Jjj, where ∆j0 is the energy barrier
without coupling to the bath. Then it is found that the terms involving Jjj cancel:
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There is no change in the cotunneling rate due to the shift in level energies (in the order
considered here). The reason for this is that the level shape is distorted in such a way
that the center-of-mass of the DOS remains at the same place, in spite of coupling to the
bath [Wingreen88]. Therefore, the expression for γjl, up to first order in the system-bath
coupling, is given by:

γjl = 2π
DLDR

∆j0∆l0







S(0) +

∫

dν S(ν)

〈

F̂jF̂l

〉

ν

∆j0∆l0







. (2.155)

The second term in Eq. (2.155) describes dephasing due to inelastic cotunneling. Note
that it is the correlator of the fluctuations F̂j themselves which enters this expression. This
is in contrast to the P (E) results for sequential tunneling, where the phase-correlators

appear, with Kjl(ω) =
〈

F̂jF̂l

〉

ω
/ω2 (at ω 6= 0). Therefore, the Ohmic bath (and any

bath with a finite energy renormalization, i.e. exponent s > 0) yields a finite result in
this order of perturbation theory for the cotunneling rate.

This conclusion is not changed if the replacement ∆l +ω 7→ ∆l is not performed, since
it is the low-frequency behaviour which matters. Note that at finite temperatures there
may be a divergent contribution from a second-order pole in the integration over the term
involvingKjl(ω) in Eq. (2.152), at ω = −∆l (for l = j). This corresponds to the possibility
of real transitions onto the level (induced by the bath), which we neglect together with
sequential tunneling, assuming these contributions to be, in fact, exponentially small for
sufficiently low temperatures and voltages (i.e. the pole will be cut off by a finite tunneling
rate).

The cotunneling current may be evaluated by inserting the expressions for S(ω) and
〈

F̂jF̂l

〉

ω
into Eq. (2.155) and using Eq. (2.147). This will be carried out below, for a

situation involving two levels.

2.4.6 Interference in cotunneling through a double-dot

We take up again the model of tunneling through two single-level dots, introduced in
Section 2.3 (but we will use the notation of the preceding sections on cotunneling). The
energies and coupling strengths are symmetric, but there is a possible phase difference
between the transmission amplitudes through the two dots (the two “arms of the inter-
ferometer”):

A+ = A, A− = eiϕA . (2.156)

Therefore, the total cotunneling rate is (cf. Eq. (2.147)):

Γ = 2|A|2(γtot
++ + γtot

+− cos(ϕ)) . (2.157)
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Figure 2.13: The function f(eV/T ), which is essentially the incoherent cotunneling rate Γϕ=π ∝
T s+2f(eV/T ), according to Eqs. (2.158) and (2.162). At low bias voltages (eV < T ), there
is a finite incoherent contribution to the linear conductance, while at higher bias voltages the
zero-temperature behaviour Γϕ=π ∝ (eV )s+2 (2.160) applies.

Here we have already made use of the symmetry which leads to γ++ = γ−− and
γ+− = γ−+. No electronically inelastic processes can occur in this model, since double-
occupancy is forbidden.

As the bath fluctuations couple to the two dots with opposite sign, F̂+ = F̂ and

F̂− = −F̂ , we have to insert
〈

F̂+F̂+

〉

ω
=
〈

F̂ F̂
〉

ω
= −

〈

F̂+F̂−

〉

ω
into the perturbative

result (2.155). Using the relation (2π)2DLDR |A|2 ≡ ΓLΓR for the bare tunneling rates
ΓL,R through the two junctions, we can express the result as

Γ =
ΓLΓR

π∆2
0

( (1 + cosϕ)eV+

(1 − cosϕ)
1

∆2
0

∫

dν(S(ν) − S−(ν))
〈

F̂ F̂
〉

ν
) , (2.158)

where S−(ν) ≡ S(ν)[V 7→ −V ], and we have used S(0)− S−(0) = eV , which holds at
any temperature.

We will now evaluate the “incoherent” contribution to the cotunneling current, i.e.
the integral in Eq. (2.158), for power-law bath spectra of the form given in Eq. (2.64),
i.e.:

〈

F̂ F̂
〉T=0

ω
= 2αωc

(

ω

ωc

)s

θ(ω)θ(ωc − ω) . (2.159)

At zero temperature, we obtain an incoherent contribution to the rate that rises as
V s+2 (assuming eV < ωc):
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∫

dν S(ν)
〈

F̂ F̂
〉

ν
=

∫ eV

0

(eV − ν)
〈

F̂ F̂
〉T=0

ν
= 2αω3

c

(

eV

ωc

)s+2
(

(s+ 1)−1 − (s+ 2)−1
)

.

(2.160)
In contrast, the current at constructive interference is linear in the bias voltage V .

Therefore, the incoherent contribution is suppressed compared to the coherent one at
small bias voltages, the ratio being given by:

Γϕ=π

Γϕ=0
= 2α

ω2
c

∆2
0

(

eV

ωc

)s+1

((s+ 1)−1 − (s+ 2)−1) . (2.161)

Thus, in the linear cotunneling conductance, no “zero-temperature dephasing” is ob-
served in that case. The electron does not have enough energy to supply to the bath,
which it would have to do in order to leave a trace with appreciable probability. In par-
ticular, this holds also for the Ohmic bath (s = 1), which shows anomalous behaviour
for the case of sequential tunneling (see Section 2.3). Note that the dependence of the
incoherent current on the bias voltage V for s = 1 is like that for electronically inelastic
cotunneling through an island with many levels [Averin92], although physically the two
situations are of course different. Roughly speaking, the bath spectrum appears two pow-
ers in frequency less strong for cotunneling than for sequential tunneling. The physical
reason for the difference between sequential and co-tunneling is that in the former case
the bath is permitted an infinite amount of time (more precisely, ∼ Γ−1) to relax in the
presence of the particle, while co-tunneling is more similar to a scattering situation, where
the interaction only lasts a short amount of time (∼ ∆−1).

At finite temperatures, we cannot evaluate the integral in Eq. (2.158) in closed form
any more. However, in the limit of large bath cutoff (ωc � T, eV ), we can express it as

∫

dν(S(ν) − S−(ν))
〈

F̂ F̂
〉

ν
= β−(s+2)f(βeV ) , (2.162)

with f(x) an odd function of its argument (see Eqs. (2.145) and (2.26)):

f(x) ≡
∫

dy

{

y − x

ey−x − 1
− y + x

ey+x − 1

} |y|s
|e−y − 1| . (2.163)

Therefore, the incoherent cotunneling rate rises as T s+1V , for small voltages at finite
temperatures (eV � T ), compare Fig. 2.13.

2.5 Dephasing by correlated two-particle tunneling

Up to now, we have treated tunneling only in leading order. In this section, we will briefly
discuss one example of an effect that becomes important for stronger tunnel coupling.

The gapped bath has been a particularly transparent example, since any incoherent
current (that would lift perfect destructive interference) is completely suppressed below
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Figure 2.14: Top: At ϕ = π, tunneling from the even state |e〉 to the right lead (or from |o〉
to the left lead) is possible only via simultaneous excitation of the bath (dashed lines), such
that destructive interference remains perfect for a gapped bath at low V , in leading order of the
tunneling. Bottom left: Streamlined model for dephasing via correlated two-particle tunneling,
where a spin is flipped in the intermediate state. Bottom right: Energy diagram (see text).

the threshold ω of the bath spectrum, both in sequential tunneling and cotunneling. The
interpretation has been straightforward: For dephasing to take place, the electron has to
leave a trace in the bath, which it cannot do if the bias voltage does not provide enough
energy to excite a bath oscillator.

For the case of the double-dot, this result can also be understood by rewriting the
tunnel Hamiltonian V̂ ′ (2.76) in terms of the operators d̂e(o) of the even and the odd state
(at destructive interference, ϕ = π). We get for the left (right) junction:

eiφ̂d̂+ ± e−iφ̂d̂− =
1√
2
((eiφ̂ ± e−iφ̂)d̂e + (eiφ̂ ∓ e−iφ̂)d̂o) . (2.164)

At T = 0 and eV < ω, tunneling processes do not lead to an excited bath state.
Therefore, the matrix elements entering the tunneling rates are obtained by taking the
expectation value with respect to the bath ground state |χ0〉 in Eq. (2.164). This leads

to the renormalization of tunneling amplitudes for the terms with eiφ̂ + e−iφ̂, while the
expectation value of eiφ̂ − e−iφ̂ vanishes completely. Therefore, no current can flow, since
the even state still couples only to the left lead, while the odd state couples to the right
lead (see Fig. 2.14).

It may be argued that this picture is incomplete. Imagine an electron goes through
the setup, leaving behind an excited bath state. Shortly thereafter, a second electron also
passes from the left to the right lead, de-exciting the bath on its way. Both electrons
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have been able to overcome destructive interference, since it is no longer the expectation
value with respect to the ground state of the bath which determines the tunnel matrix
elements. Nevertheless, after completion of the whole process, the energy is conserved.
In fact, this qualitative argument shows that a finite incoherent current will flow also for
bias voltages below the bath threshold, by a process of correlated two-particle tunneling,
where a “virtual trace” is left in the bath for a short time. This is a feature that is, of
course, absent in discussions of dephasing based on a single-particle picture (augmented,
perhaps, by the Pauli blocking constraint).

However, in the following we will show in a streamlined model that this dephasing
process does not lead to finite dephasing in the linear conductance (at T = 0), since it
corresponds to a sort of two-particle scattering process, where the phase space of final
states is severely restricted for low bias voltages. In other words, the probability of
a second electron passing through the setup shortly after the first one diminishes very
rapidly for decreasing V .

The simple model consists of two tunnel-coupled leads (without dots in-between),
where tunneling depends on excitation of a spin (playing the role of the bath), see Fig.
2.14. That is, we take the tunnel Hamiltonian to be

V̂ = g
∑

r,l

â†Rrσ̂xâLl + h.c. , (2.165)

where we have already neglected any dependence of the tunnel matrix elements on the
lead states l, r in the left and right lead. The spin has the Hamiltonian

ĤB =
ω

2
σ̂z , (2.166)

such that it corresponds to a bath with a threshold ω. By comparing (2.165) with
(2.164), it is seen that this model captures the essential feature: Tunneling is blocked in
lowest order if the bath cannot be excited (since then only the expectation value of σ̂x

contributes, which is zero) .
Now we calculate the tunneling rate in second-order perturbation theory, employing

the Golden Rule expression (2.126). In the present case, the final state |f〉 is specified by
the two states of the right lead r1, r2 which have become occupied, and the two states of
the left lead, l1, l2, which have been emptied (see Fig. 2.14). In the intermediate state
|ν〉, the spin has been flipped to its excited state. There are four possible combinations
of intermediate electronic states, depending on whether l1 or l2 has been emptied and
whether r1 or r2 has been occupied. Adding the four contributions in the sum over |ν〉,
and taking into account properly the fermionic signs, we get

2gω

{

1

ω2 − (εr1 − εl1)
2
− 1

ω2 − (εr1 − εl2)
2

}

≈

2g

ω3

{

(εr1 − εl1)
2 − (εr1 − εl2)

2
}

, (2.167)
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where we have omitted a possible overall sign depending on the states. The approxi-
mation in the second line holds for bias voltages much smaller than the bath threshold,
i.e. the energy differences much smaller than ω. Squaring this result and summing over
all possible final states, we get for the total rate (of this two-electron tunneling process):

Γ = 2π
|g|2
ω6

DLDR

∫ eV

−∞
dεl1dεl2

∫ ∞

0

dεr1dεr2

[

(εr1 − εl1)
2 − (εr1 − εl2)

2
]2
δ((εl1 + εl2) − (εr1 + εr2)) . (2.168)

After performing the substitution εr1 = eV ε′r1
etc., this is seen to rise as V 7, i.e. with

a very high power of the bias voltage, due to the restriction of final states (and the partial
cancellation in the sum over intermediate states shown above).

Nevertheless, this example demonstrates that arguments based on single-particle physics
are to be employed with caution, and that a nonperturbative investigation into the physics
of these models at stronger tunnel coupling may be interesting.

2.6 Conclusions

We have analyzed dephasing in model situations of tunneling through localized levels cou-
pled to a bath. The disappearance of perfect destructive interference in a symmetric setup
has been taken as a criterion for “genuine” dephasing, as opposed to mere renormalization.
The coupling to the bath has been taken into account exactly, via the “independent boson
model” and the concepts of the “P (E) theory” of tunneling in a dissipative environment,
while the tunnel coupling has been treated perturbatively.

In particular, we have considered a symmetric double-dot setup of two single-level
quantum dots with a fluctuating energy difference between the dots.

For the case of sequential tunneling, we have discussed in detail the behaviour of the
density matrix of a single electron that has been placed in a superposition of the two dot
levels. The bath measures (to some extent) the position of the electron, such that the elec-
tron’s density matrix becomes mixed. However, this allows direct conclusions about the
“incoherent current” only in the limit of high bias voltages, corresponding to a fast “pro-
jection” measurement of the electron’s state. For lower voltages, only the low-frequency
part of the bath spectrum contributes to the lifting of destructive interference. Thus, for
any “weak bath”, whose spectrum falls off fast towards low frequencies, the visibility of
the interference effect becomes perfect in the limit of low bias voltages V and tempera-
tures T , when the energy supplied to the electron is vanishingly small. This is the case
for a fluctuation spectrum ∝ ωs with s > 1 (s > 2) for T = 0 (T > 0). The visibility may
show a nonmonotonous behaviour as a function of bias voltage. For “stronger” spectra
(smaller exponent s), including the Ohmic bath (s = 1), there is the well-known zero-bias
anomaly (suppression of the tunneling current at low voltages), which affects equally both
the cases of constructive and destructive interference. Therefore, the visibility vanishes
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exactly at any bias voltage in our approach, where the tunnel coupling has been treated
only in leading order. Although there is always a suppression of the magnitude of the
tunnel current for the case of constructive interference, this may be interpreted as a mere
renormalization of the effective tunnel-coupling, since the perfect destructive interference
is not affected and since it occurs even for a bath with an excitation gap. The full depen-
dence of the sequential tunneling current I(ϕ) on voltage, temperature, bath spectrum
and phase difference ϕ between the interfering paths has been derived by setting up a
master equation for the state of the double-dot (which is special due to the degeneracy of
dot levels).

For the case of cotunneling, the density matrix is not the appropriate quantity to look
at. Rather, we have rewritten both the two-particle Green’s function and the expressions
for the cotunneling rates in terms of the overlap between bath states that have evolved
under the action of an electron passing through either of two localized levels. This has en-
abled us to make contact with the Feynman-Vernon influence functional and to show how
this may be modified in a situation where Pauli blocking (of final states in the tunneling
process) becomes important. We have offered a general discussion of dephasing in co-
tunneling for the independent boson model, pointing out situations where the destructive
interference remains perfect in spite of coupling to the bath and the resulting renormaliza-
tion effects. The general expressions for the current (exact in the system-bath coupling)
have been evaluated perturbatively, showing that the bath spectrum itself replaces the
phase correlators which had entered the calculation in the case of sequential tunneling.
At T = 0, the incoherent current rises as V s+2, such that the visibility always becomes
perfect at low bias voltages (for any bath that does not lead to an infinite renormalization
of level energies, s > 0). Physically, this difference comes about because cotunneling cor-
responds more to a scattering situation with respect to the interaction between electron
and bath, since the electron only stays on the central island for a short amount of time.

Finally, we have briefly discussed an example where the changes expected for stronger
tunnel coupling show up. Dephasing (i.e. the appearance of an incoherent current at
destructive interference) is possible even below the threshold of a bath. This is due to
a process of correlated two-particle tunneling, where the first electron passing through
the setup leaves a “virtual trace” that is erased by the second electron, such that energy
conservation is fulfilled. However, this process is severely suppressed at low bias voltages.

These calculations may serve as illustrative examples of the difference between the
“optics” type of interference experiments (employing single particles), in which the semi-
classical approximation and/or the usual Feynman-Vernon influence functional may be
applied to discuss dephasing, and the linear-transport interference experiments encoun-
tered in mesoscopic physics, in which special care has to be taken in the analysis of
dephasing at low temperatures.



Chapter 3

Aharonov-Bohm ring with

fluctuating magnetic flux

3.1 Introduction

One of the simplest mesoscopic interference effects is realized in the Aharonov-Bohm ring
geometry, where a magnetic flux threading the ring induces an additional geometric phase
for electrons moving around the ring [Imry97]. There are actually two distinct versions
of the effect in mesoscopic physics: In a clean sample, the Aharonov-Bohm phase leads
to persistent currents and to a contribution to the transmission through the ring which
is periodic in the flux, with period Φ0 = hc/e. In an ensemble of diffusive samples,
this contribution is lost due to the random phases introduced by the elastic scatterers.
However, the interference of two paths that wind around the ring completely, instead
of only halfway, is insensitive to these phases, such that a contribution at period Φ0/2
survives.

In the following, we will describe a simple theoretical toy model for dephasing in such
a geometry. The ring is assumed to be clean and we will consider only one transverse

��

Figure 3.1: The model situation: A fluctuating flux leads, via a time-dependent vector potential,
to a fluctuating force for the electrons on the Aharonov-Bohm ring. This results in dephasing
of the electronic motion, among other effects.
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channel, i.e. a purely one-dimensional situation. Dephasing is brought into the picture by
fluctuations of the magnetic flux threading the ring (see Fig. 3.1). As in previous sections,
these fluctuations are not treated as random classical noise, but rather as deriving from a
linear bath. In fact, this model may be viewed as a version of the Caldeira-Leggett model
of Quantum Brownian motion, generalized to a situation involving more than one particle.
In addition, the force derives from a vector potential, rather than a scalar potential. That
is why we start our discussion in the next section with a brief review of Quantum Brownian
motion in the vector gauge.

Recent experimental investigations of dephasing in Aharonov-Bohm setups ( [Hansen01,
Kobayashi02]) have dealt with open geometries rather than the tunneling transport which
we will treat below. In addition, it is probable that the most important dephasing mech-
anisms in these experiments will have been electron-electron or electron-phonon scatter-
ing, such that our results cannot be applied in their interpretation. On the theoretical
side, early investigations of dephasing in a mesoscopic Aharonov-Bohm ring have dealt
with coupling to completely phase-incoherent electron reservoirs [Büttiker85]. The single-
particle version of the present model has been considered before, in [Park92], with coupling
to an Ohmic bath (corresponding to 1/f fluctuations of the flux, see below). It was con-
cluded that persistent currents in a normal metal ring would be destroyed completely
under these circumstances because of the velocity-proportional friction. The possibility
of spontaneous persistent currents due to the zero-point fluctuations of the electromag-
netic field was investigated (and ruled out) in [Loss93], using a Luttinger liquid picture
for the electrons and taking into account their electromagnetic self-interaction. Dephas-
ing of a single electron going around the two arms of an Aharonov-Bohm ring has been
considered both in [Loss91], using the influence functional, and in [Stern90], using a semi-
classical picture. In the latter article, the connection between phase fluctuations and the
trace left by the system in the environment was emphasized (compare the introduction in
Chapter 1). In [Büttiker01, Cedraschi00, 01] a ring containing a single quantum dot with
fluctuating gate voltage was considered and the properties of the quantum-mechanical
ground state were found, with particular emphasis on the low-temperature behaviour of
the persistent current. An analysis of a mesoscopic Mach-Zehnder type interference setup
(albeit restricted to higher temperatures) is given in [Seelig01]. Cotunneling through a
Luttinger liquid Aharonov-Bohm ring (without coupling to an external bath) has been
treated in [Rollbühler00].

Note that we deviate from the notation (and, in some parts, the methods of solution)
from [Marquardt02a], where the work reported in this chapter has been published already.

3.2 Caldeira-Leggett model in vector potential gauge

We start from the Hamiltonian describing a free particle whose coordinate q̂ is coupled
in a translationally invariant way to a bath of harmonic oscillators [Caldeira83, Hakim85,
Weiss00]:
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Ĥ =
p̂2

2m
+
∑

j

MjΩ
2
j

2
(q̂ − Q̂j)

2 +
∑

j

P̂ 2
j

2Mj
. (3.1)

When the square is expanded, we obtain three terms - a coupling between q̂ and a
fluctuating force F̂ , the potential energies of the bath oscillators, and a parabolic potential
in q̂ that serves as a counter-term for the bath-induced destabilizing potential:

1

2
q̂2

(

∑

j

MjΩ
2
j

)

− F̂ q̂ +
∑

j

MjΩ
2
j

2
Q̂2

j , (3.2)

with

F̂ =
∑

j

MjΩ
2
j Q̂j . (3.3)

Note that F̂ has been used to denote a fluctuating potential (dimension of energy) in
previous sections, while in this section it denotes a fluctuating force. We want to describe
the force as deriving from a vector potential, instead of the scalar potential in (3.2):

F̂ = −e
c

d

dt
Â , (3.4)

where the time-derivative is understood with respect to the unperturbed time-evolution
of the bath oscillators. This means that the power-spectrum of Â is related to that of the
force via (see below for the meaning of the superscript (0))

〈

ÂÂ
〉(0)

ω
=
(c

e

)2 1

ω2

〈

F̂ F̂
〉

ω
, (3.5)

and Â may be written explicitly as

Â =
c

e

∑

j

P̂j . (3.6)

The transition from scalar to vector potential in the Hamiltonian is accomplished by
the gauge transformation with generator

χ̂ = −e
c
q̂Â , (3.7)

which leads to

Ĥ ′ = e−iχ̂Ĥeiχ̂ =
1

2m
(p̂− e

c
Â)2 +

∑

j

P̂ 2
j

2Mj
+
MjΩ

2
j

2
Q̂2

j . (3.8)

The transformation used here has been applied to Quantum Brownian motion in
[Hakim85]. Again, the detailed expression for Â in (3.6) and the explicit form of the
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bath hamiltonian in (3.8) are not needed to describe the dissipative system dynamics. It
is enough to know the correlator (3.5), since we are dealing with a linear bath.

In the vector-potential gauge, the dynamical momentum p̂ of the particle is a constant
of the motion. All the effects induced by the bath, such as fluctuations, mass renormaliza-
tion and, possibly, friction, are visible only in the behaviour of the kinematical momentum
p̂− e

c
Â, i.e. the velocity.

Mass renormalization and friction can be analyzed in this picture if we imagine the
particle to be given a kick at time t = 0, such that its momentum p jumps from zero to
a finite value. Then, the subsequent time-evolution of the average velocity is governed
by the response of the vector potential to the perturbation −(pe/mc)Â, which has been
switched on at t = 0. According to Kubo, it is given by

〈

Â
〉

(t) =
ipe

mc

∫ t

0

ds
〈[

Â(t), Â(s)
]〉

, (3.9)

which may be written in terms of the bath spectrum:

〈

Â
〉

(t) =
2pe

mc

∫ ∞

0

dω
〈

ÂÂ
〉T=0

ω

1 − cos(ωt)

ω
. (3.10)

However, in this formula, it is not the spectrum
〈

ÂÂ
〉(0)

ω
which enters, but rather the

spectrum of Â that derives from the combination of the bath Hamiltonian in Eq. (3.8)
with the quadratic term from the kinetic energy:

Ĥ ′B =
e2

2mc2
Â2 + ĤB . (3.11)

Although this Hamiltonian is still quadratic, the (classical) eigenfrequencies and eigen-

vectors are changed. It is shown in Appendix A.5 how the spectrum
〈

ÂÂ
〉

ω
is obtained

in terms of the original spectrum
〈

ÂÂ
〉(0)

ω
:

〈

ÂÂ
〉T=0

ω
=

1

2πC
Im




















4C

∫ ∞

0

dν

〈

ÂÂ
〉(0)T=0

ν
ν

ω2 − ν2 − i0+







−1

− 1















−1

. (3.12)

Here the constant C is the prefactor of Â2 in Eq. (3.11), C = e2/(2mc2). For C → 0,
the influence of the extra term in the bath Hamiltonian vanishes, and we recover the orig-
inal spectrum by expanding Eq. (3.12). The same holds in the limit of weak fluctuations
〈

ÂÂ
〉(0)T=0

ν
(small system-bath coupling). However, these remarks only apply to original

bath spectra that are comparatively “weak” at low frequencies, i.e. where
〈

ÂÂ
〉(0)T=0

ν
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does not diverge. Otherwise, the spectrum under the integral does not become uniformly
small when the prefactor determining the strength of the bath is sent to zero.

The last remark applies in particular to the Ohmic bath, which leads to Quantum
Brownian motion. For that kind of bath, the force spectrum is

〈

F̂ F̂
〉T=0

ω
=
η

π
ωθ(ωc − ω)θ(ω) , (3.13)

which results in a divergent original spectrum of the vector potential,
〈

ÂÂ
〉(0)T=0

ω
∝

ω−1. Nevertheless, upon insertion into (3.12), the effective spectrum is found to rise
linearly in ω at low frequencies. For ω � ωc, we obtain

〈

ÂÂ
〉

ω
≈
(c

e

)2 η
π
ω

γ2 + ω2
, (3.14)

where the damping rate γ is related to the friction coefficient by γ = η/m. Thus, the
time-evolution of the average velocity is found from (3.10) as

〈v̂〉 (t) =
1

m
(p− e

c

〈

Â
〉

(t)) ≈ p

m
e−γt , (3.15)

which is the exponential decay due to friction that is expected for the Ohmic bath.
For bath spectra that are weaker at low frequencies, the velocity does not decay to

zero, but to a finite value, which is proportional to p. The constant of proportionality
may serve to define an effective mass, 1/meff . This can be found from (3.12), together
with the long-time limit of (3.10). It gives

1

meff
≡
p− e

c

〈

Â
〉

(t→ ∞)

mp
=

1

m
(1 − ζ) , (3.16)

with

ζ ≡ 2e2

mc2

∫ ∞

0

dω

〈

ÂÂ
〉T=0

ω

ω
. (3.17)

However, it is hard to see the most important properties from this formula, as the
relation to the original bath spectrum, Eq. (3.12), is relatively complicated. There is
another way to arrive at the effective mass: We minimize the total potential energy with
respect to Â, taking into account the terms from the kinetic energy of the particle (see

Appendix A.5). This yields
〈

Â
〉

(t → ∞) once again, from which we find the effective
mass:

1

meff
=

1

1 + ξ

1

m
, (3.18)

where
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ξ ≡ 2e2

mc2

∫ ∞

0

dω

〈

ÂÂ
〉(0)T=0

ω

ω
. (3.19)

Note that it is the original spectrum which enters here. By comparing (3.18) and

(3.16), we observe ζ = (1 + ξ−1)−1. If
〈

ÂÂ
〉

ω
is approximated as

〈

ÂÂ
〉(0)

ω
, one obtains

ζ = ξ and 1/meff = (1 − ξ)/m in Eq. (3.18).
In the case of the Ohmic bath, ξ diverges (ζ = 1) and the effective mass is infinite - the

low frequency behaviour is dominated by friction, not any longer by inertia. A physically
important example of a bath that does not lead to friction, but to a finite mass renormal-
ization, is provided by the zero-point fluctuations of the vacuum electromagnetic field. In
the dipole approximation, these correspond to a fluctuating spatially homogeneous force

acting on the electron. The power spectrum of these fluctuations rises as
〈

F̂ F̂
〉

ω
∝ ω3

at T = 0, which leads to
〈

ÂÂ
〉(0)

ω
∝ ω, making the effective mass finite. There is no

friction for this bath, since a charge will not radiate away energy unless it is accelerated.
A detailed discussion of the effects of different bath spectra in the Caldeira-Leggett model
for a free particle has been given in [Schramm87].

3.3 The model

The system of electrons on the ring is described by

Ĥ =
∑

p

d̂†p
(p− e

c
(Â+ Aext))2

2m
d̂p + ĤB . (3.20)

As usual, the Hamiltonian ĤB of the linear bath only enters via the fluctuation spec-

trum of the vector potential,
〈

ÂÂ
〉(0)

ω
. The classical, fixed vector potential Aext belongs

to an external static magnetic flux. The possible values of the electron momentum p are
quantized due to the finite circumference L of the ring: p = 2πn/L with an integer n. As

in previous sections, we have denoted the fermion operators on the ring as d̂
(†)
p .

No intrinsic interaction between the electrons has been taken into account, which
would lead to Luttinger-liquid physics in this one-dimensional situation. In addition, any
inductive self-interaction has been neglected. As we are interested in dephasing of the
electronic motion itself, we are dealing with spinless electrons.

In the previous section, it has been shown that, for a single particle moving on an
infinite line, a gauge transformation leads from the usual scalar potential coupling to the
form shown here. For the present geometry, this is the natural form that is compatible
with the periodic boundary conditions. It arises in a physical situation where the magnetic
flux threading the ring fluctuates, possibly because of the Nyquist noise of the current in
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an external coil. Note that we will not be able to deal with shot noise in our model, since
it is unclear how nonequilibrium noise should be treated within such a description.

The Nyquist noise of the current in the external coil is white noise at finite tempera-
tures, i.e. it has a constant power spectrum at low frequencies ω < T . Since the current
is proportional to the magnetic flux and, therefore, to the vector potential, the same can

be said about
〈

ÂÂ
〉(0)

ω
at T > 0. This implies that

〈

ÂÂ
〉(0)T=0

ω
must rise linearly at low

frequencies in order to describe Nyquist noise. The term “Nyquist noise”, in this context,
refers to something different from the Ohmic bath. The latter would lead to velocity-
proportional friction for the electrons on the ring. It is described by “1/f” fluctuations of

the flux, i.e. a spectrum
〈

ÂÂ
〉(0)T=0

ω
∝ 1/ω, as has been shown in the previous section.

Before we proceed, we will point out some simplifying features of this situation as well
as some important aspects of the dephasing problem in degenerate fermion systems that
are beyond the scope of this model.

The magnetic flux is assumed to thread the ring in such a way that the situation
is axially symmetric with respect to the axis which goes through the center of the ring
and is perpendicular to its plane. In this case, we can choose the gauge such that the
vector potential is everywhere tangential to the ring and of constant magnitude around
the whole circumference. The same holds for the fluctuating electric field, which is given
by the time-derivative of the vector potential.

Since the coupling between system and bath is via the momentum, which itself is a
constant of the motion for the original uncoupled electron system (“diagonal coupling”),
the Hamiltonian (3.20) (for constant particle number) is an instance of the “independent
boson model”, discussed at length in Section 2.2.2. This will lead to “pure dephasing”.
Some features of this model are therefore very simple: In spite of the interaction with
the bath, the momentum of a particle will stay constant, only its velocity and kinetic
energy can fluctuate. This simplifies the many-electron problem as well: Although the
fluctuating force influences the center-of-mass motion of the electrons and introduces some
kind of “effective interaction” between them, the occupation of different p-states cannot
be changed by the bath. Note that this simplification would be spoiled if one takes into
account impurities and/or a coupling that depends on the position. For example, the
latter would arise if one considered an arbitrary fluctuating electromagnetic field or the
electric field between the plates of a gate capacitor, which is a constant vector field in
space but is not constant with respect to its projection onto the direction of motion of the
electrons on the ring. Other situations where the coupling depends on position include
interaction with phonons or a localized spin on the ring. In addition, we cannot treat any
transport situation involving a strong coupling to external leads, since that would destroy
translational invariance as well.

Despite the effective interaction, the decay rates of Green’s functions will not show
any dependence on the distance to the Fermi surface, in contrast to the usual behaviour
of interacting Fermi systems. This is, again, due to the diagonal coupling between system
and bath, which means that there are no energy-relaxation processes which change the
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occupation numbers of the electrons and which would feel the restriction by the Pauli
principle. Considerations related to Pauli blocking occur in cotunneling through the ring
(compare Section 2.4). We will be able to discuss this issue further both in an exactly
solvable model of fermions in a damped oscillator (Chapter 4), as well as on a more general
basis (Chapter 5).

It must be emphasized that this model is a theoretical toy model, since it neglects
intrinsic interactions, and since the magnitude of the effects related to a fluctuating mag-
netic flux is very small under realistic circumstances (see below). It is designed to be the
simplest possible extension of Quantum Brownian motion to the many-particle case.

3.4 Qualitative semiclassical discussion of dephasing

in this model

At higher temperatures, we may use a semiclassical picture to describe dephasing of a
single electron traveling around the ring. Consider two wave packets traversing the left
and right arm of the Aharonov-Bohm ring with constant velocity v and meeting again after
some time t = L/ (2v) at the opposite end. The resulting interference pattern depends
on the total phase difference between the two paths. In a semiclassical calculation, the
phase difference is produced by the vA-term in the Lagrangian of the particle, and it is
given by

φ = 2
e

c

∫ t

0

v A(t′)dt′ . (3.21)

The factor 2 arises because the phases are equal up to a change in sign. A(t′) gives the
time-dependence of the fluctuating vector potential which is assumed (in this approxima-
tion) to be a classical Gaussian random process with zero mean, as in the introduction
of Chapter 1. The visibility of the interference pattern will be suppressed due to the
fluctuations in the phase φ. Since φ is a Gaussian random variable, we obtain for the
suppression factor

〈

eiφ
〉

= e−〈φ2〉/2 . (3.22)

The variance 〈φ2〉 of the phase is:

〈

φ2
〉

= 4
(ev

c

)2
∫ t

0

dt1

∫ t

0

dt2 〈A(t1)A(t2)〉 . (3.23)

If the traversal time t is much larger than the correlation time of the fluctuations in
A, we may apply the standard “Golden Rule” approximation introduced in Eq. (1.11),
which gives:

〈

φ2
〉

≈ t · 4
(ev

c

)2

· 2π 〈AA〉ω=0 . (3.24)
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The physical interpretation of this result is clear: The fluctuating electric field ∝ Ȧ
leads to a fluctuating velocity ∝ A, so that the random shift in the interference pattern is
∆x ∝

∫

A(t′) dt′. The interference pattern will be completely washed out once the spread
in ∆x becomes comparable to the wavelength λ ∝ 1/v. This coincides with the criterion
〈ϕ2〉 ≈ 1 (see also Section 3.6).

In particular, for the case of Nyquist noise (white noise in A at finite T ) we obtain
a finite “dephasing rate” that grows linearly with temperature. The dephasing rate will

vanish for v → 0. For a bath that is weaker at low frequencies (
〈

ÂÂ
〉

ω
∝ ωs with s > 1)

we do not obtain a suppression factor that decays exponentially with time, hence the
dephasing rate is always zero. For the Ohmic bath (1/f fluctuations of the flux), we should
insert 〈AA〉ω ∝ T/ω2, which leads to a divergent integral for the phase fluctuations. This
is because 〈A(t)2〉 = ∞ in that case, which also means the fluctuations of the velocity are
infinite. Therefore, we conclude that the simple semiclassical approximation employed
here breaks down, and we postpone the discussion to the selfconsistent treatment of
Section 3.6.

3.5 Effective mass, interaction and persistent current

The vector potential now couples to the center-of-mass momentum P̂ =
∑

p pn̂p. In

addition, the prefactor of the Â2-term changes into C = Ne2/(2mc2), as compared to
the single-particle case (for fixed particle number N). We may ask again for the center-
of-mass velocity which the system adopts in the long-time limit after the center-of-mass
momentum has been switched to a finite value P at time t = 0. This yields

V =
1

Nm
(P − e

c
N
〈

Â
〉

(t→ ∞)) =
P

Nm(1 +Nξ)
, (3.25)

where we have employed the definition of ξ in Eq. (3.19), but inserted the new value
of C, which leads to the factor of N in front of ξ. Therefore, the total mass M = Nm
increases to the effective value of

Meff = M(1 +Nξ) . (3.26)

The effective total mass Meff also determines the factor by which the persistent current
on the ring is reduced, as compared to the situation without coupling to a bath. If an
external static magnetic flux penetrates the ring, it produces an extra vector potential
Aext, such that the center-of-mass velocity is given by

V =
1

Nm
(P − e

c
N(
〈

Â
〉

(t→ ∞) + Aext)) , (3.27)

where P can only adopt quantized values and is chosen to minimize the total energy

(for the T = 0 situation, at fixed particle number N). In calculating
〈

Â
〉

(t → ∞), the

momentum P has to be replaced by P − e
c
NAext. As a result, we get
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V =
1

Meff
(P −N

e

c
Aext) , (3.28)

which is reduced by the factor Meff/M . Therefore, the persistent current I = NeV/L
is also changed by the same factor. In fact, since the argument given here does not rely
on the actual distribution of the particles over the individual momentum states (only
on P ), it holds also at finite temperatures (but fixed N), when an average over such
configurations has to be carried out:

〈

Î
〉

=
〈

Î
〉(0) M

Meff
. (3.29)

The magnitude of the reduction of the persistent current may be understood physically
in the following way: If one imagines suddenly switching on the external magnetic flux,
an electric field pulse will be produced, which, at first, freely accelerates the electrons
on the ring, leading to a current which is proportional to the number N of electrons.
This again produces a change in the magnetic flux which prompts a reaction of the bath
(e.g. the external coil producing the Nyquist noise). The back-action onto the electrons
deccelerates them, decreasing the velocity of each electron by an amount proportional to
N and depending on the coupling strength between the ring and the external coil, which
is contained in ξ. This leads to the reduction factor 1/(1 + ξN) obtained above.

We conclude that, in this model, the suppression of the persistent current may be
understood completely in terms of mass renormalization, where all the frequencies of the
bath contribute (see the expression (3.19) for ξ). The low-frequency properties of the bath
spectrum do not lead to any qualitative differences at this point, unless the effective mass

diverges, which happens for the Ohmic bath with
〈

ÂÂ
〉(0)T=0

ω
∝ 1/ω. This qualitative

independence of the bath spectrum is in contrast to the Green’s functions, whose long-time
behaviour depends drastically on the exponent of the bath spectrum at low frequencies
(see below).

It is not possible to ascribe the change in Meff to an increase of the single-particle
masses. Rather, there is an effective interaction between particles via the center-of-mass
momentum. We write the Hamiltonian (3.20) in the generic form (2.10) of the independent
boson model:

Ĥ =
∑

p

(εp −
ep̃

mc
Â)n̂p +

Ne2

2mc2
Â2 + ĤB . (3.30)

Here we have introduced the kinematic momentum p̃ ≡ p − eAext/c and the single-
particle energies εp ≡ p̃2/(2m). In addition, we have assumed a fixed particle number N ,

and the Â2-term should be combined with ĤB to form Ĥ ′B, leading to an effective bath

spectrum
〈

ÂÂ
〉

ω
(compare Section 3.2). We will remark on the case of variable particle

number N further below.
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After performing the unitary transformation introduced in (2.13), with the fluctuating
fields F̂p = −ep̃Â/mc (in the notation of the independent boson model, see Section 2.2.2),
we are led to the Hamiltonian describing the effective interaction between the particles
on the ring:

∑

p

εpn̂p −
ζ

2m

∑

p,p′

p̃p̃′n̂pn̂p′ + Ĥ ′B =

∑

p

εpn̂p −
ζ

2m
˜̂
P

2

+ Ĥ ′B , (3.31)

where the interaction constant ζ has been defined in Eq. (3.17), and
˜̂
P = P̂−eNAext/c.

The effective total mass can also be obtained from this formula, by rewriting the sum
over kinetic energies εp in terms of center-of-mass and relative momenta. Combining this
with the second term, we find 1/Meff = (1 − Nζ)/M , which is equal to (3.26), since
1 − Nζ = (1 + Nξ)−1 (using the results of Section 3.2, with C multiplied by N). Note
that the total kinetic energy given here is still positive (semi-)definite in the momenta, in

spite of the negative
˜̂
P

2

-term.
Damping and dephasing only affects the center-of-mass motion in this model, as the

bath couples to the total momentum P̂ . However, this fact is not easily visible in the
results for the Green’s functions or cotunneling transport (to be discussed below), when
properties of single particles play a role. We will analyze a similar situation in the case
of fermions in a damped harmonic oscillator (Chapter 4), where the center-of-mass coor-
dinate couples to a fluctuating force.

3.6 Two-particle Green’s function and dephasing

We can take over the results given in the section on the independent boson model in
order to discuss dephasing of the electronic motion on the ring, in terms of the two-
particle Green’s function. Essentially, of course, these are well-known results for the
single-particle case [Caldeira83, Hakim85, Schramm87], that are expressed in terms of the
two-particle Green’s function in our many-particle situation.

We have to remember to make use of the effective bath spectrum
〈

ÂÂ
〉

ω
, instead of

〈

ÂÂ
〉(0)

ω
. The dependence of

〈

ÂÂ
〉

ω
on N does not present any difficulties in this case,

since we are dealing with a process where the number of particles stays constant, only the
state of a single particle is changed. Then, according to Eqs. (2.34) and (2.35), we find

〈

d̂†p(t)d̂p′(t)d̂
†
p′(0)d̂p(0)

〉

=
〈

d̂†p(t)d̂p′(t)d̂
†
p′(0)d̂p(0)

〉

el
× e−(p−p′)2κ(t) , (3.32)
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where we have used (compare Eq. (2.25)):

Kpp′(t) = p̃p̃′
( e

mc

)2
∫

dω

〈

ÂÂ
〉

ω

ω2
(e−iωt − 1) ≡ −p̃p̃′ κ(t) . (3.33)

The result is physically very transparent. The strength of dephasing, as measured by
the decay of (3.32), is determined by the difference of momenta in the two states, (p−p′)2,
since the bath couples to the momentum of each particle. The real part of κ(t) can be
identified as

Reκ(t) =
1

2

( e

mc

)2
〈

(
∫ t

0

ds Â(s)

)2
〉

. (3.34)

Therefore, the exponential suppression factor exp[−(p − p′)2κ(t)] is just what one
expects for the suppression of the interference term exp[i(p − p′)x] in the probability
density for a superposition of plane wave states p and p′. This suppression is brought
about by the fluctuations ∆x̂ of the position, which are related to the fluctuating velocity:

∆x̂ ≡
∫ t

0

ds v̂(s) = − e

mc

∫ t

0

ds Â(s) . (3.35)

This yields

〈

ei(p−p′)∆x̂
〉

= exp

[

−1

2
(p− p′)2

〈

∆x̂2
〉

]

, (3.36)

which is equal to the factor derived above, in Eq. (3.32). Note that it is only the
symmetrized (fluctuation) part of the correlator of Â which enters these expressions.

The time-evolution of κ(t) for different bath spectra has been described already in
Section 2.2.5. In particular, for a spectrum that rises linearly at low frequencies (the
Nyquist noise introduced above),

(epF/mc)
2
〈

ÂÂ
〉T=0

ω
= 2αω1θ(ω) , (3.37)

we find exponential decay at finite temperatures, with a rate

1

τφ
= 2παT (p− p′)2/p2

F , (3.38)

and power-law decay at T = 0, of the form

(ωct)
−2α(p−p′)2/p2

F . (3.39)

Here the momentum pF has been introduced for dimensional reasons (to keep α a dimen-
sionless coupling constant); it could denote the Fermi momentum in the many-particle
situation.
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For the “Ohmic bath” with 1/f -fluctuations of the flux, the semiclassical approach of
Eq. (3.23) had failed, giving a divergent result due to the infinite variance of the vector
potential. However, if the “effective” spectrum of Â is used, the variance of Â and that
of the velocity is finite, because it is limited by the friction (which is neglected in the
semiclassical version). At T = 0, for Nγt� 1, one gets for the Ohmic bath the following
result (after taking into account the replacement Cnew = ColdN in the transformation
(3.12)):

Reκ(t) ≈ 1

N2ηπ
ln(Nγt) . (3.40)

This again leads to a power-law decay in time of the interference term, just as for
the Nyquist bath. However, physically the situation is quite different, since the Ohmic
bath leads to friction, which would (for example) slow down a moving interference pattern
(where p′ 6= −p), in contrast to the Nyquist bath.

We briefly comment on the relation of these results to the usual formulation for a
fluctuating scalar potential (see Appendix A.9 for the density matrix propagator of the
free particle subject to the Ohmic bath). Comparing the density matrix obtained in that
approach with the time-evolution discussed here, we note, first of all, that the smearing
of the velocity distribution is not visible here, since it is contained indirectly in the rela-
tion between the momentum and the velocity. However, this does not affect the correct
description of the decaying interference term. In fact, in the limit γt � 1, the results
for the exponential suppression factor obtained here and that obtained using the den-
sity matrix propagator (A.60) from Appendix A.9 coincide for an initial superposition of
plane wave states. A difference arises in the contribution from small times, since the usual
factorized initial conditions have been used in the appendix (implying no initial velocity
fluctuations), while the treatment given here is selfconsistent.

Further insight into the low-temperature behaviour in the case of Nyquist noise can be
obtained by using the analogy to the zero-point fluctuations of the vacuum electromag-
netic field. The Nyquist bath is characterized by a fluctuation spectrum of flux and vector
potential which is linear in ω (at zero temperature), therefore leading to a spectrum for
the electric field that behaves like ω3. This is exactly the spectrum of the zero-point fluc-
tuations of the electric field in vacuum. The main distinction between those fluctuations
and the Nyquist noise considered here is that the latter leads to a force which is ho-
mogeneous around the ring and therefore is compatible with the translational invariance
of our one-dimensional system of electrons. Furthermore, its magnitude depends on the
geometry and resistance of the external circuit producing the equilibrium current noise.

Free ballistic motion is not affected, since the radiation reaction force only acts on an
accelerated charge. Therefore, the populations of the electronic momentum eigenstates
do not decay, as we have already observed. Consequently, the system is not ergodic, since
the memory of the initial conditions is not lost completely. In a basis other than the
momentum basis, the off-diagonal elements of the density matrix show only partial decay.
That there is some decay of the coherences is connected to the smearing of the position
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of the particle in the course of time. Usually, this effect is neglected in the discussion
of dissipative quantum motion of a free particle under the influence of electromagnetic
vacuum fluctuations, since the ballistic expansion of an initially localized ensemble of
particles dominates. In our case, it is important, since, for example, a superposition of
two counterpropagating plane waves on the ring will first form a standing wave pattern,
whose visibility then gradually decreases (as discussed above). The fact that, at T = 0, the
decay of the visibility proceeds as a power-law (for Nyquist noise or vacuum fluctuations,
respectively) is also related to the results of an old semiclassical analysis of the Lamb-shift
due to Welton [Welton48, Milonni94]: The vacuum fluctuations of the electric field lead
to fluctuations of the electron position, such that the variance 〈∆x2〉 of its coordinate is
given by the logarithm containing the ratio of an upper cutoff-frequency (there taken to
be the Compton frequency) and a lower cutoff (the characteristic frequency of electron
motion around the nucleus). In our case, the lower cutoff frequency actually is given by
the inverse of the observation time, such that 〈∆x2〉 ∝ ln (ωct). As explained above, this
leads to complete decay of the interference pattern even at T = 0.

The discussion given above applies to a single particle as well as the many-particle
system considered here. However, we note that p − p′ is actually the difference of total
momenta in the two many-particle states that have been superimposed. A superposition
of many-particle states of total momentum zero would not be decohered by coupling to
the bath.

Although we have shown that the coherence decays as a power-law (for Nyquist noise
and the Ohmic bath) at T = 0, we do not label this as “zero-temperature dephasing”,
in the sense used in weak localization. This is because here we have been considering a
superposition of excited states of the system. In other problems of dephasing, such as
those encountered in weak localization, one usually discusses the limit of zero-frequency
response of the system to a small perturbation. A situation which comes closer to this
kind of question is the cotunneling setup discussed in the next section.

We will now briefly discuss the expected magnitude of the effect due to Nyquist noise in
an external current coil. If the equilibrium current fluctuations are produced by a single
current loop of resistance R, whose circumference is similar to that of the Aharonov-
Bohm ring (L) and which is placed about a distance L away, the dephasing rate at finite
temperatures (see (3.37), (3.38); evaluated for p− p′ ≈ pF ) is estimated to be

1

τφ
∼
(

e2

~c

)2
(vF

c

)2 kBT

R/RK
. (3.41)

Here vF is the Fermi velocity on the ring, R is the resistance of the external coil and
RK = h/e2 is the quantum of resistance. Both the square of the fine-structure constant
in front of the expression and the ratio of the Fermi velocity to the speed of light render
the effect very small under reasonable experimental conditions, where charge fluctuations
and phonons will be more important sources of dephasing.

Turning to other possible bath spectra, we note that the fluctuations of the vacuum
magnetic field have a weaker power-spectrum, which leads to 〈AA〉ω ∝ ω3 at T = 0,
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instead of 〈AA〉ω ∝ ω. The vacuum fluctuations of the electric field, however, do lead to
a linear spectrum in the vector potential fluctuations (see discussion above). On the other
hand, the electric field (at large wavelengths) is homogeneous only in free space, not with
respect to its projection onto the ring, where it has a position dependence cos (2πx/L).
Thus, the coupling is not diagonal in the momentum basis and is not included in our
model. If one estimates the order of magnitude of the corresponding “dephasing rate”
(inelastic transition rate), one arrives at τ−1

φ(em) ∼ (e2/~c) (vF/c)
2 (vF/L). Similarly, one

may estimate the strength of fluctuations due to shot-noise of the external current. In a
situation where the external current loop producing a static magnetic flux on the order
of ∼ Φ0 is identical with that where the Nyquist noise originates, the shot noise may lead
to an effective dephasing rate of τ−1

φ(shot) ∼ (e2/~c) (vF/c) vF/L, which may be much larger
than that due to the Nyquist noise. Note that shot noise cannot be described by our
model, since it (probably) cannot be represented by a bath of harmonic oscillators at low
temperatures. However, the effects of shot noise would be reduced in a different geometry
where the static component of the magnetic flux is produced by a larger current (with
correspondingly smaller relative magnitude of the shot noise).

3.7 Variable particle number

Up to now we have been dealing with a fixed number N of particles on the ring. However,
for tunneling transport, we have to consider a variable N . This raises the question of how
the term ∝ NÂ2 in the electrons’ kinetic energy should be treated. This term is not very
important for baths such as the Nyquist noise due to an external coil, since at least in the

limit of weak coupling we have
〈

ÂÂ
〉

ω
≈
〈

ÂÂ
〉0

ω
for the bath spectra calculated with

and without this term, respectively. On the other hand, as has been explained in Section
3.2, the Â2-term is crucial for describing correctly the friction induced by the Ohmic bath,

where the effective spectrum
〈

ÂÂ
〉

ω
does not diverge at low frequencies precisely because

of this term. There are two possibilities - either to leave away the coupling to the vector
potential for the electrons in the reservoirs or to keep it. If we take serious the model
of a fluctuating magnetic flux, only the latter possibility is realistic, since an electron
tunneling from the ring onto an electrode will still feel the fluctuating vector potential and
the corresponding electric field. Unfortunately, this results in several problems: Firstly,
it complicates severely the description of tunneling transport, since then the reservoirs
cannot be assumed as non-interacting any longer. Therefore, we choose to treat them as
free-electron reservoirs nevertheless, assuming that the most important physical effect of
the fluctuations is to dephase the electronic motion around the ring, while the coupling to
the reservoirs does not alter this effect in a qualitatively important way. If the electrodes
are clean wires projecting perpendicularly from the ring, the fluctuating electric field will
mainly affect the transverse motion of electrons inside these wires. Secondly, the spectrum
〈

ÂÂ
〉

ω
depends on the total number of electrons that couple to the fluctuating flux. This
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number will be increased effectively beyond the number of particles on the ring itself. The
vector potential decays as 1/r, such that the prefactor in front of the Â2 term contains
a contribution ∝

∑

j 1/r2
j due to the reservoir electrons, where rj denote their distances

from the center of the ring. This sum will even diverge if the electrodes are not (quasi-
)one-dimensional. There is a good physical reason for that, which may be understood
already in the picture of classical fluctuations of the magnetic flux: The total power
transferred to the electron reservoir by the fluctuating electric field would also diverge in
that case, unless the power-absorption is treated self-consistently, resulting in a screening
of the transverse electric field fluctuations (skin effect). As these considerations go far
beyond the purpose of the present toy model, we will not attempt a “realistic” description
of these aspects. Rather, in the following discussion we will assume the interaction with
the bath to be confined to the interference region, i.e. the ring itself. Even this assumption
leaves us with the problem that, when an extra electron hops onto the ring, the effective
bath spectrum is changed, since N 7→ N + 1. However, as has been explained above,
this is unimportant for the weak-coupling limit of bath spectra like that of the (physically
relevant) Nyquist noise, or “weaker” spectra. Therefore, it will not affect the perturbative
results concerning dephasing in the cotunneling current, to be derived below. It will play
a role for the Ohmic bath (1/f fluctuations of the flux), for which we cannot offer a
selfconsistent description of tunneling transport, for the reasons explained in this section.

3.8 Single-particle Green’s function

Tunneling of an electron from a single electrode onto the ring is described by the single-
particle Green’s function and the resulting DOS calculated in Section 2.2.3, provided the
Â2 term may be neglected. Then, we have:

〈

d̂p(t)d̂
†
p(0)

〉

=
〈

d̂p(t)d̂
†
p(0)

〉

el
e−p̃2κ(t) . (3.42)

We will now discuss briefly the temperature-dependence of the linewidth that results
from the average over electronic configurations contained in Eq. (3.42). The lineshape
(given by P (ω), see Section 2.2.3) is smeared over a certain range due to the average over
configurations with different total momenta P . The configuration-dependent energy shift
δEj has been defined in Eq. (2.21) as δEj = −2

∑

k 6=j Jkjnk − Jjj. In our model, we have

(see Eq. (3.31)) Jpp′ = (ζ/2m)p̃p̃′, such that δEp = −(ζ/m)p̃P̃ − Jpp, where P̃ is the
total (kinetic) momentum in the respective configuration. In a first approximation (to
lowest order in the system-bath coupling), we may neglect the influence of the bath on
the probability distribution of P̃ . Then, the resulting linewidth is given by

δω =
ζ

m
p̃δP , (3.43)

where δP =
√

〈P 2〉0 is the spread in total momentum, calculated for the original
free-electron system. We have 〈P 2〉0 = NmT and therefore a linewidth which increases
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with the square root of T :

δω ∝ ζ
√
T . (3.44)

Note that the corresponding spread δp = δω/v in momentum space is given by
ζ
√
NmT and can very well exceed the distance 2π/L of the quantized momenta (even in

the degenerate regime, where
√
mT � pF ).

If we take into account the Â2-term which is “switched on” by the extra electron ap-
pearing on the ring, the time-evolution between 0 and t is governed by a bath Hamiltonian
different from that which determines the initial bath equilibrium state. In fact, this would
lead to “squeezed states” of the bath oscillators, but we have not succeeded in simplifying
the resulting expression, and will not discuss this case any further.

3.9 Cotunneling through the Aharonov-Bohm ring

In the following, we will discuss the influence of the bath on the Aharonov-Bohm (AB)
effect, i.e. on the flux-dependence of the transport current through the ring. We consider
tunneling into and out of the ring, taking place at two electrodes to the left and right
of the ring (see Fig. 3.2). A tunneling situation is the appropriate one for our model,
since attaching current leads would severely alter the system. We will consider a Coulomb
blockade situation, in which any electron tunneling into (or out of) the ring will enhance
the total energy by the charging energy which is assumed to be much larger than eV
and the temperature T . In such a case, transport through the ring is possible only via
cotunneling, i.e. a two-step process involving a virtual intermediate state belonging to a
different number of electrons on the ring. A strong dependence of the tunneling current
on the external magnetic flux, with a complete suppression at Φ0/2 due to destructive
interference, is visible only in the “electronically elastic” cotunneling contribution, where
the electronic state of the ring is left unaltered in the process. It is linear in the bias
voltage and will dominate the inelastic contribution at low temperatures and for small
bias voltages (see the discussion at the end of this section and [Averin92]).

The basic idea has been stated in Section 2.4: We may arrange for destructive interfer-
ence and observe how this is affected by the bath. Perfect destructive interference occurs
in a situation where the electrodes couple to exactly opposite points on the ring, the
static magnetic flux threading the ring is equal to half a flux quantum, and the number of
electrons on the ring is even. Then, the amplitudes for an electron to go through the ring
add up to zero, due to pairwise cancellation between the contributions from states with
opposite kinetic momenta, ±p̃ (compare Fig. 3.3). These states have the same energies,
such that the energy denominators appearing in the sum over intermediate states (2.126)
are equal. On the other hand, at half a flux quantum, the corresponding momenta are
p and −p + 2π/L (since p̃ = p − π/L in that case). Therefore, the wave functions of
these states, evaluated at the point x = L/2 that is halfway around the ring, enter with
opposite signs: exp(ipx) + exp(i(−p+ 2π/L)x) = 0.
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L RΦ

Figure 3.2: The tunneling setup discussed in the text.

A semiclassical single-particle analysis of dephasing brought about by fluctuations in
the flux has been given in Section 3.4. However, at low bias voltages and temperatures,
such a picture is misleading even on a qualitative level, since it effectively assumes the
electron can emit or absorb an arbitrary amount of energy. It is even more inappropriate
in the cotunneling situation, where the electron stays on the ring only for a short time.
In the quantum-mechanical calculation, suppression of interference is due to the electron
leaving a trace in the bath that permits, at least in principle, to decide through which of
the two counterpropagating momenta the electron has traveled. This involves a transfer
of energy between electron and bath. The bath spectrum determines the amount of bath
oscillators able to absorb the small energy ≤ eV which can be emitted by the electron.
Therefore, dephasing at zero temperature is suppressed for V → 0 due to the energy
conservation constraint and Pauli blocking, as has been emphasized already in Section
2.4.2. This will be confirmed by the calculation described in the following. Away from
the point of perfect destructive interference, Φ = Φ0/2, there will be renormalization
effects that change the strength of the tunneling current, which are not to be mistaken
for dephasing.

We will build on the general results for cotunneling through a set of localized levels
coupled to a bath, derived in Section 2.4.2. However, since the levels on the ring are not
empty initially, we have to go beyond the discussion in Section 2.4.4: First of all, the
energy shifts now depend on the configuration of electrons on the ring. We will consider
the simplest case, where the temperature is small compared to the single-particle level
spacing, such that only the ground-state configuration contributes significantly to the
average contained in the electronic part of the two-particle Green’s function (cf. Eq.
(2.139)). Furthermore, we need to keep the contributions to the total cotunneling rate
that are due to intermediate states with an extra hole on the ring (Γ+

ph, Γ+
hp, Γ+

hh). If the
voltage is sufficiently small, we are entitled to neglect electronically inelastic transitions.

The effects of a change in the bath spectrum
〈

ÂÂ
〉

ω
due to an extra electron tunneling

onto the ring will be neglected (compare the previous section), and we will therefore not
deal with spectra that are stronger than the Nyquist noise at low frequencies.

The electronic part of the two-particle Green’s function now reads (compare Eq.
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Figure 3.3: Energy diagram for cotunneling through the AB-ring, at Φ = Φ0/2. The initial,
final and two destructively interfering intermediate states are indicated (see main text).

(2.20)):

〈

d̂j(−τ<)d̂†j(0)d̂l(0)d̂†l (−τ>)
〉

el
=

(1 − nl)(1 − nj)e
−iδElτ

>+iδEjτ<

. (3.45)

Here nl,j are the occupation numbers in the ground state, and the energy shifts δEl,j in
our model are given by δEp = −(ζ/m)p̃P̃ −Jpp, where P̃ is the total (kinetic) momentum
in the ground state. Therefore, the activation energy ∆p (cf. Eq. (2.144)) has to be
increased by −(ζ/m)p̃P̃ . In addition, we take into account a charging energy Ee

C that
arises due to Coulomb interaction between the electrons on the ring:

∆p = εp − εL − Jpp − (ζ/m)p̃P̃ + Ee
C . (3.46)

This replacement, together with the occupation factors (1 − nl)(1 − nj), is the only
change in Eq. (2.143) for γjl.

We will now list the changes required in Eq. (2.143) for the other three cotunneling
rate contributions, using the rules of Appendix A.3. The amplitudes Aj themselves are
not changed, since they are not affected by the order of electron tunneling in the two
junctions. For Γ+

ph and Γ+
hp, there is a negative sign in front of the expression for γjl. In

addition, in the exponential Klj[τ
>, τ<, t], given in Eq. (2.133), the signs of the cross-

correlators Kjl are inverted. There is a simple physical reason for this: In the intermediate
state, with an extra hole in state p, the total momentum is changed by −p̃, instead of p̃
for the electron state. Furthermore, the corresponding activation energy (i.e. ∆l for Γ+

ph,

∆j for Γ+
hp, ∆j,l for Γ+

pp) is to be replaced by that of the hole state. This follows from the
change in exponentials in Appendix A.3, together with the evaluation of the electronic
part of the Green’s function:
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∆h
p = εR − εp − Jpp + (ζ/m)p̃P̃ + Eh

C . (3.47)

We have used δEh
l = Jll + 2

∑

k 6=l Jklnk = −Jll + 2
∑

k Jklnk for the energy change
resulting from taking away a particle on level l (where nl = 1).

In addition, occupation factors of nl or (1−nl) have to be inserted for electron or hole
states, respectively.

We will evaluate the resulting cotunneling rate in perturbation theory, see Section
2.4.5. Equation (2.155) is changed in the way discussed above, i.e. there are appropriate

occupation factors, and the activation energies turn into ∆
(h)
j0 ≡ ∆

(h)
j + Jjj, with ∆

(h)
j

given in Eqs. (3.46), (3.47). In addition, for the cases Γ+
ph and Γ+

hp, there is an overall

negative sign, as well as an additional negative sign in front of the correlator
〈

F̂jF̂l

〉

, due

to the afore-mentioned change in the exponential Klj[τ
>, τ<, t].

For our specific model the correlator factorizes:

〈

F̂pF̂p′

〉

ω
= (e/mc)2

〈

ÂÂ
〉

ω
p̃p̃′ . (3.48)

This enables us to write the forward cotunneling rate, resulting from all these con-
siderations, in a very compact way. The elastic contribution (with respect to electronic
transitions and the bath) is, at T = 0:

Γ+
elastic = 2πDLDReV

∣

∣

∣

∣

∣

∑

p

TR∗
p TL

p

(

1 − np

∆p0

− np

∆h
p0

)

∣

∣

∣

∣

∣

2

. (3.49)

In this formula, the bath-induced energy shift contained in ∆
(h)
p0 (see above) should be

retained up to first order in the result, for consistency.
The inelastic contribution, leading to an “incoherent” cotunneling current, is found to

be:

Γ+
incoh = 2πDLDRW

∣

∣

∣

∣

∣

∑

p

TR∗
p TL

p p̃

(

1 − np

∆2
p0

+
np

∆h 2
p0

)

∣

∣

∣

∣

∣

2

, (3.50)

with the prefactor W giving the strength of dephasing (compare Eq. (2.155), with
F̂p = −ep̃Â/mc):

W ≡
∫

dω S(ω)
( e

mc

)2 〈

ÂÂ
〉

ω
, (3.51)

where S(ω) has been defined in Eq. (2.145) (at T = 0, S(ω) = (eV − ω)θ(eV − ω)).

In (3.50), ∆
(h)
p0 should be taken without the contribution ∝ ζp̃P̃ , since W is already of

first order in the bath correlator.
For the geometry considered here, we use T L

p = tL and TR
p = tReipx, where x = L/2 is

the point on the ring which couples to the right electrode, and tL/R are constant tunnel
amplitudes.
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For an even number of electrons, at a static magnetic flux of Φ0/2, we obtain P̃ = 0.

Therefore, ∆
(h)
p0 does not contain any bath-induced energy shift. The pairwise cancellation

of terms from the states with kinetic momenta ±p̃ makes Γ+
elastic vanish, i.e. the perfect

destructive interference can only be lifted when Γ+
incoh 6= 0. In Eq. (3.50) for Γ+

incoh, the
terms from ±p̃ do not cancel, due to the prefactor of p̃ inside the sum over states: The
bath, coupling to the momentum, can distinguish between electrons moving around the
ring clockwise or counterclockwise, respectively.

In contrast, away from Φ0/2, there is no perfect pairwise cancellation anyway, due to
the difference in energies for the states at ±p̃.

To compare the magnitude of the elastic cotunneling current Γ+
elastic (away from Φ0/2)

and that of the incoherent current at Φ0/2, it is necessary to evaluate the sums over states,

taking into account the energy denominators that involve the “charging energies” E
e/h
C

introduced above. In the limit of large particle numbers, this can be done by employing
the Euler-MacLaurin formula [Abramowitz84] in order to convert sums to integrals. We
find approximately, for the sum in the elastic cotunneling current (3.49) (without bath-
induced shifts):

tR∗tL
δε

2

{

1

Ee 2
C

− 1

Eh 2
C

+
1

(Eh
C + εF )2

}

,

with δε the single-particle level spacing on the ring (around the Fermi energy of εF ,
which is measured with respect to the lowest states on the ring).

On the other hand, the corresponding sum in the incoherent current turns out to be
given by a similar expression, where δε/2 is replaced by pF , the Fermi momentum on the
ring. Therefore, the ratio of the incoherent cotunneling current to the magnitude of the
elastic current is (at T = 0):

Γ+
incoh[Φ0/2]

Γ+
elastic[Φ ≈ 0]

∼ W p2
F

eV δε2

=

[
∫ eV

0

dω (1 − ω

eV
)
(epF

mc

)2 〈

ÂÂ
〉

ω

]

1

δε2
. (3.52)

This can be interpreted as the magnitude of the energy fluctuations of a single particle
level on the ring (measured by the variance), divided by the square of the single-particle
level spacing. However, it is not the energy fluctuations at arbitrary frequencies which
enter here, but rather their low-frequency part, up to the bias voltage eV . This is quali-
tatively similar to the behaviour of the Green’s functions, but different from that of the
persistent current or the effective mass. Therefore, the ratio rises as V s+1 at small bias
voltages (for s ≥ 0). This means in particular that, for the Nyquist bath, there is no
incoherent current contribution in the linear conductance at T = 0. Only a finite supply
of energy due to the bias may lead to dephasing at zero temperature. The zero-point fluc-
tuations of bath oscillators at frequencies larger than eV lead to renormalization effects,
but not to any dephasing.
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For bias voltages eV smaller than the single-particle energy spacing δε on the ring,
dephasing is merely due to the coupling to the fluctuating flux. At higher voltages, the
electronically inelastic cotunneling processes become important. In these, one electron
tunnels into the ring, while another electron goes out at the opposite electrode, thus leav-
ing behind a particle-hole excitation on the ring [Averin92]. Since all the corresponding
final states are different, their contributions to the cotunneling current sum up incoher-
ently. Therefore, like dephasing produced by the bath, they also lead to a nonvanishing
contribution to the tunneling current at Φ0/2, where, ideally, one should have perfect
destructive interference. The number of possibilities to create a particle-hole excitation
with an energy of at most eV is ∝ (eV/δε)2, if we assume eV � δε. This leads to a bias
dependence ∝ V 3 of the incoherent current [Averin92]. In that regime, the ratio of the
incoherent current contribution due to the external bath to the electronic inelastic con-
tribution is estimated to be given by the integral in (3.52), multiplied by (δε/(EC eV ))2

(where we have assumed the charging energies E
e/h
C to be of the same order of magnitude

EC). The electronic inelastic contribution will be the dominant one.

At small but finite temperatures, the formula for Γelastic is still given by Eq. (3.49),
while in Γincoh we have to subtract the backward tunneling rate, i.e. the result obtained for
V 7→ −V , which effectively changes W (compare Eq. (2.162)). The probability of inelas-
tic scattering processes increases, both because of a larger energy supply of the electrons,
as well as the possibility of induced emission and absorption of thermal bath excitations.
Consequently, there is a finite incoherent contribution to the linear conductance, rising
as T s+1 (see Section 2.4.6). However, as soon as the temperature becomes comparable
to the single-particle level spacing on the ring, two further effects deteriorate the visibil-
ity of the interference pattern. Firstly, at T ≥ δε, one would have to take into account
the thermal averaging over different electronic configurations on the ring (still at a fixed
particle number determined by the gate voltage). The perfect destructive interference at
Φ0/2 depends on the presence of an electronic configuration which is symmetric in the
occupancy of equal-energy states ±p̃. The thermal average includes other configurations
as well and therefore leads to a suppression of the destructive interference in the elastic
tunneling current, even without the bath. Furthermore, the electronic inelastic contribu-
tion is also enhanced at finite temperatures and becomes linear in the voltage [Averin92].
For still larger temperatures, comparable to the charging energy, sequential tunneling will
contribute as well.

We have not treated sequential tunneling through the Aharonov-Bohm ring. Obvi-
ously, if the gate voltage and charging energies are adjusted such that only two states ±p̃
contribute, then the results of the previous chapter hold, provided the Â2 term may be
neglected. However, if more states are accessible, then the perfect destructive interference
may be destroyed even for a gapped bath, due to the effective interaction induced between
the electrons. The degeneracy of many-particle states that differ only in the distribution
of right-movers and left-movers will be lifted, since there is an extra dependence of the en-
ergy on the total momentum. This may ruin the perfect destructive interference between
an electron tunneling via state +p̃ or −p̃, respectively.
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3.10 Comparison with other models

Concerning the effects of a fluctuating environment on the persistent current in an Aharonov-
Bohm ring, there have been several investigations in the past: In [Park92] the persistent
current was found to vanish for the Ohmic bath (in the single-particle case), in agree-
ment with our results. In contrast, the thorough investigation of Guinea [Guinea02] for
different bath spectra led to a dependence of the persistent current on the circumference
of the ring, with an exponential decrease for growing circumference L in the case of the
Ohmic bath. The difference in the results is due to a difference in coupling. The coupling
was taken to be translationally invariant in our case (and in [Park92]), while it contained
terms of the form cos(2πx/L) and sin(2πx/L) in [Guinea02]. Physically, this means that
the force is not directed along the ring, but rather across the ring (as the electrical field of
a capacitor, for example). For our model, there is only a trivial dependence of the results

on the circumference L, if the bath spectrum
〈

ÂÂ
〉

ω
is (reasonably) assumed to remain

constant as L is increased (corresponding to constant strength of the force fluctuations).
Another recent investigation into this issue was performed in [Büttiker01, Cedraschi00,
01], where the effects of a fluctuating gate voltage, coupled to a quantum dot inside the
ring, have been analyzed. The problem was mapped onto a spin-boson model, by consid-
ering only the two electron states corresponding to an electron on the dot and outside the
dot. It was found that the magnitude of the current is reduced and it starts to fluctuate
with increasing coupling strength. However, although the analysis was performed for the
Ohmic bath, these general features of the result would have been obtained for any type
of bath spectrum. It is also what we find in our model, for the case of baths that are
weaker than the Ohmic bath (see above). In this sense, we believe these general features
to represent the effects of renormalization, as they are observed for any bath spectrum. If
the frequency-spectrum of the persistent current fluctuations were analyzed in the model
of [Cedraschi00], it would simply reflect the bath spectrum at low frequencies. However,
it is not possible to compare this model with ours in more detail, since it features a
non-diagonal coupling between system and bath, whereas we have treated the opposite
situation of a diagonal coupling.

Concerning the dephasing of transport interference effects, an analysis of a mesoscopic
Mach-Zehnder interferometer has been given in [Seelig01]. Fluctuations of the electro-
chemical potential in the arms of the interferometer have been assumed to be due to the
Nyquist noise of the electrons themselves, whose spectrum was calculated selfconsistently.
A dephasing rate rising linearly with temperature was found. However, the analysis has
not yet been extended to low temperatures, where a single-particle description, as em-
ployed in [Seelig01], will be inadequate. This situation cannot be compared directly with
our model, since the leads are coupled strongly to the ring (in fact, the electrons never
backscatter at the junctions).
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3.11 Conclusions

We have analyzed a model of a fluctuating magnetic flux threading an Aharonov-Bohm
ring and discussed its effects on various properties, such as the persistent current, the two-
particle Green’s function and the cotunneling current through the ring. The fluctuating
vector potential only couples to the total momentum of the electrons on the ring, which
leads to the physics of Quantum Brownian motion (described in the vector gauge). The
suppression of the persistent current is entirely due to the enhancement of the effective
total mass. In particular, for the case of Nyquist noise (white flux noise at finite temper-
atures) and similar “weak baths”, this leads to a finite renormalization factor, while the
persistent current vanishes in the case of the “Ohmic bath” (1/f flux noise at T = 0),
since it leads to velocity-proportional friction.

Concerning dephasing of an arbitrary initial superposition of momentum states, the
differences between the various bath spectra are much more pronounced than for the
persistent current, as is known from the theory of Quantum Brownian motion of a single
free particle. In the long-time limit, both the Nyquist noise and the Ohmic bath result in
power-law decay of the interference pattern at T = 0, and in an exponential decay with
a rate rising linearly with T for T > 0.

For the “weak” baths we have also treated cotunneling through the ring, where the
Aharonov-Bohm effect may lead to perfect destructive interference at a static magnetic
flux of Φ0/2. Employing the results of the previous chapter, we have shown that there is
no dephasing in the linear cotunneling conductance at zero temperature.



Chapter 4

Fermi sea in a damped harmonic

oscillator

4.1 Introduction

In the previous chapters, we have analyzed dephasing in models with diagonal coupling
between system and bath, in particular the independent boson model and a system of free
fermions in one dimension, subject to a fluctuating force. These are many-particle gener-
alizations of the diagonally coupled spin-boson model and the Caldeira-Leggett model of
a free particle coupled to a bath, respectively. The only other well-known exactly solvable
model of a dissipative quantum system is the damped harmonic oscillator. There, the
coupling of the particle coordinate to a fluctuating force is non-diagonal, as it can lead
to transitions between different energy levels. We will now analyze the many-particle
version of this situation, where the levels of the oscillator are filled with fermions. The
Pauli principle will play an important role in the dynamics of the system, because of the
non-diagonal coupling. This model might be of some relevance for clouds of fermions in
(one-dimensional) harmonic traps, when they are subject to a homogeneous equilibrium
noise force at low temperatures.

The research reported here has been performed in collaboration with D. S. Golubev.

4.2 The model

We consider a system of N identical fermions (non-interacting and spinless) confined in a
one-dimensional harmonic oscillator potential. They are subject to a fluctuating force F̂
that acts on each fermion, i.e. it couples to the center-of-mass coordinate of the system
of fermions (see Fig. 4.1). This force derives from a bath of oscillators:

Ĥ = ω0

∞
∑

n=0

nĉ†nĉn + ĤB+

107
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F̂√
2mω0

∞
∑

n=0

√
n + 1(ĉ†n+1ĉn + h.c.) (4.1)

The ĉn are fermion annihilation operators, and the oscillation frequency of a fermion
of mass m in the parabolic potential is ω0 (we have set ~ = 1). Note that ω0 already
contains a counterterm that depends on the coupling to the bath, see Eq. (4.8) below.
The bath Hamiltonian is given by:

ĤB =

NB
∑

j=1

P̂ 2
j

2
+
mΩ2

j

2
Q̂2

j . (4.2)

Here the bath oscillator masses have been chosen to be equal to that of the fermions,
without any loss of generality, in order to streamline a few expressions derived in the next
section. In this chapter, F̂ denotes a fluctuating force (instead of a potential), which is
given as a sum over the bath normal coordinates Q̂j (with a prefactor g of dimensions
energy over length squared):

F̂ =
g√
NB

NB
∑

j=1

Q̂j . (4.3)

Its spectrum

〈

F̂ F̂
〉

ω
=

1

2π

∫ +∞

−∞

〈

F̂ (t)F̂
〉

e+iωtdt (4.4)

is still arbitrary and depends on the distribution of bath oscillator frequencies. At
T = 0, it is given by:

〈

F̂ F̂
〉T=0

ω
=

g2

NB

∑

j

1

2mΩj

δ(ω − Ωj) . (4.5)

The special case of an Ohmic bath, as it is used in the theory of Quantum Brownian
motion [Caldeira83], is defined by

〈

F̂ F̂
〉T=0

ω
=
η

π
ωθ(ωc − ω)θ(ω) , (4.6)

where η = mγ is the coefficient entering the friction force −ηv acting on a single
particle of mass m, with γ the corresponding damping rate.

The Hamiltonian (4.1) can be derived from the following form, where the fermions
are treated without second quantization and the translational invariance of the coupling
between fermions and bath particles is apparent:
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ω
nF
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Figure 4.1: The coupling of the fermions to the irreversible bath leads both to relaxation of
excited fermions as well as some smearing of the level occupation in equilibrium.

N
∑

l=1

p̂2
l

2m
+
mω2

00

2
x̂2

l +

1

N

N
∑

l=1

NB
∑

j=1

gj(xl − ˆ̃Qj)
2 +

NB
∑

j=1

P̂ 2
j

2m
(4.7)

Here the couplings gj are given in terms of the parameter g as gj = g2N2/(2mΩ2
jNB),

and the rescaled bath coordinates are ˆ̃Qj = Q̂j(mΩ2
j

√
NB/(gN)). Note that the frequency

ω0 introduced above already contains the counterterm that arises from the x2
l -terms in

(4.7) and which is essential to prevent the effective oscillator potential from becoming
unstable for larger coupling strengths g. In terms of the bare oscillator frequency ω00, it
is given by:

ω2
0 = ω2

00 + 2
N

m

∫ ∞

0

dω

〈

F̂ F̂
〉T=0

ω

ω
. (4.8)

4.3 Solution by bosonization and diagonalisation

Since the fluctuating force acts only on the center-of-mass (c.m.) coordinate of the parti-
cles and, in the case of the harmonic oscillator potential, the c.m. motion is independent of
the relative motion, the model defined above is in principle exactly solvable in a straight-
forward manner. The solution can be carried out by finding the classical eigenfrequencies
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and eigenvectors of the total system ofN+NB coupled oscillators, setting up the quantum-
mechanical wave functions in the total Hilbert space and performing the antisymmetriza-
tion with respect to the fermion coordinates. Afterwards, any desired observable (reduced
density matrix, occupation numbers, fermion Green’s functions etc.) may be calculated
in principle. However, due to the antisymmetrization and the appearance of the oscillator
eigenfunctions in the intermediate steps of the calculation, this procedure gets extremely
cumbersome, so we prefer a different route which is approximately valid for large fermion
numbers N .

We assume the number N of fermions in the oscillator potential to be so large that
the lowest-lying oscillator states are always occupied, for any given many-particle state
that becomes relevant in the calculation (at the given interaction strength and tempera-
tures). In other words, the excitations in the fermion system, induced by the bath (and
temperature), are confined to the region near the Fermi surface. Then we may employ
the method of bosonization where the energy of the fermions is rewritten as a sum over
boson modes (i.e. sound waves in the fermion system). This is possible since the energies
of the oscillator levels increase linearly with quantum number, just as the kinetic energy
of electrons in the Luttinger model of interacting electrons in one dimension. For recent
pedagogical reviews on Luttinger liquids and bosonization, see [Grabert01, Delft98].

To this end, we introduce the (approximate) boson operators, for any integer q ≥ 1:

b̂q =
1√
q

∞
∑

n=0

ĉ†nĉn+q . (4.9)

One may check that they fulfill the usual boson commutation relations, up to terms
involving levels near n = 0 that vanish when acting on the many-particle states occuring
under our assumptions. Alternatively, one may make these relations hold exactly by
redefining the original model to incorporate an infinite number of artificial single-particle
levels of negative energy, as is done in the Luttinger model.

Then the central result of bosonization may be applied, i.e. the fermion energy (bi-

linear in ĉ
(†)
n ) may be written as a bilinear expression in b̂

(†)
q . This is possible only due to

the linear dependence of energies on the quantum number n:

ω0

∞
∑

n=0

nĉ†nĉn = ω0

∞
∑

q=1

qb̂†qb̂q + EN̂ . (4.10)

Here EN̂ = ω0N̂(N̂ − 1)/2 is the total energy of the N -fermion noninteracting ground

state. We keep N̂ as an operator at this point since we will be interested in calculating
Green’s functions where the particle number changes.

Under the same assumption of large N � 1 we get

∞
∑

n=0

√
n+ 1(ĉ†n+1ĉn + h.c.) ≈

√
N(b̂1 + b̂†1) . (4.11)
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Again, this has to be understood as an approximate operator identity which is valid
when applied to the many-particle states we are interested in, where n ≈ N . We ap-
proximate N to be a number instead of an operator in this formula. This expression
shows that the fluctuating force only couples to the lowest boson mode (with q = 1),
corresponding to the c.m. motion. Therefore, the Hamiltonian now has become (within
the approximations described above):

Ĥ ≈ ω0

∞
∑

q=1

qb̂†qb̂q +

√

N

2mω0

F̂ (b̂1 + b̂†1) + ĤB + EN̂ . (4.12)

This can be solved by diagonalization of the (classical) problem of the boson oscillator
q = 1 coupled to the bath oscillators (see Appendix A.6 and below). Note that coupling of
a Luttinger liquid to a linear bath has been considered in [Neto97], although the physics
discussed there (as well as the calculation) is quite distinct from our model, where we
have only employed bosonization as a tool.

However, at the end we are interested in quantities relating to the fermions themselves,
e.g. the occupation numbers

〈

ĉ†nĉn
〉

or the Green’s functions, like
〈

ĉn(t)ĉ†n(0)
〉

. This means

we have to go back from the boson operators b̂q to the fermion operators, by employing
the relations which are also used in the Luttinger liquid. In order to do that, we have to
introduce auxiliary fermion operators ψ̂(x):

ψ̂(x) =
1√
2π

∑

n

einxĉn (4.13)

ĉn =
1√
2π

∫ 2π

0

e−inxψ̂(x) dx (4.14)

Note that the ψ̂(x) are not directly related to the fermion operators of the particles in
the oscillator (which would involve the oscillator eigenfunctions). They are useful because
they fulfill

[

b̂q, ψ̂(x)
]

= − 1√
q
e−iqxψ̂(x) . (4.15)

This means the application of ψ̂(x) on the noninteracting N -particle ground state
creates an N − 1-particle state that is a coherent state with respect to the boson modes,
i.e. an eigenstate of b̂q for every q. As a consequence, the fermion operators ψ̂(x) may be
expressed as [Delft98]:

ψ̂(x) = K̂λ(x)eiϕ̂†(x)eiϕ̂(x) = K̂λeiφ̂r , (4.16)

with
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ϕ̂(x) = −i
∞
∑

q=1

1√
q
eiqxb̂q (4.17)

φ̂ = ϕ̂+ ϕ̂† (4.18)

r ≡ e−[ϕ̂†,ϕ̂]/2 . (4.19)

The exponential exp(iϕ̂†(x)) in (4.16) may be recognized as creating a coherent state
with the eigenvalues of b̂q prescribed by Eq. (4.15). The other terms are necessary to
give the correct normalization and phase-factor, and to deal with states other than the
N -particle ground state.

The second equality in (4.16) follows from the Baker-Hausdorff identity. The “Klein

factor” K̂ is defined to commute with the boson operators b̂
(†)
q and to produce the non-

interacting (N − 1)-particle ground state out of the noninteracting N -particle ground
state. Its time-evolution follows from [K̂, Ĥ] = [K̂, EN̂ ] = K̂ω0(N̂ − 1) as K̂(t) =

K̂ exp(−iω0(N̂ − 1)t). The factor λ(x) is given by exp(i(N̂ − 1)x)/
√

2π. Actually,
[ϕ̂†, ϕ̂] = −

∑∞
q=1 1/q diverges, so we would have to introduce an artificial cutoff e−aq

(a → 0) into the sum. However, this drops out in the end result, because r from Eq.
(4.16) is canceled by the contributions from the equal-time φ̂-correlators in the exponent
of Eq. (4.21). The phase φ̂ enters subsequent formulas in a way similar to previous chap-
ters, as it is, again, linear in boson variables. However, the bosonic excitations initially
are those of the fermion system itself, not those of the bath. They will become mixed via
the coupling.

Using the relation (4.14), we have, for example:

〈

ĉ†n(t)ĉn
〉

=
1

2π

∫ 2π

0

ein(x′−x)
〈

ψ̂†(x′, t)ψ̂(x, 0)
〉

dx dx′ . (4.20)

The Green’s function involving ψ̂ may be expressed directly in terms of the correlator
of the boson operator φ̂, using Eq. (4.16):

〈

ψ̂†(x′, t)ψ̂(x, 0)
〉

=
1

2π
einF ((x−x′)+ω0t)

〈

e−iφ̂(x′,t)eiφ̂(x,0)
〉

r2 . (4.21)

We have used the abbreviation nF = N − 1 for the quantum number of the highest
occupied state (in the noninteracting system). The expectation value on the right-hand
side is evaluated using the (by now well-known) Eq. (2.23). This yields:

exp

[

−1

2

(〈

φ̂(x′, t)2
〉

+
〈

φ̂(x, 0)2
〉)

+
〈

φ̂(x′, t)φ̂(x, 0)
〉

]

(4.22)

These results permit us to calculate the hole propagator
〈

ĉ†n(t)ĉn
〉

, from which we
obtain the equilibrium density matrix by setting t = 0. Note that we have particle-
hole symmetry in our problem, such that the particle propagator gives no additional
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information. Writing down the expressions analogous to (4.20) and (4.21), and using the
properties of λ(x) and K̂(t) defined above, we find:

〈

ĉnF +δn(t)ĉ†nF +δn

〉

=
〈

ĉ†nF +1−δn(t)ĉnF +1−δn

〉

e−iω0(2nF +1)t . (4.23)

It remains to calculate the correlator of φ̂ in the interacting equilibrium: This is where
the coupling to the bath enters, since the original q = 1 mode will get mixed with the
bath modes. All the other boson modes are unaffected. The different boson modes remain
independent. Therefore, we obtain (using Eqs. (4.17) and (4.18)):

〈

φ̂(x′, t)φ̂(x, 0)
〉

= −
∞
∑

q=1

1

q

〈

(eiqx′

b̂q(t) − h.c.)(eiqxb̂q − h.c.)
〉

. (4.24)

The expectation values for q > 1 are simply the original ones, for example

〈

b̂q(t)b̂
†
q

〉

= e−iω0qt(n(ω0q) + 1) , (4.25)

with n(ε) = (eβε − 1)−1 the Bose distribution function.
In order to obtain the time-evolution and equilibrium expectation values relating to

the q = 1 mode (c.m. mode), we have to diagonalize a quadratic Hamiltonian describing
the coupling between this mode and the bath oscillators. We define the annihilation
operators of the bath modes (for j ≥ 1) as

d̂j =

√

mΩj

2
(Q̂j + i

P̂j

mΩj
) ⇒ Q̂j = (d̂j + d̂†j)/

√

2mΩj , (4.26)

and d̂0 ≡ b̂1, which makes Q̂0 and P̂0 the canonical variables of the c.m. mode and the
coupling in Eq. (4.12) equal to

√
NF̂Q̂0. Therefore, we have to diagonalize the following

quadratic Hamiltonian, according to Eqs. (4.12) and (4.5):

Ĥ ′ =
1

2m
P tP +

m

2
Qt(Ω2 + V )Q . (4.27)

Here P and Q are (column) vectors, with operator entries P̂j, Q̂j (j = 0 . . . NB), where
j > 0 refers to the bath oscillators, and j = 0 refers to the q = 1 mode. The diagonal
matrix Ω2 contains the eigenvalues Ω2

j of the original problem (with Ω0 ≡ ω0) and V is

the coupling matrix, with the nonvanishing entries Vj0 = V0j = (g/m)
√

N/NB (j > 0).
We denote by C the orthogonal matrix that diagonalizes the problem of coupled

oscillators defined in (4.27), such that

CtC = 1, Ct(Ω2 + V )C = Ω̃2 , (4.28)
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with a diagonal matrix Ω̃2 containing the new eigenfrequencies. Then we can express
the old coordinates, momenta and boson operators in terms of the new normal modes:

Q = CQ̃ (4.29)

P = CP̃ (4.30)

d̃ =

√

mΩ̃

2
(Q̃+ i

P̃

mΩ̃
) , (4.31)

where d̃ denotes a column vector whose entries are the operators
˜̂
dj. In order to

evaluate the correlator of the c.m. mode, we have to relate the old annihilation operators
d̂j to the new ones. This is accomplished by inserting the relations (4.29), (4.30) into
(4.26) and expressing Q̃, P̃ by d̃ according to (4.31). In matrix notation, the result reads:

d =

√

mΩ

2
(Q+ i

P

mΩ
) =

1

2

(

√
ΩC

1
√

Ω̃
− 1√

Ω
C
√

Ω̃

)

d̃†+

1

2

(

√
ΩC

1
√

Ω̃
+

1√
Ω
C
√

Ω̃

)

d̃ . (4.32)

Here d̃† is to be understood as the column-vector containing the hermitian conjugate

operators as entries. Correlators of the form
〈

b̂1(t)b̂
†
1

〉

are then obtained by inserting the

result for d̂0 = b̂1 and using the time-evolution of the “good” boson operators

˜̂
d(t) = e−iΩ̃t˜̂d , (4.33)

as well as their thermal equilibrium expectation values.

4.4 Evaluation of the Green’s function for T = 0

At T = 0, some simplifications apply to the evaluation of the φ̂-correlator and, con-
sequently, the fermion Green’s function

〈

ĉ†n(t)ĉn
〉

(that will also yield the occupation
numbers for t = 0).

We have, for example:

〈

b̂1(t)b̂1

〉

=
〈

d̂0(t)d̂0

〉

=
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1

4

〈[(

√
ΩC

1
√

Ω̃
+

1√
Ω
C
√

Ω̃

)

d̃(t)

]

0

×
[(

√
ΩC

1
√

Ω̃
− 1√

Ω
C
√

Ω̃

)

d̃†

]

0

〉

=

1

4

NB
∑

j=0

C2
0j

(

ω0

Ω̃j

− Ω̃j

ω0

)

e−iΩ̃j t . (4.34)

At T > 0 we would have to consider

〈

˜̂
d
†
j(t)

˜̂
dj

〉

6= 0 as well.

By defining the spectral weight of the c.m. mode in the new eigenbasis,

W (ω) =

NB
∑

j=0

C2
0jδ(ω − Ω̃j) , (4.35)

which is normalized to 1, we can rewrite (4.34) as

〈

b̂1(t)b̂1

〉

=
1

4

∫ ∞

0

W (ω) (
ω0

ω
− ω

ω0
)e−iωt dω ≡ α(t) . (4.36)

In a completely analogous fashion, we find

〈

b̂1(t)b̂
†
1

〉

=
1

4

∫ ∞

0

W (ω)

(
√

ω0

ω
+

√

ω

ω0

)2

e−iωt dω ≡ β+(t) (4.37)

〈

b̂†1(t)b̂1

〉

=
1

4

∫ ∞

0

W (ω)

(
√

ω0

ω
−
√

ω

ω0

)2

e−iωt dω ≡ β−(t), (4.38)

and
〈

b̂†1(t)b̂
†
1

〉

=
〈

b̂1(t)b̂1

〉

= α(t).

The calculation of W (ω) by diagonalization of the classical problem of coupled os-
cillators is described in Appendix A.6. The resulting Eq. (A.29) relates W (ω) to the

bath spectrum
〈

F̂ F̂
〉T=0

ω
. For weak coupling, W (ω) is a Lorentz peak centered around

ω0. That is why α(t) and β−(t) are small, since the spectrum W (ω) is multiplied by a
function that vanishes at the resonance near ω0. Both α and β− vanish exactly at zero
coupling. In contrast, β+(t) describes damped oscillations around ω0 (see below for a
discussion of the damping rate), starting from β+(0) ≈ 1.

Evaluation of the c.m. mode contribution to the correlator of φ̂ (given in Eq. (4.24))
then leads to the following expression:

〈

(eix′

b̂1(t) − h.c.)(eixb̂1 − h.c.)
〉

=

(ei(x′+x) + c.c.)α(t) − ei(x′−x)β+(t) − ei(x−x′)β−(t) . (4.39)
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Now we are prepared to evaluate the Green’s functions of the fermions in the damped
oscillator.

It is convenient to introduce the abbreviations

X ≡ eix, X ′ ≡ eix′

. (4.40)

Then Eq. (4.39) leads to

〈

φ̂(x′, t)φ̂(x, 0)
〉

=
〈

φ̂(x′, t)φ̂(x, 0)
〉

(0)
+

X ′

X
(β+(t) − e−iω0t) +

X

X ′
β−(t)−

α(t)(XX ′ + (XX ′)−1) , (4.41)

where the subscript (0) refers to the case without coupling to a bath:

〈

φ̂(x′, t)φ̂(x, 0)
〉

(0)
=

∞
∑

q=1

(e−iω0tX ′/X)q

q
. (4.42)

We insert this expression for the φ̂-correlator into the exponent (4.22) that appears
in the ψ̂ Green’s function, Eq. (4.21), and perform the Fourier transform (4.20) with
respect to x, x′ to go back to the original oscillator fermion operators ĉn. Then we find

that the Green’s function (hole propagator)
〈

ĉ†nF−δn(t)ĉnF−δn

〉

is given by the prefactor

of (X ′/X)δn in the power series generated from

G(0)e
E. (4.43)

Here the factor G(0) stems from the terms
〈

φ̂(x′, t)φ̂(x, 0)
〉

(0)
and reproduces the correct

result for the non-interacting case, namely

〈

ĉ†nF−δn(t)ĉnF−δn

〉

= ei(nF−δn)ω0t (δn ≥ 0). (4.44)

It is equal to

G(0) = einF ω0t
∞
∑

k=0

(X ′/X)ke−iω0kt . (4.45)

The exponent E describes the influence of the bath on the Green’s function. It follows
from (4.41), which also has to be evaluated for t = 0 and x 7→ x′ (or x′ 7→ x), due to

terms like
〈

φ̂(x, 0)2
〉

from Eq. (4.22). It is constructed out of the c.m. mode correlators

α, β±, as well as binomials in X and X ′:
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Figure 4.2: Equilibrium density matrix ρδn′δn ≡
〈

ĉ†nF +δn′ ĉnF +δn

〉

for fermions in the damped

oscillator, coupled to an Ohmic bath with Nγ/ω00 = 1.6 at T = 0; plotted vs. δn, δn′. The
radius of each circle is equal to |ρδn′δn|, and empty circles indicate negative values.

E ≡ 1 − β+(0) − β−(0)+

α(0)

2
(X ′2 +X2 +X ′−2 +X−2)−

(X ′X + 1/(X ′X))α(t)+

(X ′/X)(β+(t) − e−iω0t) + (X/X ′)β−(t) . (4.46)

The series expansion of Eq. (4.43) has been carried out using a symbolic computer
algebra system. In order to obtain the Green’s function in frequency space, the result-
ing terms of the form α(t)nαβ+(t)n+β−(t)n− have then been Fourier-transformed (which
leads to repeated convolutions of their Fourier spectra, i.e. essentially W (ω), see Eqs.
(4.36),(4.37),(4.38)). This is done numerically (using a fast Fourier transform).

4.5 Discussion of the Green’s function

The numerical results obtained for the equilibrium density matrix and the Green’s function
in the case of coupling to an Ohmic bath are depicted in Figs. 4.2, 4.3 and 4.4.

The general long-time behaviour of the Green’s function (independently of the bath
spectrum) can be read off directly from the exponent (4.46) given above: Since the cou-
pling to the bath damps away the c.m. motion, the functions α(t), β+(t) and β−(t) all
decay to zero at t→ ∞ (excluding cases such as a gapped bath). The temporal evolution
of the exponent in Eq. (4.46) is then determined by the undamped oscillations at the
frequencies ω0q belonging to the unaffected modes q > 1 of the relative motion. This

leads to the conclusion that the Green’s function
〈

ĉ†nF−δn(t)ĉnF−δn

〉

does not decay to
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Figure 4.3: Green’s function of fermions in a harmonic oscillator, coupled to an Ohmic bath:

Fourier transform of
〈

ĉ†n(t)ĉn

〉

vs. ω/ω0, for different values of n (curves displaced vertically for

clarity). Note that ω is measured with respect to −nFω0. The strength of the coupling is given
by Nγ/ω00 = 0.4 in this plot. Inset: ω0W (ω) vs. ω/ω0. The height of the smaller δ peaks is
an indication of their weight. (In the expansion of the exponential, starting from Eq. (4.46), a
maximum combined power of α, β± of 6 was kept.)
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Figure 4.4: Green’s function of fermions in a harmonic oscillator, coupled to an Ohmic bath:

Fourier transform of
〈

ĉ†n(t)ĉn

〉

vs. ω/ω0, for different values of the coupling strength, indicated

in the plot (curves displaced vertically for clarity). Note that ω is measured with respect to
−nFω0, and that ω0 changes with γ, for fixed ω00, see Eq. (4.54). This plot is produced for a
fixed excitation number, n = nF − 4. (In the expansion a maximum combined power of α, β±
of 10 was kept.)
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zero in the limit t → ∞, for any δn > 1, since contributions from (X ′/X)δn with δn > 1
remain. In frequency space, it consists of a number of delta peaks superimposed onto an
incoherent background related to the damped c.m. mode (see plots).

This result may be unexpected, since according to a naive application of the Golden
Rule to the Hamiltonian (4.1), any electron inserted into the system at n > nF + 1 (and
any hole inserted at n < nF ) should decay towards lower (higher) single-particle energy
levels by spontaneous emission of energy into the bath (for T = 0). The rate is expected
to be:

ΓGR = 2π
〈

F̂ F̂
〉

ω0

nF

2mω0

. (4.47)

Here we have used the approximation n ≈ nF (≈ N) that was also introduced above.
For an electron inserted just above the Fermi surface (n = nF + 1), or a hole inserted
at n = nF , the Pauli principle blocks relaxation and the corresponding Golden Rule rate
vanishes. The decay rate of the wave function (i.e. of Green’s functions) is expected to
be ΓGR/2. In the following, we discuss the deviations from this naive expectation.

For weak coupling, the decay of the Green’s function
〈

ĉ†n(t)ĉn
〉

calculated above is
determined by the decay of β+(t), while α and β− are approximately zero. For example,
at n = nF − 1 the hole-propagator is directly proportional to β+(t):

〈

ĉ†nF−1(t)ĉnF−1

〉

≈ β+(t)einF ω0t . (4.48)

The decay of this function is determined by the width of the Lorentz peak appearing at
ω ≈ ω0 in the “spectral weight” W (ω) defined above (see Eqs. (4.35) and (4.37)) and
calculated in Appendix A.6. According to Eq. (A.29), at weak coupling this width is
given by

2ω0∆ω =
Γ(ω2

0)

2
. (4.49)

By inserting the definition of Γ(ω2
0), see Eq. (A.27), this yields ∆ω = ΓGR/2 for

the decay rate of β+(t), as expected. Therefore, there is quantitative agreement between
the exact calculation and the Golden Rule result at n = nF − 1. This is true also at
n = nF , where the Green’s function evaluated in the preceding section only has a delta
peak, related to Pauli blocking (apart from corrections that vanish in the limit of weak
coupling), see Fig. 4.3. However, at n < nF −1, there is always an additional δ peak that
is incompatible with the Golden Rule expectation, as explained above. Essentially, this
discrepancy stems from the fact that the many-particle states in the harmonic oscillator
are in general strongly degenerate, and that they may be split up into contributions from
the c.m. and the relative motion. Therefore, the preconditions for the usual derivation
of a master equation [Blum96] are violated. The relative motion is unaffected by the
coupling to the bath and leads to the δ peak, as will be explained in more detail in the
following paragraphs.
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The excited many-particle state |Ψ〉, which is created by adding an extra hole (or extra
particle) and whose time-evolution determines the Green’s function, can be written as a
superposition of states, each of which distributes the given number of excitation quanta
δn differently onto center-of-mass (“cm”) and relative (“r”) motion. Therefore, in the
weak-coupling limit, where one starts out of the factorized ground state |0〉cm |0〉r |0〉B, it
is of the form:

|Ψ〉 = |0〉B (a0 |0〉cm |δn〉r + a1 |1〉cm |δn− 1〉r + . . .) . (4.50)

The first state does not contain any extra excitation of the c.m. mode. Therefore, it is
unaffected by the c.m.-bath coupling and does not decay. This leads to the main δ-peak
contribution at a frequency δnω0, which is determined by the number of excitation quanta
δn.

The other states will decay. Furthermore, the resulting broadened peaks in the Green’s
function are shifted towards lower frequencies, due to the renormalization of the c.m.
mode frequency to the value ω00. Thus these peaks occur at frequencies of the form
(δn− ncm)ω0 + ncmω00, where ncm counts the number of quanta in the c.m. mode. This
is visible in Figs. 4.3 and 4.4, where the Fourier transform of the Green’s function is
displayed. In the limit of weak coupling, the weights of the different peaks are given by

|ancm
|2 =

1

ncm!

δn−ncm
∑

j=0

(−1)j

j!
, (4.51)

for 0 ≤ ncm ≤ δn. These weights are normalized (
∑δn

ncm=0 |ancm
|2 = 1), since the ap-

plication of a particle annihilation operator onto the non-interacting ground state creates
a normalized state |Ψ〉 (for δn ≥ 0).

The weights can be obtained by expanding the exponential that is derived from Eq.
(4.46) when setting α = β− = 0 and β+(0) = 1 (weak coupling):

exp

[ ∞
∑

q=2

(e−iω0tX ′/X)q

q
+ (X ′/X)β+(t)

]

(4.52)

The prefactor of (X ′/X)δnβncm

+ in this expansion will yield the weight (4.51) of the
state that contains exactly ncm excitations of the c.m. mode. In particular, the weight
of the ncm = 0-component, which leads to the δ peak, goes to the constant value of 1/e
in the limit δn→ ∞. Thus, there is a non-decaying contribution even at arbitrarily high
excitation energies. However, this fact is connected to the assumption of large N under
which the present results have been obtained, see the discussion in the following section.
The weight of the contribution from ncm = δn − 1 always vanishes, as may be observed
in the plots as well.

For stronger coupling, other δ peaks start to grow both above and below the frequency
of the main peak. They are a consequence of the more complicated self-consistent ground
state that forms due to the coupling between the c.m. mode and the bath oscillators.
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This ground state contains contributions from excited c.m. states and bath states. We
can write it down in the following schematic form, where |j〉B denotes a bath state for
which the sum of all harmonic oscillator excitations is equal to j:

|GS〉cm+B = c00 |0〉cm |0〉B + c11 |1〉cm |1〉B + c20 |2〉cm |0〉B + . . . . (4.53)

Any of the excited states discussed above, containing ncm c.m. excitations (see Eq. (4.50)),
may therefore have a finite overlap with this ground state of the coupled system c.m.-
bath. Thus, a non-decaying contribution at the frequency (δn− ncm)ω0 of the remaining
excitation in the relative motion survives. This explains the δ peaks at frequencies equal
to integer multiples of ω0, situated below the unperturbed excitation energy of δnω0. In
order to understand the peaks at still larger frequencies, we have to take into account
that the additional particle (or hole) is introduced into the many-particle ground state
that already contains excitations of the c.m. mode, see Eq. (4.53). Therefore, the
resulting excited many-particle state |Ψ〉 will also contain contributions with more than
δn excitations of c.m. and relative motion combined, in contrast to the weak-coupling
form, Eq. (4.50). Since adding δn excitations to one of the states |j〉cm |0〉r that appear
in the many-particle ground state may lead to states containing up to δn+ j excitations
in the relative motion alone, this explains the appearance of δ peaks at (δn + j)ω0 in
the Green’s function. For the same reason, the “incoherent background” due to the c.m.
mode extends beyond the main frequency of δnω0.

Finally, it may be noted from the figures that the additional δ peaks appear only at
frequencies of the form (δn+ 2j)ω0, i.e. they are removed by an even multiple of ω0 from
the main peak. Formally, this may be derived from the long-time limit of the exponent
(4.46), when α(t), β±(t) have decayed to zero: Frequencies different from ω0δn may con-
tribute only because the sum over modes q ≥ 2 is multiplied by the terms associated with
α(0), and these contain even powers of X ′ and X. Physically, the reason is the following:
The coupled ground state of c.m. and bath remains symmetric under inversion of the
c.m. and oscillator coordinates. Therefore, the sum of c.m. and bath excitations is al-
ways even, as indicated in (4.53). When adding δn extra excitations to the many-particle
ground state (which is (4.53), multiplied by the ground state of the relative motion), a
part of those excitations may go into the c.m. motion, leading to peaks below and above
the main frequency. Only if the number of added or subtracted c.m. excitations is even,
a nonvanishing overlap with the many-particle ground state may develop, leading to a
non-decaying component in the Green’s function.

The shape of the broadened peaks in the incoherent background reflects the Fourier-
transforms of α(t), β±(t). All of them are related to the spectral function W (ω) which
is associated to the damped c.m. motion (see Eqs. 4.36, 4.37 and 4.38). In particular,
at weak coupling, the Fourier transform of the dominant contribution β+(t) is essentially
given by W (ω), see Eq. (4.37).

For the Ohmic bath, whose power spectrum is given in Eq. (4.6), we have (see (4.8)):
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ω2
0 = ω2

00 +
2

π
Nγωc . (4.54)

The resulting spectral function W (ω) associated to the damped c.m. motion, see Eqs.
(4.35) and (A.29), is found to be

W (ω) =
2γN

π
ω2

[

(ω2 − ω2
00 −

γN

π
ω ln

ωc + ω

|ωc − ω|)
2 + (γNω)2

]−1

. (4.55)

This expression holds for 0 ≤ ω < ωc. The denominator becomes 0 at some ω > ωc,
which yields a δ peak whose weight vanishes for γN → 0. In order to obtain this peak,
one has to replace 2γNω by an infinitesimal +0 for ω > ωc (this would be different for
smooth cutoffs, and it does not affect any of our results). The function W (ω) is displayed
in the inset of Fig. 4.3 (where ωc/ω00 = 10). At low frequencies ω � ωc and damping rate
γN � ωc, W (ω) is proportional to the magnitude squared of the susceptibility derived
for the linear response of the velocity of the damped c.m. oscillator, with renormalized
frequency ω00 and damping rate γN :

|χvx(ω)|2 ∝ ω2
[

(ω2 − ω2
00)

2 + (γNω)2
]−1

. (4.56)

In the overdamped case, γN > 2ω00, the zeroes of the denominator occur at purely
imaginary frequencies. However, the shape of the function (4.56) shows a qualitative
change already at γN =

√
2ω00, when the curvature at ω = 0 changes sign (in the

susceptibility |χxx(ω)|2, the maximum vanishes). This may be observed by comparing the
lowest curve in Fig. 4.4, corresponding to γN/ω00 = 1.6, to the other curves.

The considerations of the current section apply to the approximate Hamiltonian (4.12)
that is good in the limit N → ∞ of large particle number, and which has been amenable
to bosonization. However, the qualitative arguments concerning the contributions of c.m.
and relative motion remain valid for finite N as well. This is the topic of the next section.

4.6 Finite particle number: Center-of-mass motion

in excited Fock states

In this section we want to analyze in more detail the splitting into c.m. and relative
motion for arbitrary finite N . We will also point out that the weight of the “coherent”
component in the Green’s function (with no c.m. excitation) decays when moving towards
higher excitation energies, on a scale set by the number N of particles. This explains why
this weight even saturates at a constant value for excited states arbitrarily far above the
Fermi surface in the limit N → ∞. It is this limit that has been solved by bosonization
in the preceding sections, and the results of this section constitute a kind of check on that
procedure. However, we will not actually evaluate Green’s functions for the finite N case,
which is still much more difficult.
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For simplicity, we will set m = ω0 = 1 throughout this section, without loss of gen-
erality. Then the coordinates and momenta of the individual particles are related to the
harmonic oscillator raising and lowering operators by

x̂j =
1√
2
(âj + â†j), p̂j =

−i√
2
(âj − â†j) , (4.57)

where it is understood that âj acts only on the coordinate of particle j. The center-
of-mass motion is described by

X̂ =
1

N

N
∑

j=1

x̂j, P̂ =

N
∑

j=1

p̂j , (4.58)

such that we obtain for the operator that lowers the excitation of the c.m. harmonic
oscillator by one:

Â =

√

N

2
(X̂ + i

P̂

N
) =

1√
N

N
∑

j=1

âj . (4.59)

Here we have used that the total mass is M = Nm = N .
Let us consider an N -particle Fock state |ΨN,δn〉 consisting of the Fermi sea filled up

to (and including) level nF − 1 = N − 2 and an additional single particle that has been
placed into the excited level at nF + δn. It is our goal to find the probability Pn of
having n excitations in the c.m. mode, given this many-particle state. In particular, the
probability of having 0 excitations will be the weight of the “coherent component” that
does not decay in spite of coupling to the bath. This holds quantitatively in the weak-
coupling limit, where we may neglect the change in the eigenstates of the c.m. mode, see
the previous discussion. For arbitrary coupling, it is still the correct qualitative picture
(compare the results above).

First, we rewrite Â in second quantization:

Â =
1√
N

∞
∑

k=0

√
k + 1ĉ†kĉk+1 . (4.60)

Using this, it is straightforward to check that

〈

ΨN,δn|Â†jÂj|ΨN,δn

〉

=
δn+ nF

N
· . . . · δn + nF − j + 1

N
, (4.61)

for j ≤ δn, otherwise this is 0. On the other hand, if we think of |ΨN,δn〉 as being
written in a basis that splits relative and c.m. motion (compare Eq. (4.50)) and take into
account the usual matrix elements of a harmonic oscillator lowering operator, we obtain
for the same expectation value (with Pn the occupation probabilities for the different c.m.
states):
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Figure 4.5: Weight of the center-of-mass ground state as a function of excitation δn, for different
particle numbers N , including the bosonization result from Eq. (4.51) (“N = ∞”).

∞
∑

n=j

Pnn(n− 1) · . . . · (n− j + 1) . (4.62)

Now we make use of the fact that the total number of excitations in the c.m. mode is
limited by δn, i.e. Pn = 0 for n > δn. Therefore, it is possible to start at j = δn, equate
(4.61) to (4.62), solve for Pδn, and then proceed iteratively all the way down to P0. In
each step, only the probabilities that have been calculated before appear in addition to the
unknown Pj. We can write down the set of equations very transparently by introducing
the abbreviation

pl = (δn− l)!
(N − 1)!

(δn+N − 1)!
N δn Pδn−l . (4.63)

Then we have (from equating (4.61) to (4.62)) the recursive relation:

pl =
N l−1

(N + l − 1) · . . . · (N + 1)
−

l
∑

k=1

pl−k

k!
. (4.64)

The solution starts with p0 = 1. Note that we always get p1 = 0 (for any N), corre-
sponding to Pδn−1 = 0: This has been observed already in the context of the bosonization
solution (see previous section). It is also remarkable that the equation for pl does not
depend on δn. Therefore, we can solve the problem at once for arbitrary δn (which then
only enters in Pn via Eq. (4.63)).

After solving these equations, it is found that the weight of the c.m. ground state,
P0 = (δn+N−1)!

(N−1)!
N−δn pδn, decays as a function of excitation energy δn (for large δn), on a

scale set by N , see Fig. 4.5.
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Finally, we remark that the general structure of the exact eigenfunctions of our problem
(defined by the original Hamiltonian, Eq. (4.1)) remains identical to that found in the
limit N → ∞, using bosonization. For arbitrary system-bath coupling, the eigenstates of
the full system will be of the form

∣

∣ΨSB
〉

=
∣

∣ΦCM−B
〉

⊗
∣

∣ψrel
〉

, (4.65)

where “SB” refers to the full Hilbert space of fermions coupled to a bath, while
∣

∣ΦCM−B
〉

is a new eigenstate of the coupled system c.m./bath and
∣

∣ψrel
〉

is an unaltered,
antisymmetric eigenstate of the relative motion. However, the evaluation of quantities like
Green’s functions or the reduced density matrix, starting from this expression, becomes
very cumbersome, which is the reason why we have restricted most of the discussion to
the bosonization solution.

4.7 Two-particle Green’s function: decay of popula-

tions and dephasing

While the single-particle Green’s function reveals how fast an electron is scattered out
of an initial state, we have to turn to the two-particle Green’s function in order to learn
about the time-evolution of the reduced single particle density matrix. For our purposes,
we will be interested in the following two-particle Green’s function of fermions in the
damped oscillator:

〈

ĉn(0)ĉ†l′(t)ĉl(t)ĉ
†
n′(0)

〉

. (4.66)

Without coupling to the bath, we could apply Wick’s theorem to obtain:

〈

ĉn(0)ĉ†l′(t)ĉl(t)ĉ
†
n′(0)

〉

=

δnl′δln′(1 − 〈n̂n〉)(1 − 〈n̂n′〉)eiω0(n−n′)t+

δnn′δll′(1 − 〈n̂n〉) 〈n̂l〉 , (4.67)

If the bath damps the motion of the fermions, we may rewrite (4.66) in terms of the
auxiliary fermion operators ψ̂(x) defined in (4.14):

〈

ĉn(0)ĉ†l′(t)ĉl(t)ĉ
†
n′(0)

〉

=

1

(2π)2

∫ 2π

0

dxdx′dydy′ ei(l′x′+n′y′−lx−ny)×
〈

ψ̂(y, 0)ψ̂†(x′, t)ψ̂(x, t)ψ̂†(y′, 0)
〉

(4.68)
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Figure 4.6: Time-evolution of the populations ρnn(t) (see Eq. (4.69)) for an electron placed in
an initial state ñ = nF +6 above the Fermi sea (weak-coupling result, see text). Different curves
have been displaced vertically for clarity.

Starting from the representation of ψ̂ in terms of boson operators φ̂, Eq. (4.16), this
may be evaluated using the same methods as in Sections 4.3 and 4.4. In Appendix A.7, it
is shown how the two-particle Green’s function is obtained via a series expansion, similar
to the single-particle Green’s function.

Using the result for the two-particle Green’s function given in Appendix A.7 (Eqs.
(A.38), (A.39), and (A.40)), we may answer questions like the following: If we introduce
an extra single particle in some level ñ above the Fermi sea, how does it decay towards
lower-lying levels, by emitting some of its energy into the bath? Of course, we expect the
Pauli principle to play an important role, which makes this model particularly interesting.

More precisely, we look at the time-evolution of the populations

ρnn(t) =
〈

ĉñĉ
†
n(t)ĉn(t)ĉ†ñ

〉

, (4.69)

where the two outermost operators create the desired state at time 0, while the two
operators in the middle test for the population. We note that, in principle, the newly
created state may have norm less than 1, if the level ñ happens to be partially occupied
already in the ground state on which the creation operator ĉ†ñ acts. In that case, it would

be necessary to divide (4.69) by the norm,
〈

ĉñĉ
†
ñ

〉

.

However, we will restrict the evaluation to the weak-coupling case, where the states
above nF are empty at T = 0 and where we set α(t) = β−(t) = 0, β+(0) = 1 and keep
only the (slowly decaying) β+(t), which is approximated by β+(t) ≈ e−iω′

0t−Nγt/2. Here ω′0
is shifted with respect to the frequency ω0, being equal to ω00 in the limit ωc � ω0 (see



128 4 Fermi sea in a damped harmonic oscillator

Figure 4.7: Time-evolution of the single-particle density matrix ρnn′(t) (see Eq. (4.70)) for
fermions in a damped oscillator, after a single particle has been placed in a superposition of
states above the Fermi sea. Time points Nγt = 0, 0.5, 1, . . . , 4 from top left to bottom right
(increasing along the rows). Levels n, n′ = nF − 1, nF , . . . , nF + 6 are indicated by grid lines.
The radius of each dot gives |ρnn′(t)| (which starts at 1 for the two occupied states in the lower
left corner). The final panels essentially show the long-time limit, indicating incomplete decay.
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Eq. (4.54) and (4.55) for the special case of the Ohmic bath). In general the difference
between ω0 and ω′0 can be of any sign, depending on the details of the bath spectrum.
This frequency shift between the c.m. mode and all the other boson modes may lead to
beating oscillations that are visible in the time-evolution of the populations or the density
matrix. In Figs. 4.6 and 4.7, however, we have assumed ω ′0 = ω0 (e.g. the bath spectrum
is taken to be symmetric around the transition frequency but the decay rate is set to be
the same as that obtained for the Ohmic bath).

Although in principle the expression (A.38) permits evaluation of the two-particle
Green’s function at arbitrary coupling strength, this task has proven to be computationally
much more difficult than the analogous calculation for the single-particle Green’s function,
due to the larger number of terms generated in the power series. The weak-coupling results
for ρnn(t) are shown in Fig. 4.6.

We note that, contrary to naive expectation, the particle does not decay all the way
down to the lowest unoccupied state nF + 1. Rather, in the long-time limit (which is
already reached at Nγt ≈ 5 to a good approximation), the extra particle is distributed
over the range of excited levels above the Fermi surface, up to the initial level ñ. Again,
this is because only the c.m. mode couples to the bath, such that, even at T = 0, a
fraction of the initial excitation energy remains in the system. Moreover, we see that
the population of the highest occupied states in the Fermi sea decreases. The fermions in
these states become partly excited at the expense of the extra particle, due to the effective
interaction mediated by the bath.

Another application of the two-particle Green’s function (A.30) consists in looking at
the decay of a superposition of states. We imagine that, at time 0, a particle is placed
in an equally-weighted superposition of two levels n1 and n2 above the Fermi surface.
This will introduce off-diagonal contributions in the single-particle density matrix of the
fermions. The subsequent relaxation will suppress the coherence (i.e. the off-diagonal
elements) and transfer population to the lower levels. In Fig. 4.7, we have plotted the
time-evolution of the density matrix defined by

ρnn′(t) =
1

2

〈

(ĉn1 + ĉn2)ĉ
†
n′(t)ĉn(t)(ĉ†n1

+ ĉ†n2
)
〉

. (4.70)

Again, we have evaluated only the weak-coupling case, such that no additional nor-
malization factor is necessary (for n1, n2 > nF ).

Apart from the features already mentioned above, we observe the decay of the off-
diagonal elements (i.e. dephasing) to be incomplete. A part of the coherence survives
in the relative motion which is unaffected by the bath. If a slight anharmonicity were
introduced in the potential, such that c.m. and relative motion are no longer independent,
we would expect to see the same behaviour at short to intermediate times. Only in the
long-time limit, the fermion system would relax fully to the N + 1-particle Fermi sea
ground state.
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4.8 Conclusions

We have analyzed a model system of fermions in a harmonic oscillator, that are subject
to a fluctuating force deriving from a linear bath of oscillators. The force couples to the
center-of-mass motion of the fermions. This is a generalization of a single particle in a
damped harmonic oscillator, and it is, in principle, exactly solvable. However, here we
have analyzed the limit of large particle numbers, using the method of bosonization, i.e.
we have considered particle-hole excitations around the Fermi surface. One of the boson
modes corresponds to the center-of-mass motion, experiencing dephasing and damping,
while the others belong to the relative motion which forms a kind of “decoherence-free
subspace”. We have derived exact (forN → ∞) analytic expressions for Green’s functions,
that can be obtained from the coefficients of a power series expansion. These have been
evaluated with the help of a symbolic computer algebra program. The single-particle
Green’s function has been discussed in detail, showing the smearing of the Fermi surface,
the effect of Pauli blocking, the dependence of level shapes on the bath spectrum and the
coupling strength, as well as the appearance of coherent peaks, due to the relative motion.
Based on the expression for the two-particle Green’s function, we have analyzed the decay
of an excited state created by adding one particle above the Fermi surface, where one can
observe the “heating” around the Fermi surface (due to the effective interaction between
particles), as well as the incomplete decay of the excited particle. In addition, we have
discussed the time-evolution of the single-particle density matrix for an extra particle that
has been added in a coherent superposition of excited states.



Chapter 5

The role of friction in the description

of low-temperature dephasing

5.1 Introduction

The Feynman-Vernon influence functional [Feynman63, 65] plays a prominent role in dis-
cussions of dephasing that aim to go beyond a simple master equation approach. In
principle, the influence functional takes into account every effect of the environment (the
“bath”) on the system under consideration. This includes heating, dephasing, friction and
renormalization effects (changing the external potential or the effective mass of a parti-
cle). Its popularity arises not only from the fact that it constitutes an exact approach,
but also from the direct physical meaning which it acquires in some situations. In partic-
ular, this holds for typical interference experiments, where two wave packets describing
a single particle follow two different trajectories in order to be recombined later on. For
such a case, the influence functional is equal to the overlap between the two different
bath states which result due to the particle moving along either one of the semiclassical
trajectories. If the bath can distinguish between the two paths, it acts as a which-way
detector, and the diminished magnitude of the overlap directly gives the ensuing decrease
of the visibility of the interference pattern. Writing the overlap in the form of an expo-
nential, exp(iSR − SI), one can obviously conclude that only the imaginary part SI of
the “influence action” is responsible for this decrease and, therefore, SI alone describes
dephasing in such a situation. Furthermore, if the system is subject to a fluctuating ex-
ternal classical field, only SI remains, while SR vanishes identically. This is because SI is
due to the fluctuations of the bath, while SR stems from the back-action of the bath onto
the system (including friction effects), which is absent for an external noise field. The
approach of evaluating SI along semiclassical trajectories has been successfully applied to
the calculation of dephasing rates in many situations [Chakravarty86, Stern90, Cohen97].

However, near the ground state of a system, an analysis along these lines is likely to
fail. Qualitatively, this may already be deduced from the fact that dropping SR means
replacing the environment by an artificial fluctuating classical field whose correlation
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function includes the zero-point fluctuations of the original quantum bath. Therefore,
even at zero temperature, this fluctuating field will, in general, heat the system, which
directly leads to dephasing. The role of SR is to counteract this effect. In this chapter,
it is our aim to display explicitly, in a detailed manner, the necessity of keeping the real
part SR of the influence action in discussions of dephasing and decay near the ground
state of a system.

This issue derives its importance partly from the fact that the evaluation of SI along
semiclassical trajectories has proven to be an efficient way of extracting dephasing rates
in the problem of weak localization in the limit of high temperatures [Chakravarty86,
Stern90], when zero-point fluctuations of the bath may be omitted. In contrast, at low
temperatures, a single-particle semiclassical calculation may become invalid, since it ne-
glects the Pauli principle which is known to play an important role for the inelastic
scattering of electrons and is not included in the Feynman-Vernon influence functional.
However, recently an extension of the influence functional to the case of a many-fermion
system has been derived, using an exact procedure [Golubev99, Golubev00, Zaikin00] and
including the Pauli principle. This permitted a discussion of dephasing in a disordered
metal even for the case of low temperatures. Following the general strategy of earlier
works [Chakravarty86] dealing with the high-temperature case, the dephasing rate was
deduced from SI in a semiclassical calculation and found to be finite even at zero tem-
perature. Since the “orthodox” theory [Altshuler82] had predicted a vanishing rate in
the limit T → 0, the new results prompted considerable criticism [Aleiner99, Vavilov99,
Cohen99, Kirkpatrick02], which mostly emphasized technical aspects of impurity averag-
ing or used perturbation theory to arrive at different conclusions. We will try to clarify
some essential aspects of the roles of SR and SI, using physically much more transparent
exactly solvable models.

We have already emphasized in the introduction (Chapter 1) that “zero-temperature
dephasing” as such is perfectly possible: If one prepares a system in any superposition of
excited states and couples it to a bath, it will, in general, decay towards its ground state
by spontaneous emission of energy into the bath (at T = 0). This will destroy any coher-
ent superposition, thus leading to dephasing. Considerations of this kind are relevant (for
example) in quantum-information processing, where one necessarily deals with nonequilib-
rium situations involving excited qubit states of finite energy [Shnirman02]. The situation
is different for the weak-localization problem (and similar transport interference effects):
There, one is interested in the zero-frequency limit of the system’s linear response, which
depends on the coherence properties of arbitrarily low-lying excited states. It is the sub-
tleties associated with a path-integral description of these situations which we want to
address here.

After a brief review of the influence functional and its meaning in semiclassical situ-
ations (Sec. 5.2), we will rewrite the expressions for SI and the Golden Rule decay rate,
in order to compare the two (Sec. 5.3). In doing so, we will closely follow the analysis of
Cohen and Imry [Cohen97, 99]. Then, we will show how and why the effects of SR and
SI may compensate each other in the derivation of a decay rate starting from the path
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integral expression for the time-evolution of the density matrix (Sec. 5.4), even though
they cannot cancel each other in the influence action. There, it may be observed that
drawing conclusions about decay directly from the exponent iSR − SI of the influence
functional is usually not possible. The crucial cancellation takes place at a later stage of
the calculation, after proper integration over the fluctuations around the classical paths
and after averaging over the initial state. In order to prove that this compensation takes
place not only in lowest order perturbation theory, we will then specialize to exactly solv-
able linear dissipative systems, i.e. the damped harmonic oscillator (Sec. 5.5) and the free
particle (Sec. 5.6). We will also point out that there is an important difference between
the oscillator and the free particle: Dropping SR has a much more drastic effect on the
former, leading to an artificial finite decay rate of the ground state at zero temperature.
However, in order to discuss the importance of SR for the calculation of dephasing rates
(involving decay of excited states), we have to extend our analysis to nonlinear models
(Sec. 5.7). We will explain in a more qualitative fashion why the essential insights gained
from the exactly solvable models should remain valid both for the nonlinear models as
well as for systems of degenerate fermions.

5.2 The influence functional and dephasing in simple

situations

We are interested in the time-evolution of the reduced density matrix of a system with
coordinate q which is coupled to some environment (the bath). If system and bath had
been uncoupled prior to t = 0 (factorized initial conditions), then the density matrix at a
later time t is linearly related to that at time 0:

ρ(q>
t , q

<
t , t) =

∫

dq>
0 dq

<
0 J(q>

t , q
<
t |q>

0 , q
<
0 ; t)ρ(q>

0 , q
<
0 , 0) . (5.1)

The propagator J on the right-hand-side of this equation is given by

J =

∫∫

Dq>Dq< exp [i(S>
0 − S<

0 )] exp [iSR − SI ] . (5.2)

Here we have introduced an abbreviated notation: The path integral extends over
all “forward” paths q>(·) running from the given value of q>

0 to q>
t , likewise for the

“backward” paths q<(·). The value of the action of the uncoupled system, evaluated

along q>(<)(·), is denoted by S
>(<)
0 . The second exponential in Eq. (5.2) is the Feynman-

Vernon influence functional [Feynman63, Feynman65]. Both SR and SI are real-valued
functionals that depend on both paths simultaneously. The influence functional is the
overlap of bath states which have time-evolved out of the initial bath state χ0 under the
action of either q>(·) or q<(·):

eiSR−SI ≡ 〈χ[q<(·)]|χ[q>(·)]〉 . (5.3)
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Figure 5.1: A sketch of the paths involved in the path-integral description of a simple interference
situation (see text).

At zero temperature, the state χ0 is the ground state of the unperturbed bath, while at
finite temperatures an additional thermal average over χ0 has to be performed. From this
representation, it follows [Feynman63, Feynman65] that SR changes sign on interchanging
q> and q< while SI always remains nonnegative - the magnitude of the overlap can only
be decreased compared with its initial value of one.

A brief remark on the use of factorized initial conditions is in order: Although they lead
to certain artificial transient effects after switching on the interaction (compare [Hakim85,
Schramm87]), they are not at all related to the kind of long-time “heating” behaviour
which is observed in the examples to be discussed below when SR is neglected.

The meaning of SR and SI becomes particularly transparent for an interference setup,
where two wave packets Ψ> and Ψ< travel along two different paths q>

cl(·) and q<
cl(·). We

want to assume a situation which can be described semiclassically, i.e. the wave-length
is supposed to be much smaller than the size of a wave packet and this again is much
smaller than the typical separation between the paths and the typical dimensions over
which the external potential changes. Then, it suffices to evaluate SR and SI just for the
combination of these two paths, since the fluctuations around them are comparatively
unimportant (see Fig. 5.1). The environment will affect the interference pattern on the
screen mainly by changing the interference term [Stern90] (compare the introduction 1.2):

ρ(q, q, t) ≈ |Ψ>(q, t)|2 + |Ψ<(q, t)|2 +

2Re
[

Ψ>(q, t)Ψ∗<(q, t)eiSR−SI
]

. (5.4)

In this equation, Ψ>(<)(q, t) are assumed to represent the unperturbed time-evolution
of the wave packets. To a first approximation, SR,I do not enter the “classical” terms in
the first line of Eq. (5.4), since SR,I [q

>
cl , q

>
cl ] = 0. Deviations from this first approximation

stem from the integration over fluctuations away from q
>(<)
cl and describe, for example,

mass- and potential renormalization as well as slowing-down of the wave packet due
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to friction. Obviously, SI ≡ SI [q
>
cl , q

<
cl ] determines directly the decrease in visibility of

the interference pattern while SR ≡ SR[q>
cl , q

<
cl ] only gives a phase-shift. Averaging the

interference pattern over different configurations of the external potential (appropriate for
impurity averaging in mesoscopic samples) may further decrease the visibility. However, if
the two paths are time-reversed copies of each other (as is the case in discussions of weak-
localization [Altshuler82, Chakravarty86, Stern90]), the phase difference between Ψ> and
Ψ< vanishes in a time-reversal invariant situation, so that the impurity-average over the
corresponding phase factor does not lead to a suppression in the situation without the
bath. If SR is kept (which was not done in [Altshuler82, Chakravarty86, Stern90], since
they considered classical noise), then the average over exp(iSR) will, in general, decrease
further the magnitude of the interference term. Note that the impurity average of SR itself
(which corresponds to a properly weighted average over all possible pairs of trajectories)
vanishes in general, simply because SR[q>, q<] = −SR[q<, q>]. In any case, given the
simple physical picture presented here, one would not expect SI and SR to be able to
cancel each other’s effects, since they represent, respectively, the real and imaginary part
of an exponent.

For the special case of a force F̂ deriving from a bath of harmonic oscillators (linear

bath), with vanishing average
〈

F̂
〉

= 0 and a linear interaction V̂ = −q̂F̂ , we have:

SI =

∫ t

0

dt1

∫ t1

0

dt2 (q>
1 − q<

1 )Re
〈

F̂1F̂2

〉

(q>
2 − q<

2 ) (5.5)

SR = −
∫ t

0

dt1

∫ t1

0

dt2 (q>
1 − q<

1 ) Im
〈

F̂1F̂2

〉

(q>
2 + q<

2 ) (5.6)

Here we have used the notation q>
1 ≡ q>(t1). The angular brackets denote averaging

over the equilibrium state of the unperturbed bath. SI only depends on the symmetrized

part of the bath correlator Re
〈

F̂ (τ)F̂ (0)
〉

=
〈{

F̂ (τ), F̂ (0)
}〉

/2, which becomes the

classical correlator 〈F (τ)F (0)〉 for the case of a classical Gaussian random process. In
the latter case, SR vanishes and the influence functional exp(−SI) is simply the classical
average of the phase factor

exp

[

i

∫ t

0

(q<(τ) − q>(τ))F (τ)dτ

]

. (5.7)

If one drops SR in a dephasing calculation (noting that it does not enter dephasing in
semiclassical situations such as those that can be described by Eq. (5.4)), one effectively
replaces the quantum bath by a classical fluctuating force whose correlator is determined
by the symmetrized part of the quantum correlator. This contains the zero-point fluctu-
ations, since

〈{

Q̂(τ), Q̂(0)
}〉

∝
(2n(ω) + 1) cos(ωτ) = coth(ω/2T ) cos(ωτ) (5.8)
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for the coordinate Q̂ of a single bath oscillator of frequency ω, with n(ω) being the Bose
distribution function that vanishes at T = 0.

Although replacing the quantum bath by a classical noise force seems to be a drastic
step, it can lead to correct predictions for the dephasing rate in semiclassical situations
such as the one discussed above, even at zero temperature. It is instructive to observe
how this comes about in an exactly solvable model. A particularly simple situation is the
one analyzed by Caldeira and Leggett [Caldeira85] (see also [Loss91]). They considered a
damped quantum harmonic oscillator, where the initial state consisted of a superposition
of Gaussian wavepackets, one centered at the origin, the other at a distance z. In the
course of time, the displaced wavepacket oscillates back and forth in the oscillator potential
well. Whenever the packets overlap, an interference pattern results (due to the difference
in the respective momenta). The environment leads both to damping and dephasing,
where the latter typically proceeds at a much faster rate. For our purposes, we are
interested in the limit of small damping, where, to a first approximation, the center-
of-mass motion of the wave packets is not appreciably altered by friction in the period
of the oscillation. In this case, it turns out that, indeed, the result predicted by the
approximation Eq. (5.4) for the attenuation of the interference pattern is correct, including
the effect of the zero-point fluctuations. This can be seen in [Caldeira85] by taking the
limit of weak damping (γ → 0, ω → ωR) in their exact result for the exponent of the
attenuation factor (see Eq. (2.13) of [Caldeira85]) and comparing this to SI (see Eq. (5.5)),
which is to be evaluated for the pair of classical paths followed by the two wave packets,
q>
cl(t) = z cos(ωt) and q<

cl(t) ≡ 0. In terms of the quantity C00 listed in Appendix A.8,
both results may be obtained by multiplying C00 by sin(ω̃t)2 and setting γ = 0, ω̃ = ω. In
addition, in order to obtain SI [q

>
cl , q

<
cl ], the factors sin(ω(t− t1)) and sin(ω(t− t2)) must be

replaced by cos(ωt1) and cos(ωt2). The results obviously coincide for the points in time
when the wave-packets meet (ωt = π/2 + nπ). We emphasize that the correspondence
to the semiclassical result holds only for a situation far away from the ground state of
the system, where at least one of the wave packets is in a superposition of highly excited
oscillator states (which is the case considered by [Caldeira85]).

At zero bath temperature, the dephasing is purely due to spontaneous emission, as
pointed out in the discussion of [Caldeira85]. Energy is transferred from the oscillat-
ing wave-packet into the bath and the system relaxes towards lower-energy states. The
dephasing rate is proportional to the total rate Γout at which the system leaves a given
energy level [Caldeira85]. Of course, this rate may be obtained using the Golden Rule (i.e.
a master equation description) only for weak coupling, but the qualitative picture seems
to be general [Caldeira85]. In the correct description of the physical situation considered
here, the rate Γout is given entirely by the rate of spontaneous emission, Γem

sp . However,
if SR is neglected, then SI describes a classical noise force (equivalent to the zero-point
fluctuations of the bath at T = 0) and there will be both induced emission and absorption,
proceeding at equal rates Γem

ind = Γabs
ind. Therefore, the system is also excited by the bath

in that approximation. Nevertheless, we have pointed out above that the total dephasing
rate comes out right. The reason is the following: The rate Γout is the same in both cases,
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because the rate of spontaneous emission in the correct description is exactly twice that
of induced emission in the approximation:

Γout = Γem
sp ≡ Γem

ind + Γabs
ind . (5.9)

At this point, it is easy to see the physical reason why such an approximation may fail
near the ground state of the system. Then, the transitions downwards in energy may
be blocked, which completely suppresses Γem

sp , but not Γabs
ind. We will make this argument

more precise in the following sections.

5.3 Decay rates from SI and Golden Rule: Depen-

dence on the spectra of bath and system motion

The growth of SI with time depends on the spectral density of the bath fluctuations at
frequencies which appear in the system’s motion. Formally, this can be seen by introducing
the spectrum of the system motion related to the given pair of paths q>(<) (following the
ideas of [Cohen97, 99]):

P (ω, s) ≡ 1

2π

∫ +∞

−∞
dτ eiωτ (q>(s+

τ

2
) − q<(s+

τ

2
))

×(q>(s− τ

2
) − q<(s− τ

2
)) (5.10)

Here, s ≡ (t1 + t2)/2 and τ ≡ t1 − t2 are sum and difference times. Therefore, P is
the Fourier transform with respect to τ of the q-dependent terms in SI (Eq. (5.5)). We
take q>(<)(t′) to be zero whenever t′ falls outside the range [0, t].

Furthermore, we define 〈FF 〉ω to be the Fourier-transform of the symmetrized corre-

lator of F̂ ,

〈FF 〉ω ≡ 1

4π

∫ +∞

−∞
dτ eiωτ

〈{

F̂ (τ), F̂ (0)
}〉

, (5.11)

so it is real and symmetric in frequency. The same holds for the system spectrum
P (ω, s).

Using this, SI can be expressed in the following way:

SI = π

∫ t

0

ds

∫ +∞

−∞
dω 〈FF 〉ω P (−ω, s) . (5.12)

If the dependence of P on s is not essential, then SI grows linearly with time t, at a
rate given by the “overlap of bath and system spectra”. Similar expressions can be derived
for a spatially inhomogeneous fluctuating force [Cohen97, 99], leading to an additional
k-dependence.



138 5 The role of friction in the description of low-temperature dephasing

Applying this kind of reasoning to a single electron moving in a dirty metal [Cohen97],
the system motion is found to contain frequencies up to (at least) 1/τel, such that the
growth of SI with time depends on the bath-spectrum up to this cutoff, including the
zero-point fluctuations of the corresponding high-frequency bath modes (which become
important at low temperatures).

As explained above (Sec. 5.2), the description of dephasing in terms of SI alone may
be trusted in a semiclassical situation, where the electron is in a highly excited state. This
holds even at zero temperature, when the qualitative physical picture is essentially the
same as in the model of oscillating wave packets due to Caldeira and Leggett, discussed
above: Dephasing is due to spontaneous emission of energy into the bath. The contribu-
tion of frequencies up to 1/τel in this situation then implies that the spontaneous emission
(and the resulting dephasing) is facilitated by the impurity scattering. The physics behind
this is well-known in another context: In quantum electrodynamics, the emitted radiation
would be called “bremsstrahlung”, since it is the scattering off an external potential that
induces the electron to emit radiation.

On the other hand, one can express in a similar manner decay rates from a simple
Golden Rule calculation [Cohen99]. For the decay of an initial state |i〉 , we have

Γi = 2π

∫

dω
〈

F̂ F̂
〉

ω
〈q̂q̂〉(i)−ω . (5.13)

Here
〈

F̂ F̂
〉

ω
and 〈q̂q̂〉(i)−ω are the Fourier transforms of the unsymmetrized correlators

of F̂ and q̂, taken in the equilibrium state of the bath or the initial state of the system,
respectively:

〈

F̂ F̂
〉

ω
≡ 1

2π

∫

dτ eiωτ
〈

F̂ (τ)F̂ (0)
〉

〈q̂q̂〉(i)ω ≡ 1

2π

∫

dτ eiωτ 〈i| q̂(τ)q̂(0) |i〉 (5.14)

The important point to notice is that, near the ground state of the system, the quantum
correlator 〈q̂q̂〉(i)ω is very asymmetric in frequency space, as the system can mostly be
excited only (ω > 0). At low temperatures, the same holds for the bath. Thus, the
decay rate (5.13), containing the product of correlators evaluated at ω and −ω, is very
much suppressed below the value that it would acquire if either the bath-correlator or the
system-correlator were symmetrized (becoming symmetric both in time and frequency).
Since dropping SR is equivalent to symmetrizing the bath correlator and, furthermore,
semiclassical calculations give a symmetric spectrum P (ω, s) of the system motion as well,
it becomes clear why there are situations when the decay rate, as deduced from SI , is
finite at low temperatures, while the Golden-rule decay rate vanishes. The question then
arises whether any procedure that amounts to symmetrization of the correlators, thus
leading to drastically wrong results for Golden Rule decay rates at zero temperature, may
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be justified to discuss dephasing using a path-integral approach. Observations such as
this have led Cohen and Imry to conclude that, in their semiclassical analysis of electron
dephasing inside a metal [Cohen99], the contribution of the bath’s zero-point fluctuations
to the dephasing rate should be dropped. Their argument was not a mathematical proof,
but rather drawn from physical intuition and analogies, and similar to what had been
done in earlier calculations [Altshuler82, Chakravarty86]. In the following sections, we
try to elucidate the importance of SR in descriptions of dephasing and decay near the
ground state of a system, demonstrating exactly how a cancellation between SR and SI

may arise.

5.4 Cancellation of SR and SI in lowest-order pertur-

bation theory

We consider a system which is in its ground state at t = 0 before being coupled to a
linear bath. From the Golden Rule, we expect there to be no finite decay-rate for the
ground state at zero-temperature. It is well-known [Feynman65] how to derive a master
equation from the influence functional, by expanding it to lowest order in the exponent,
iSR − SI . We display that calculation here in order to point out where and how SR and
SI do cancel. The time-evolution of the probability to find the system in its unperturbed
ground state is:

P0(t) ≡ 〈Ψ0| ρ̂(t) |Ψ0〉 = tr [ρ̂(0)ρ̂(t)]

=

∫

dq>
t dq

<
t ρ0(q

<
t , q

>
t )ρ(q>

t , q
<
t , t)

=

∫

Dq>Dq<ρ0(q
<
t , q

>
t )ei(S>

0 −S<
0 )+iSR−SIρ0(q

>
0 , q

<
0 )

≈ 1 +

∫

Dq>Dq<ei(S>
0 −S<

0 )ρ0(q
<
t , q

>
t )

×(iSR − SI)ρ0(q
>
0 , q

<
0 ) . (5.15)

Here ρ̂0 is the density matrix of the unperturbed ground state, and the path integration
also includes integrals over the initial and final coordinates. Now one can insert the
expressions for SR and SI from Eq. (5.6). The integration over the trajectories and the
endpoints produces the unsymmetrized correlators of the system coordinate, such as (for
t1 > t2):

∫

Dq>eiS>
0 Ψ∗0(q

>
t )q>(t1)q

>(t2)Ψ0(q
>
0 ) =

〈Ψ0| q̂(t1)q̂(t2) |Ψ0〉 e−iE0t . (5.16)
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Evidently, both the unperturbed action S0 and the integrations involving the state Ψ0

are essential for obtaining the correct correlator. In the long-time limit, we obtain the
decay rate which also follows from the Golden Rule (5.13):

P0(t) ≈ 1 −
∫ t

0

dt1

∫ t1

0

dt2 2Re
[〈

F̂ (t1)F̂ (t2)
〉

〈Ψ0 |q̂(t1)q̂(t2)|Ψ0〉
]

≈ 1 − Γ0t . (5.17)

Only the term growing linearly in time has been retained at the end of this equation.
We emphasize that the decay of P0(t) is not governed by SI alone. Both the real (fluc-

tuation) part of the correlator
〈

F̂ (t1)F̂ (t2)
〉

from SI , as well as the imaginary (dissipative)

part from SR enter Γ0, since the “system correlator” 〈Ψ0 |q̂(t1)q̂(t2)|Ψ0〉 is complex-valued.
In particular, these two contributions to the rate cancel when one starts out of the ground
state, at T = 0. If SR were dropped, then only the (real-valued) symmetrized version of
the bath correlator would appear in Eq. (5.17). In that case, the decay rate would only
depend on the (real-valued) symmetric part of the system correlator as well. Therefore, a
finite decay rate of the ground state would result even at zero temperature, where really
there would have been none. The physical reason is the heating introduced by the classical
noise field, whose correlator contains the zero-point fluctuations of the original quantum
bath, as we have discussed before.

Note that, of course, there will always be a small reduction in the probability of finding
the unperturbed ground state after switching on the interaction, since the ground state
of the coupled system contains contributions from other system states as well. This point
has been discussed in more detail recently for the case of the damped harmonic oscillator
[Nagaev02]. It does not contribute to Γ0 which describes the decay linear in time.

On a formal level, we may argue that the decay of the density matrix is not governed
by SI alone since the “weighting factor” that is used when “averaging” over many paths
contains the phase factor exp(i(S>

0 − S<
0 )). Therefore, such an average is not the same

as a classical average, for which the decay could not be overestimated by dropping SR,
since then we could use |〈exp(iSR − SI)〉| ≤ 〈exp (−SI)〉. Furthermore, the integration
over the density matrix of the initial state is obviously essential, as it is needed to produce
the correct form of the system correlator. Both facts mean that it would be premature
to draw any conclusions about dephasing and decay at an early stage of the calculation,
by merely looking at the influence action.

5.5 Exactly solvable linear systems: “Cancellation to

all orders” for the damped oscillator

In order to show how SR and SI can cancel also beyond lowest-order perturbation theory,
we will now turn to linear quantum dissipative systems. Although the exact solutions
for the damped harmonic oscillator and the free particle have been well-known for a long
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time [Caldeira83], we will review the essential steps in the derivation, pointing out where
SR and SI do enter. We will first turn to the oscillator, for which the Golden Rule result
suggests that one would obtain an artificial decay of the ground state at zero temperature
if SR were neglected. For simplicity, our discussion is restricted to T = 0, since that is
the limit where these effects show up most clearly.

For any linear system which is linearly coupled to a bath of oscillators, the propagator
J for the density matrix (Eq. (5.2)) can be evaluated exactly, since the integration over
system paths is Gaussian. In fact, J is found to be given by the “semiclassical” result,
i.e. an exponential containing the action along stationary paths, multiplied by a prefactor
which does not contain the endpoints of the paths (a specialty of linear systems):

J(q>
t , q

<
t |q>

0 , q
<
0 ; t) =

1

N(t)
eiS[q>

cl
,q<

cl
] , (5.18)

with S = S>
0 + S<

0 + SR + iSI . The paths q
>(<)
cl make the full action stationary,

δS

δq>
cl

=
δS

δq<
cl

= 0 , (5.19)

and fulfill boundary conditions of the form q>
cl(0) = q>

0 . The prefactor N(t) can be
obtained most easily from the condition for normalization of the density matrix,

∫

dqt J(qt, qt|q0, q0; t) = 1 . (5.20)

N(t) is found to be independent of SI , but it does depend on SR (see, for example,
the general proof in Appendix E of [Golubev00]).

In the following, we will turn to the special case of the Ohmic bath, which leads
to a velocity-proportional friction force and has a power spectrum rising linearly at low
frequencies (for T = 0):

〈

F̂ F̂
〉

ω
=
ηω

π
θ(ω) . (5.21)

We will argue below that, in the case of the damped harmonic oscillator, no essen-
tial qualitative result will be changed by using other bath spectra, unless these have an
excitation gap exceeding the oscillator frequency.

As usual, we introduce the center-of-mass coordinate R(τ) ≡ (q>(τ) + q<(τ))/2 and
the difference coordinate r(τ) ≡ q>(τ) − q<(τ) in order to write down the equations for
the semiclassical paths, obtained from (5.19), for the case of the Ohmic bath:

d2r

dτ 2
− γ

dr

dτ
+ ω2

0r = 0 (5.22)

d2R

dτ 2
+ γ

dR

dτ
+ ω2

0R = −i
∫ t

0

dτ ′Re
〈

F̂ (τ)F̂ (τ ′)
〉

r(τ ′) (5.23)



142 5 The role of friction in the description of low-temperature dephasing

Here γ ≡ η/m is the damping rate and ω0 is the unperturbed frequency of the oscil-
lator. Note that the second equation leads to a complex-valued solution R(·). It is also
possible to formulate the calculation slightly differently [Caldeira83, Hakim85], by using
stationary solutions with respect to the real part of S only. In any case, inserting the solu-
tions R (≡ Rcl) and r (≡ rcl) into the action S shows that the imaginary part of the action
Scl ≡ S[q>

cl , q
<
cl ] is determined directly only by SI (in spite of the complex-valued R(·)).

As expected, Scl turns out to be a bilinear expression in the endpoints Rt, R0, rt, r0:

ReScl = S>
0 + S<

0 + SR =

RtrtLtt +Rtr0Lt0 +R0rtL0t +R0r0L00 (5.24)

ImScl = SI = r2
0C00 + 2r0rtC0t + r2

tCtt . (5.25)

All the coefficients are real-valued functions of time. For our purposes, it is sufficient
to know that the entries of the matrix L are independent of SI (while they do depend
on the damping γ from SR). In contrast, the entries of C depend both on SI and SR.
The dependence on SR arises only because the path r, which is inserted into Eq. (5.5), is
affected by the friction described by SR, see Eq. (5.22). The entries of C are proportional to
the strength of the bath fluctuations (i.e. the magnitude of 〈FF 〉ω). Explicit expressions
for all of these coefficients can be found in [Caldeira83] (cf. their Section 6; note that
the damping constant γ used here corresponds to 2γ in [Caldeira83], starting from their
Eq. (6.8).). For reference, the quantities used in the following discussion have been listed
in Appendix A.8.

At this point, evaluation of the coefficients for ImScl shows that they will grow in time
beyond all bounds, regardless of whether the path r is calculated by taking into account
SR or neglecting it (setting γ = 0 in Eq. (5.22)). However, no conclusion about dephasing
and decay can be drawn from this, since the foregoing discussions lead us to expect that
any potential cancellation between SR and SI will take place only after proper integration
over the initial density matrix. This can be deduced from the derivation of the Golden
Rule decay rate given in the preceding section. It is also very reasonable that SI grows
without bounds for any semiclassical path r(·), since all paths contribute more or less to
the time-evolution of all eigenstates, and decay of excited states is perfectly correct in the
model of the damped harmonic oscillator.

The initial ground state density matrix has the form

ρ0(q
>
0 , q

<
0 ) ∝ exp

(

−(q>2
0 + q<2

0 )/(4
〈

q̂2
〉

0
)
)

= exp
(

−(R2
0 + r2

0/4)/(2
〈

q̂2
〉

0
)
)

, (5.26)

with 〈q̂2〉0 = 1/(2mω0) as the square of the ground state width. After performing the
Gaussian integrals over R0 and r0, which are needed to evaluate Eq. (5.1), we obtain the
final result for the density matrix ρ(q>

t , q
<
t , t) at a time t after switching on the interaction

with the bath. It has the general form
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1

Ñ(t)
exp

(

−(aR2
t + bRtrt + cr2

t )
)

. (5.27)

In particular, the prefactor of R2
t gives the width of the probability distribution at

time t,

〈

q̂2(t)
〉

= (2a)−1 . (5.28)

Let us now look at the behaviour of the width in order to analyze the effect of dropping
SR in the calculation. The expression for 〈q̂2(t)〉 has been derived already by Caldeira
and Leggett [Caldeira83] (cf. their Eq. 6.34):

〈

q̂2(t)
〉

=
(

2C00 +mω0/2 + L2
00/(2mω0)

)

/L2
t0 . (5.29)

This expression clearly contains quantities both from the imaginary part (C00) and
from the real part (L00, Lt0) of the action. Formally speaking, real and imaginary parts
have become intermixed when integrating over R0, due to quadratic completion of the
expression iR0(rtL0t + r0L00) − mω0R

2
0 in the exponent (the former term is from Eq.

(5.24), while the latter term is from the initial density matrix, Eq. (5.26)). Physically,
this result is to be expected, since the growth of the width of the probability distribution
will be governed by the balance between the bath fluctuations (SI) and the friction (SR).

The complete time-evolution of 〈q̂2(t)〉 after switching on the interaction at t = 0
is displayed in Fig. 5.2. This includes cases where the value of the damping constant
γ has been artificially set to zero or to other values different from that prescribed by
the fluctuation-dissipation theorem (FDT), which connects γ to the strength of the bath
fluctuations described by 〈FF 〉ω (see Eq. (5.21) for the case of T = 0). If SR is neglected
completely (no friction, γ = 0), heating takes place, causing the variance to grow linearly
in time, at a rate given by the Golden Rule expression involving the symmetrized bath
correlator. Formally, the growth of C00 with time cannot be compensated in that case,
since L00 and Lt0 acquire their original unperturbed values. For small γ > 0, the width
saturates at a value much larger than that of the ground state. On the other hand, if
the friction is too strong, the width saturates at a value below that of the ground state,
and the Heisenberg uncertainty relation is violated (since 〈p̂2〉 also shrinks). This point is
discussed in the book of Milonni in the context of an atom interacting with the vacuum
electromagnetic field [Milonni94]. If, however, γ has the correct value prescribed by the
FDT, 〈q̂2〉 changes only slightly from its unperturbed value.

In fact, for a linear system like the quantum harmonic oscillator, its behaviour under
the action of the linear bath can be described and understood entirely using a classical
picture [Weiss00]. The reason for this is as follows: one starts out with an initial state for
system and bath that has a positive definite Gaussian Wigner-density, which can be inter-
preted directly as a classical phase space density whose time-evolution then corresponds
one-to-one to the evolution of the Wigner-density (see Appendix A.9). Thus, the quan-
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tum dissipative dynamics may be described by a classical Langevin equation including
friction and a fluctuating driving force:

d2q

dt2
+ γ

dq

dt
+ ω2

0q =
1

m
F (t) . (5.30)

In this equation, the damping term incorporates the effects of SR. It counteracts
the fluctuations of F (·) that are described by SI in the path-integral picture and whose
correlation function is, therefore, given by the symmetrized part of the bath correlator.

The behaviour of the width has been discussed above using the influence functional,
but it can be understood more easily in this picture. We can use the susceptibility of
the damped oscillator to find its response to the force fluctuations F , which, at zero
temperature, are entirely due to the zero-point fluctuations. In particular, for the limit
t→ ∞, we obtain

〈

q̂2(t)
〉

→
∫ +∞

−∞
dω |χ(ω)|2 〈FF 〉ω , (5.31)

where

χ(ω) =
1/m

ω2
0 − ω2 − iωγ

(5.32)

is the susceptibility of the damped oscillator, and 〈FF 〉ω is the symmetrized power spec-
trum (see Eq. (5.21)). For the correct equilibrium state (obtained by fully keeping SR

and SI), the width at t→ ∞ can also be found by applying the FDT to the oscillator co-
ordinate (cf. Eq. 6.37 of [Caldeira83]). In contrast, the effect of dropping SR is obtained
by letting γ → 0 in Eq. (5.30), while 〈FF 〉ω is kept fixed.

The example of the damped harmonic oscillator demonstrates that the proper be-
haviour near the ground state of the system cannot be observed at the early stages of the
calculation, by looking at the action evaluated along classical paths (Eqs. (5.24), (5.25)),
regardless of whether these paths properly include the damping or not. Only after cor-
rect integration over the initial state density matrix the contributions from SR and SI

can compensate each other (in Eq. (5.29)), such that no artificial finite decay rate of the
ground state results, if SR is kept.

5.6 Power-law behaviour in quantum Brownian mo-

tion

We now turn to a discussion of the free particle, i.e. the Caldeira-Leggett model of
quantum Brownian motion. There, the reasoning is the same as before in principle:
Neglecting SR means that the zero-point fluctuations of the bath contained in SI may
heat up the particle. However, there is an important difference: The spectrum of the
free motion does not contain any resonance peak, unlike that of the harmonic oscillator.



5.6 Power-law behaviour in quantum Brownian motion 145

0 10 20 30

t

0

1

2

3

4

5

6

σ2 (t
)/

σ 02

Figure 5.2: The variance σ2(t) ≡
〈

q̂2(t)
〉

of the probability density ρ(q, q, t) for the damped
harmonic oscillator, plotted in units of the unperturbed ground state variance σ2

0 , as a function
of time t for the following friction strengths (top to bottom): γ/(2π 〈FF 〉ω=1) = 0, 0.5, 1, 2
(other parameters are m = ω0 = 1). A ratio of 1 corresponds to the correct value prescribed by
the FDT, while γ = 0 means SR has been neglected completely, such that σ2(t) grows without
bound. The dashed lines give the limit for t → ∞ (see Eq. (5.31)).

Therefore, only the low-frequency components (ω → 0, in the limit t → ∞) of the bath
spectrum will contribute to heating and decay (compare Eq. (5.12)), which results in a
peculiar long-time behaviour [Caldeira83, Hakim85, Schramm87] that cannot be captured
using the Golden Rule, as has been emphasized in [Golubev00].

One can observe the distinction between oscillator and free particle most easily in the
picture of the classical Langevin equation (5.30) introduced above. In Appendix A.9,
it is shown how the density matrix propagator J may be obtained in general via the
time-evolution of the Wigner density. This approach is physically more transparent than
the path-integral calculation. For the purposes of our present discussion, however, it will
suffice to consider the time-evolution of the diagonal elements of the density matrix in
momentum space. These have also been analyzed in [Golubev00], in order to demonstrate
the failure of the Golden Rule calculation to describe the decay of the original ground
state (p = 0) at zero temperature. We will confirm and explain the outcome of this
analysis using a simple argument based on the Langevin equation (5.30). Then we will
point out the role of SR and describe the important difference to the damped oscillator.

If the particle has momentum p0 at time 0, its momentum p at time t will be determined
by the fluctuating force F (·) in the following way (by solving Eq. (5.30) for ω0 = 0):

p = p0e
−γt +

∫ t

0

ds e−γ(t−s)F (s) . (5.33)

Since F (·) is a Gaussian random process, the probability density of finding a momen-
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tum p at time t is a Gaussian, of variance

〈

δp2
〉

≡
∫ t

0

ds1

∫ t

0

ds2e
−γ(2t−s1−s2) 〈F (s1)F (s2)〉 . (5.34)

The behaviour of 〈δp2〉 as a function of time is as follows (at T = 0): As long as
t � 1/γ, friction is unimportant and it is the double time-integral over the correlator of
F which is to be evaluated. For the Ohmic bath considered here, the power spectrum is
relatively strong at low frequencies (rising linearly with ω, see Eq. (5.21)). This leads to
a slow decay in time, 〈F (t)F (0)〉 ∝ 1/t2, which results in a logarithmic growth of 〈δp2〉,

〈

δp2
〉

≈ 2
η

π
ln(ωct) . (5.35)

Here ωc is the cutoff frequency of the bath spectrum and we have assumed ωct� 1. It is
this logarithmic behaviour which cannot be obtained using the Golden Rule approxima-
tion, to be discussed below. At later times, t � 1/γ, the growth saturates at a constant
value,

〈

δp2
〉

→ η

π
ln(ωc/γ) . (5.36)

The perturbation expansion in the coupling between system and bath can be carried
out by expanding the influence action in the propagator J (Eq. (5.2)) in powers of iSR−SI

(see Eq. (5.15) in the present article or Eq. (E13) of [Golubev00]). We want to discuss
the time-evolution of the diagonal elements ρpp(t) of the density matrix in momentum
space. The evolution starts from the equilibrium density matrix, which is a Gaussian
momentum distribution of variance 〈p2

0〉 = mT (the following formulas will be analyzed
for arbitrary T ). After a time t, the density matrix is still a Gaussian, but of variance
(compare Eq. (5.33)):

〈

p2
〉

=
〈

p2
0

〉

e−2γt +
〈

δp2
〉

. (5.37)

From this we can easily derive the result for δρ
(1)
pp (t) which could alternatively be

obtained by first expanding J to first order in iSR − SI , going over to the momentum
representation and finally integrating over the initial density matrix (as was done in
[Golubev00]; see Eq. (E18), which is, however, still written in terms of matrix elements
of the coordinate operator):

ρpp(t) =
1

√

2π 〈p2〉
exp

[

− p2

2 〈p2〉

]

≈ ρpp(0) · (1 +
〈p2〉 − 〈p2

0〉
2 〈p2

0〉

(

p2

〈p2
0〉

− 1

)

+ · · ·) . (5.38)

In evaluating 〈p2〉, only the terms up to first order in γ and 〈FF 〉ω must be kept for the
purposes of this expansion. At finite temperature T , the behaviour of 〈p2〉 at long times
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t� 1/T is governed by the linear decrease stemming from 〈p2
0〉 e−2γt ≈ 〈p2

0〉 (1− 2γt) and
the linear increase from 〈δp2〉 ≈ 2ηT t. If the initial density matrix really describes the
equilibrium distribution, then detailed balance holds and these terms cancel. For times
t � 1/γ, the time-evolution of 〈p2〉 is governed by 〈δp2〉, evaluated for the correlator
〈FF 〉ω taken at T = 0 (which only contains the zero-point fluctuations of the bath). For
consistency of the expansion, 〈δp2〉 in Eq. (5.34) has to be evaluated by setting γ = 0.
Therefore, only the discussion given above for times t� 1/γ is relevant. The logarithmic
growth of 〈δp2〉 given in Eq. (5.35) corresponds to a power-law behaviour of the (exact)
time-evolution of ρpp(t) for t � 1/γ. This logarithm, that appears in the perturbation
expansion (5.38), is “overlooked” in the Golden Rule approximation, where only terms
growing linearly with time are kept. Therefore, the Golden Rule rate turns out to vanish
[Golubev00]. These power-laws are characteristic of the density matrix propagator J of
quantum Brownian motion at zero temperature (see Appendix A.9).

On the other hand, the effect of neglecting SR may be analyzed by setting the friction
constant γ to zero in Eq. (5.34). Then, the spread 〈δp2〉 of the momentum distribution
grows without bounds for all times, which is obviously not the correct physical behaviour.
It is qualitatively similar to the heating produced in the damped oscillator model. How-
ever, since the growth proceeds only logarithmically in time, the artefacts of this approx-
imation, when applied to the free particle, are not nearly as drastic as the finite decay
rate of the ground state observed for the oscillator. In particular, within perturbation
theory, no qualitative change is obtained by dropping SR for the free particle (no finite
decay rate is produced).

Furthermore, if we had considered a super-Ohmic bath (e.g. due to phonons), whose
spectrum decays faster than ω1 for ω → 0, the growth of 〈p2〉 would saturate even without
friction (as it should, since there is no velocity-dependent friction for such a bath). In
contrast, the behaviour of the harmonic oscillator discussed above would remain qualita-
tively the same as for the Ohmic bath, since its decay depends on the bath spectrum at
the resonance frequency of the oscillator and is not affected in any essential way by the
details of the spectrum at low frequencies. This is consistent with the fact that in the
oscillator case already the Golden Rule is sufficient to obtain an essentially correct picture
of the artificial decay produced by dropping SR, while, for quantum Brownian motion,
it fails to describe the subtle power-laws associated with the low-frequency (long-time)
properties of the Ohmic bath at zero temperature.

The difference between oscillator and free particle also shows up clearly in the be-
haviour of the imaginary part of the influence action: For the free particle, SI always
grows only logarithmically with time t (at T = 0), independent of whether one keeps SR

or sets it to zero (i.e. γ ≡ 0 in the equations of motion). This can be derived from the
formulas given in Appendix A.9 or those of [Golubev00], Appendix E (or [Caldeira83],
Section 6, with the proper limit ωR → 0 for the free particle).

Hence, we conclude that for the oscillator (or any motion containing an extended
spectrum) the effects of dropping SR are much more pronounced than for the free motion,
since they lead to an artificial finite decay rate. We have also observed that this effect can
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already be understood within the framework of the Golden Rule approximation, whereas
that approximation is incapable of describing the more subtle “power-law decay” found
for the free particle.

5.7 Qualitative discussion of other models: Nonlin-

ear coupling and Pauli principle

It could be argued that our discussion of the damped oscillator has only demonstrated
the importance of SR in preventing an artificial decay of the ground state and has little to
do with dephasing. Indeed, if one wants to discuss dephasing, one should rather consider
the decay of a coherent superposition of the ground state and some excited state (see,
for example, the previous chapter). This is relevant both for arbitrary nonequilibrium
situations as well as for the calculation of the system’s linear response, where the per-
turbation creates a superposition of excited states and the ground state. In the example
of the damped harmonic oscillator, full relaxation into the ground state will always take
place (at T = 0), for any such excited state. This holds regardless of the bath spectrum,
provided the latter does not vanish around the resonance frequency of the oscillator. For
weak coupling, the decay of the density matrix (and, therefore, the linear response) may
be described conveniently using a simple master equation approach (taking into account
the special regular energy spectrum). What is more, even if one neglects SR in a path-
integral calculation, the predicted decay rates will be correct, excepting only that for the
ground state, which we have discussed above. The reason for this, however, is a specialty
of the linearly damped harmonic oscillator. Since the bath couples to the coordinate oper-
ator, whose matrix elements only connect adjacent oscillator levels, the relevant “system
correlator” (in Eq. (5.10)) turns out to be symmetric for any state but the lowest one.
Therefore, the decay rate will depend only on the symmetric part of the bath correlator
as well, see Eq. (5.17). Hence, for all the excited states, the evaluation of the total decay
rate is not affected by dropping SR. This point has already been discussed in connection
with the model of two oscillating wave packets, at the end of Section 5.2.

Since we are interested in demonstrating the (generic) importance of SR for the de-
phasing of a superposition of low-lying levels, the natural choice is to consider a bath
with an excitation gap larger than the resonance frequency of the oscillator (see Fig. 5.3).
In that case, we expect the lowest levels to remain coherent in the correct description.
Unfortunately, in the model of the linearly damped oscillator discussed above, we would
not obtain any finite decay rate, regardless of whether SR is kept or not. This is because
the corresponding classical noise force is out of resonance and cannot heat the oscillator.

Therefore, in order to analyze a situation where the importance of retaining SR is
displayed even for excited states, we have to go beyond exactly solvable linear models.
As a consequence, the following discussion is necessarily incomplete insofar as we cannot
give exact proofs of the statements to be made below. These statements will be based
on the experience acquired in the simpler models discussed above. We will also make use
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of some Golden Rule type arguments, noting that the Golden Rule has been sufficient
to understand the behaviour of the damped oscillator in a qualitatively correct way. In
any case, we believe it is useful to contrast the results obtained by dropping SR with the
“commonly accepted” picture.

Let us, therefore, consider the following model: We retain the harmonic oscillator, but
change the coupling between system and bath from V̂ = −q̂F̂ to V̂ = −f(q̂)F̂ , with a
nonlinear function f . This is called state-dependent friction [Weiss00]. In that case, the
transition matrix elements of the system operator f(q̂) will, in general, be nonzero between
any two states, which is the important difference to the linear case. If we introduce a bath
spectrum with a gap larger than nω0, then, for sufficiently weak coupling and according
to a simple Golden Rule calculation, the first n excited states will not decay at zero
temperature. Any coherent superposition of these states will therefore remain coherent.
The full, non-perturbative picture will be slightly more complicated, but the essential
point should remain the same: The first excited states will acquire an admixture of other
levels and become entangled with the states of the bath. They will experience some
frequency shifts and the transition matrix elements will be renormalized. Of course, the
new eigenstates of the coupled system will remain in a coherent superposition forever
(by definition). The n + 1 lowest ones still have a discrete spectrum and are in direct
correspondence to the initial unperturbed states. When switching on the interaction at
t = 0, a partial decay will result. Physically, this corresponds to the relaxation of the
initial state into the selfconsistent coupled state of system and bath (see [Hakim85] for
a discussion of these issues in the case of the free particle). However, the initial decay
will saturate in time on a short time-scale. During this transient adjustment, the reduced
system density matrix becomes mixed to a small extent (if the coupling is weak), but no
non-saturated long-term decay (indicated by a finite decay rate) results. In any case, the
transient decay is an artefact of the procedure of suddenly switching on the interaction.
A full calculation of, for example, the linear response properties of the dissipative system
would start out with the selfconsistent ground state of the fully interacting system (as
was done in [Schramm87] for the free particle).

In contrast, dropping SR would lead to a completely different picture, since then SI

would correspond to a classical noise force. Starting from any of the first n excited states,
the fluctuating field would always be able to induce transitions up in energy, thus leading
to a finite decay rate. The role of SR in the correct description of a quantum noise force
is precisely to cancel these upward transitions, as has been demonstrated in the case
of the linearly damped oscillator. Due to this finite decay rate, any initially coherent
superposition would get destroyed, leading to complete dephasing. No saturation of the
decay could be observed, in spite of the gap in the bath spectrum.

It is this behaviour that is described qualitatively correctly by evaluating SI along
semiclassical paths of the oscillator. The expression for SI , Eq. (5.5), is now to be
changed simply by replacing q by f(q). While an (unperturbed) oscillator path of the
form q(τ) ∝ cos(ω0t) only contains frequencies ±ω0 which cannot couple to the gapped
bath, the function f(q(τ)) will, in general, contain all higher harmonics as well. This di-
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Figure 5.3: The models described in the text. Left : A bath with a gap would lead to the upward
transitions indicated by grey arrows if (and only if) SR were neglected. Right : A sea of fermions
may block downward transitions (dashed) even though they are possible in the single-particle
picture.

rectly corresponds to the character of the symmetrized system spectrum, i.e. the Fourier
transform of 〈{f(q̂(τ)), f(q̂(0))}〉. These frequencies contained in the system motion then
will couple to the bath spectrum, leading to an unbounded growth of SI with time.

Similarly, if we were to use a bath without a gap, but where the spectrum falls off fast
towards low frequencies, then the correct description would also yield decay rates that
quickly become smaller when going towards the ground state, while they would saturate
at a finite, comparatively large level if SR were dropped.

As pointed out in Chapter 1, the present work has been motivated in part by the
ongoing controversial debate on low-temperature dephasing in an interacting disordered
fermion system [Mohanty97a, Golubev99, Cohen99, Vavilov99, Aleiner99, Kirkpatrick02,
Imry02]. Since the usual Feynman-Vernon influence functional deals only with a single-
particle situation, it cannot be applied directly to this problem. However, the authors of
[Zaikin00, Golubev99, 00] have succeeded in deriving an extension of the usual influence
functional to the many-fermion situation, using an exact time-evolution equation for the
reduced density matrix of a fermion system under the action of a quantum bath (which has
also been rederived using different approaches, e.g. in [Marquardt00]). In their result,
the Fermi distribution (and, therefore, the Pauli principle) only enters SR, while SI is
unaffected (Eqs. (54) and (55) of [Golubev99]). Therefore, the dephasing rate, as read off
from SI , is found to equal the rate which would also be obtained in a purely single-particle
calculation. Although we do not analyze the problem of weak-localization here, we will
use the insights gained above in order to explain why, in our opinion, the assumption
that the dephasing rate can be derived from SI alone must be proven instead of being
taken for granted. This holds even when SR vanishes or is negligible on the relevant
pairs of classical time-reversed trajectories (which is the case in [Golubev99]), since, in
general, the integration over the fluctuations away from these trajectories will be essential
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for obtaining a cancellation between the effects of SR and SI (see Sec. 5.4), in addition
to properly taking into account the initial density matrix. Furthermore, we note that in
these calculations the detailed form of the bath spectrum at low frequencies turns out to
be unimportant for the essential result of a finite zero-temperature dephasing rate. This
is in marked contrast to the case of the free particle (where the Ohmic bath plays a special
role [Schramm87]; see also [Guinea02, Golubev02b]), but similar to what is observed for
the damped harmonic oscillator when SR is neglected. It is for this reason that we have
chosen a bath with an excitation gap in order to demonstrate the importance of SR, since
there the effects come out most clearly, although they are also present for other bath
spectra (compare the discussion above).

The model situation of the damped oscillator described above already contains one
key ingredient related to the description of dephasing for an electron moving inside a
disordered metal, namely an extended system spectrum: Due to the impurity scattering,
the system spectrum (e.g., of the velocity operator) contains frequencies up to (at least)
the elastic scattering rate, which may couple to the zero-point fluctuations contained in
the bath spectrum. This is in contrast to the free particle, which can only couple to the
low-frequency bath modes (see the discussion at the end of Section 5.6). As before, the
importance of SR will be visible most easily for a bath containing an excitation gap. For
such a bath, the free motion (without impurity scattering) will not show any nontransient
decay, regardless of whether SR is taken into account or not. In contrast, the model to be
discussed below, which is more similar to the situation in the disordered metal, will show
a finite decay rate of low-lying levels if and only if SR is neglected.

Apart from the extended system spectrum, we have to take into account another
important feature of many calculations [Chakravarty86, Golubev99, Cohen99] dealing
with electrons in a disordered metal: the use of the semiclassical analysis. For linear
systems the semiclassical result for the path-integral is exact, such that it can even be
used near the ground state of the system, as we have done it here. However, in such a case,
the size of the fluctuations around the path is comparable to the amplitude of the path
itself, which is not the situation in which semiclassics is usually applicable. In order to
gain intuition for a typical semiclassical situation, we could reconsider the example with
the nonlinear coupling to a gapped bath given above: Imagine an initial superposition
of fast wavepackets, whose wavelength is much smaller than the packet size but whose
excitation energies are still below the bath threshold. They would show a finite decay or
dephasing rate (for the reasons given above), if only SI were used for the analysis, but not
in the full calculation. Still, for this scenario one might argue that it has been clear from
the outset that the semiclassical analysis cannot be trusted, since those high-frequency
components in the system spectrum that are responsible for the decay are necessarily
larger than the energetic distance to the ground state.

It is only in a system of degenerate fermions that the following two conditions can
be fulfilled all at once: On the one hand, the semiclassical analysis of a single (non-
interacting) electron moving at the Fermi level is valid for an external potential which is
sufficiently slowly varying, such that the system spectrum (concerning the motion of the
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single electron) only contains frequencies much smaller than the Fermi energy. On the
other hand, the whole many-particle system may be near (or in) its ground state.

While the first feature would lead one to believe that SR may be omitted, we have
learned from the examples discussed before that this is likely to be incorrect whenever the
second condition holds as well. We stress once again that the two conditions are mutually
exclusive in a single-particle problem, which is the reason why such considerations have
not played any role in influence-functional calculations up to now.

In order to render the discussion concrete, we can once again make use of the example
with a nonlinear coupling f(q̂) given above, provided we suppose the N lowest oscillator
states to be filled up with fermions initially (see Fig. 5.3). Apart from the nonlinear
coupling, this is the model discussed in the previous chapter. For a relatively smooth
function f , the matrix elements of f(q̂) only connect states within a range much smaller
than εF = Nω0. In our example, this range should still be larger than the gap nω0 of the
bath. Dephasing of a single particle near εF can then certainly be described fully within
the semiclassical analysis, and, to a good approximation, using SI alone, as has been
discussed above. The same holds for the many-particle system, if one explicitly considers
a classical noise force, where SR is absent. In that case, the many-particle problem can
really be treated as a collection of independent single-particle problems, as is the case
for any external time-dependent potential. Only in the end an average of the full Slater
determinant over all possible realizations of the external noise has to be carried out.

If the dephasing rate is calculated solely from SI , it turns out to be finite [Zaikin00,
Golubev99, 00] and not to depend at all on the distance to the Fermi surface. This is
consistent with the fact that the the value of εF does not even appear in the single-particle
calculation. On the other hand, for a quantum bath SR does not vanish and should be
included in the influence action. It is true that for the case of a highly excited single
particle the dephasing rate comes out correct, regardless of whether SR is kept or not, as
we have discussed before. However, we have also pointed out that there is an important
physical difference between the two calculations. Since in the correct approach (including
SR), the transitions induced by the bath are purely downwards in energy (accompanied
by spontaneous emission into the bath), it is reasonable to expect that, in the many-
particle problem, they will be blocked by the Pauli principle. In any case, this is what is
found using the Golden Rule. Judging from these arguments, the growth of SI due to the
nonzero overlap of the (symmetrized) system spectrum with the high frequencies of the
bath spectrum does not imply dephasing and decay. Rather, when performing the full
analysis including SR, these high frequencies most probably only lead to a renormalization,
similar to that obtained for an electron interacting with optical phonon modes (a gapped
bath), leading to the formation of a polaron. The formation of the polaron will be visible
as an initial transient decay of the single-electron density matrix (for the artificial case of
factorized initial conditions), which saturates on a short time-scale. Therefore, to lowest
order, for a bath with a gap no finite relaxation rate of the lowest-lying single-particle
excitations above the Fermi sea is expected, just as for the lower levels of the harmonic
oscillator in the single-particle model with nonlinear coupling to a gapped bath.
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We have to qualify this statement by taking into account the fact that the coupling
between electrons and bath always also induces an effective interaction between the elec-
trons (compare the previous chapters for examples). In this way, a given electron becomes
coupled indirectly to the bath of other electrons, such that scattering processes will, in-
deed, lead to a finite decay rate even for those low-lying excited levels. This precludes any
rigorous proof demonstrating the complete absence of decay and dephasing for low-lying
levels even in such a rather simple situation, in spite of the assumption of an excitation
gap in the bath spectrum. However, the consequences of the effective interaction can be
distinguished easily from the finite dephasing rate that would be predicted by looking at
SI alone. If the coupling to the bath is of strength g, then the latter rate would go as g2.
In contrast, the effective interaction (obtained after integrating out the bath) will itself
be of strength g2, such that the resulting relaxation rate (due to coupling of an electron
to the density fluctuations of other electrons) will be of fourth order in g. In addition,
of course, the rate will depend strongly on the distance to the Fermi surface, vanishing
when the Fermi energy is approached.

5.8 Conclusions

We have tried to demonstrate that the real part SR of the Feynman-Vernon influence
action cannot be neglected in an analysis of dephasing and decay near the ground state
of a system, in spite of the fact that, in the simplest situations (involving highly excited
states and the semiclassical analysis), it is only the imaginary part SI which enters the
dephasing rate. To this end, we have discussed how SR and SI may cancel each other’s
effects not only in lowest-order perturbation theory but also to all orders, by examining
exactly solvable linear quantum dissipative systems. In general, the cancellation is only
found after proper integration over the fluctuations away from semiclassical trajectories,
taking into account the action of the unperturbed system and its initial density matrix.
Furthermore, we have pointed out an essential difference between the damped oscillator
and the free particle with respect to this issue. We have argued that the insight obtained
in the case of the damped oscillator is also applicable to nonlinear systems and important
for discussions of dephasing in systems of disordered degenerate fermions.

In summary, it may be possible to discuss dephasing and decay without considering SR

either if the noise is nearly classical (external nonequilibrium radiation or bath in the high-
temperature limit) or if the system itself is in a highly excited state. Otherwise, dephasing
rates obtained solely from SI are bound to come out finite at zero temperature in most
cases, even when a simpler Golden Rule calculation gives vanishing results. Judging
from the examples discussed above, this is probably not because such a nonperturbative
influence functional calculation goes beyond the Golden Rule approximation, but because
it neglects some physics already contained even within this approximation.

Still, it has to be emphasized at the same time that there is no general proof show-
ing the impossibility of zero-temperature dephasing near the ground state. There cannot
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be such a proof, since there is evidently at least one counter-example (the Caldeira-
Leggett model of quantum Brownian motion and similar models [Caldeira83, Guinea02,
Golubev02b]; see the discussion of section 5.6 on why this is quite different from mod-
els such as the damped oscillator). Besides, of course, there is no generally applicable
definition of “dephasing” that is useful under all conceivable circumstances.

It should be noted that the conclusions which have been drawn here concerning de-
phasing in weak-localization (made public in [Marquardt02b]) have not been accepted
by the authors of [Golubev99] (see footnote in [Golubev02c], where the theory has been
refined), although (in our opinion) the points raised in this chapter remain valid.



Chapter 6

Summary and open questions

In this thesis we have analyzed dephasing, i.e. the destruction of quantum-mechanical
interference effects by a fluctuating environment. Particular emphasis has been put on
the behaviour at low temperatures and the influence of zero-point fluctuations and the
Pauli principle. These issues have been at the focus of the recent controversial discus-
sion concerning a possible saturation of the dephasing rate in mesoscopic systems at low
temperatures.

In Chapter 2, we have studied dephasing in tunneling transport through localized levels
coupled to a bath, based on the “independent boson model” and the concepts of the “P (E)
theory” of tunneling in a dissipative environment. In particular, we have analyzed how the
fluctuations of the environment may lift perfect destructive interference in a symmetric
setup, where this effect cannot be brought about by “mere renormalization”. For the
case of sequential tunneling through a double-dot, we have derived a master equation
whose solution yields the dependence of the current on the phase-difference, temperature,
voltage and bath spectrum, treating the tunnel coupling perturbatively and the system-
bath coupling exactly. In the limit of small voltages and temperatures, the “visibility”
of the interference effect becomes perfect for “weak” bath spectra, while it vanishes for
spectra that are comparatively strong at low frequencies, including the “Ohmic bath”.
For the case of cotunneling, which is more similar to a scattering situation, there is no such
anomalous behaviour. We have interpreted the expressions for the cotunneling rates in
terms of a generalization of the Feynman-Vernon influence functional, demonstrating (for
the special case treated here) how the influence functional may be modified in situations
where energy conservation and the Pauli principle play a role.

The model of Chapter 3, a clean Aharonov-Bohm ring with a fluctuating magnetic
flux, can be considered a straightforward generalization of Quantum Brownian motion of
a single particle. We have shown how the magnitude of the persistent current decreases,
due to the increase in the effective total mass of the electrons on the ring. For the Nyquist
noise of an external coil (white noise of the flux at finite temperatures), this is merely a
finite renormalization effect, while the persistent current vanishes for the “Ohmic bath”
(1/f fluctuations of the flux at T = 0), which leads to velocity-proportional friction. We
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have also discussed dephasing of superpositions of momentum states on the ring, in terms
of the two-particle Green’s function of electrons. Both for the Nyquist noise and the
Ohmic bath, “power law dephasing” is observed at T = 0. Finally, we have analyzed
the influence of the bath on the perfect destructive interference observed in cotunneling
through the ring, for a static magnetic flux of half a flux quantum. This analysis has been
carried out only for the Nyquist noise (and weaker bath spectra), for reasons explained in
the text. Building on the results of Chapter 2, we have shown that the incoherent current
vanishes as V 3 (for Nyquist noise, at T = 0), such that there is no dephasing in the linear
conductance.

In Chapter 4, we have introduced another many-particle generalization of a well-
known dissipative quantum system. We have treated a model of fermions in a damped
harmonic oscillator, where a fluctuating force couples to the center-of-mass motion of the
electrons. In contrast to the models of previous chapters, this one shows a strong effect
of the Pauli principle, due to the fact that the coupling to the bath induces transitions
between the different energy eigenstates (“non-diagonal coupling”). Using the method of
bosonization as a tool, we have analyzed the case of large particle numbers and derived
analytic expressions for the Green’s functions of the fermions. These have been discussed
in detail, showing the influence both of the Pauli blocking and of the “decoherence-free
subspace”, i.e. the relative motion of the fermions in the oscillator. In particular, we
have shown the decay of the reduced single-particle density matrix for a particle which
has been placed initially into a superposition of excited states above the Fermi sea.

From the results obtained for the various model systems, one can conclude at least
that there is no hint of a “generic” zero-temperature dephasing mechanism that would
be independent of the details of the bath spectrum and of the Pauli principle, and which
would be active even when the energy supplied to the system (e.g. the bias voltage) is very
small. This is consistent with various other models and simple Golden Rule arguments.
However, it is in contrast to what had been suggested theoretically by some authors after
the surprising experimental findings on a possible saturation of the weak-localization
dephasing rate at low temperatures. In these calculations, the Feynman-Vernon influence
functional is used to analyze dephasing at low temperatures, near the ground state of
a system, and the dephasing rate is deduced from the imaginary part of the functional.
Therefore, in Chapter 5 we have presented a detailed discussion of how the imaginary part
of the influence functional (describing fluctuations) and the real part (describing friction)
may cancel each other’s effects under such circumstances. Physically, this is because
the ground state of a quantum-mechanical system is stable due to the balance between
zero-point fluctuations of the environment and the dissipation induced by coupling to the
same environment. We have treated exactly solvable model systems, such as the harmonic
oscillator and the free particle, coupled to a linear bath. Thus, we have shown how this
cancellation enters the calculation beyond lowest-order perturbation theory. We have also
given a qualitative discussion of systems where the Pauli principle becomes important.

There are several interesting open questions connected to the models discussed in this
thesis. First of all, in the treatment of tunneling under the influence of a fluctuating
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environment, we have kept the system-bath interaction exactly, but confined ourselves to
a perturbative treatment of the tunnel coupling. Going beyond this approximation would
be particularly important for sequential tunneling, where the crossover between finite
and exactly zero visibility should become smooth. If the passage of the electron happens
faster, the bath cannot adapt fully to the electron, which may diminish the difference
between the various bath spectra. On the other hand, this will also introduce correla-
tions between subsequent tunneling events. This leads to the possibility of “correlated
many-particle tunneling”, where the first electron overcomes destructive interference by
leaving a “virtual” trace in the bath, which is later erased by a second electron, such
that energy conservation is not violated even for a gapped bath. The so-called “real-time
renormalization group” [Schoeller99] seems to be a sufficiently strong (numerical) tool to
address these questions.

Concerning the model of the “damped Fermi sea”, one could consider a spatially
inhomogeneous fluctuating force, i.e. a nonlinear coupling to the individual electron
coordinates, or a potential different from the harmonic oscillator. Although the original
model cannot be solved exactly any more in that case, it may be feasible within the
approximation of bosonization employed here. The details will depend on the behaviour
of matrix elements of the force between different energy levels, but qualitatively one
expects there to be relaxation of (and possibly coupling between) all boson modes. Such
an analysis would also be important for the qualitative discussion of Chapter 5.
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Appendix A

Appendices

A.1 Proof of
〈

exp Â
〉

= exp
(〈

Â2
〉

/2
)

Here we give a proof of the relation
〈

exp Â
〉

= exp
(〈

Â2
〉

/2
)

for the thermal average

of the exponential of an operator Â that is linear in harmonic oscillator variables (and

where
〈

Â
〉

= 0). It is perhaps more transparent than the usual more abstract proofs (see

e.g. [Mermin66] or [Delft98]), since it shows the connection to the corresponding classical
identity, where A is a Gaussian random variable of zero mean. We have to consider only
a single oscillator, since Â can always be written as a sum over normal coordinates (and
-momenta), such that the average factorizes. First, Â is expressed as a linear combination
of position and momentum:

Â = αx+ β∂x . (A.1)

If Â were proportional to x (β = 0), the classical relation could be applied directly,
since the probability density with respect to x is Gaussian. By the Baker-Hausdorff
identity, we have

〈

eÂ
〉

=
〈

eαxeβ∂x
〉

eαβ/2 , (A.2)

where the last exponent follows from [x, ∂x] = −1. The average on the right hand side
is given in terms of the density matrix:

〈

eαxeβ∂x
〉

=

∫

dx eαx
(

eβ∂xρ(x, x̃)
)
∣

∣

x̃=x
=

∫

dx eαxρ(x + β, x) . (A.3)

The thermal equilibrium density matrix of a harmonic oscillator is Gaussian:

ρ(x′, x) = exp(−((x′ + x)/2)2

2 〈x̂2〉 − 〈p̂2〉
2

(x′ − x)2)/Z . (A.4)
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Upon inserting x′−x = β and (x′+x)/2 = x+β/2, we see that (A.3) corresponds to the
classical average of exp(αx) with a Gaussian probability distribution that has 〈x〉 = −β/2
and V ar x = 〈x̂2〉. This yields exp(α 〈x〉 + α2

2
V ar x). Therefore, we obtain:

〈

eαxeβ∂x
〉

= e−αβ/2+α2〈x̂2〉/2−β2〈p̂2〉/2 , (A.5)

where we have pulled out the factor exp(−β2 〈p̂2〉 /2) from Eq. (A.4) that is not part
of the probability density. Inserting this result into (A.2), we see that αβ/2 cancels in
the exponent. On the other hand, we have

〈

Â2
〉

=
〈

(αx̂+ βip̂)2
〉

= α2
〈

x̂2
〉

− β2
〈

p̂2
〉

,

which completes the proof.

A.2 Current expression for sequential tunneling through

the double-dot

At T = 0, for the symmetric situation, the current I is given by I = eγ I0[υ, δL, δR], with:

I0[υ, δL, δR] = 2 · [−δ2
L + (υ2 − 1)(1 + δ2

R) +

2δLδR(υ2 − 1) cosϕ+ δ2
Lυ

2 cos2 ϕ] ·
[−3δ2

L + 2δLδRυ
2 + (1 + δ2

R)(υ2 − 3) +

2(υ2(1 + δ2
L + δ2

R) + δLδR(υ2 − 3)) cosϕ+

δL(δL + 2δR)υ2 cos2 ϕ]−1 (A.6)

A.3 Cotunneling rate contributions

Here we describe the remaining contributions to the forward-tunneling rate Γ+. They
differ from Γ+

pp only in the order of tunneling operators entering Eq. (2.130):

Γ+
pp : L̂−R̂+R̂−L̂+

Γ+
ph : L̂−R̂+L̂+R̂−

Γ+
hp : R̂+L̂−R̂−L̂+

Γ+
hh : R̂+L̂−L̂+R̂− (A.7)

The resulting expression, Eq. (2.131), is changed in the following respects. First of

all, the tunnel matrix elements T
L(R)
j and the operators d̂

(†)
j are re-ordered according to

(A.7), while the indices j1, . . . , j4 and the time-points stay in the same order as before.
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Furthermore, accounting for the electron operators of the reservoirs leads to different
oscillating factors. We display only those parts of Eq. (2.131) that have to be changed:

Γ+
pp : eiεL(τ>−τ<)TL∗

j1
TR

j2
TR∗

j3
TL

j4
d̂j1(t− τ<)d̂†j2(t)d̂j3(0)d̂†j4(−τ

>) (A.8)

Γ+
ph : −e−iεRτ>−iεLτ<

TL∗
j1 T

R
j2T

L
j3T

R∗
j4 d̂j1(t− τ<)d̂†j2(t)d̂

†
j3

(0)d̂j4(−τ>) (A.9)

Γ+
hp : −e+iεRτ<+iεLτ>

TR
j1
TL∗

j2
TR∗

j3
TL

j4
d̂†j1(t− τ<)d̂j2(t)d̂j3(0)d̂†j4(−τ

>) (A.10)

Γ+
hh : e+iεR(τ<−τ>)TR

j1
TL∗

j2
TL

j3
TR∗

j4
d̂†j1(t− τ<)d̂j2(t)d̂

†
j3

(0)d̂j4(−τ>) (A.11)

The energies in the exponentials stem from the difference in energies between interme-
diate and initial state, where the initial state gives the contribution −εL to this difference
in the case of a particle state and +εR in the case of a hole state. The sign in front of the
expression is a consequence of fermion operator reordering in the application of Wick’s
theorem.

When evaluating the two-particle Green’s functions in the case of the independent
boson model, we still always have j1 = j2 = j, j3 = j4 = l for the electronically elastic
contributions. However, the signs in front of the exponents in the bath average change in
(2.132), since d̂ is connected to eiφ̂, while d̂† belongs to e−iφ̂. In Eq. (2.133), the signs in
front of Kjl must be reversed for Γ+

ph and Γ+
hp, while they remain the same for Γ+

hh. The
signs of Kjj and Kll are never changed.

A.4 Exact integral expressions for the cotunneling

rate for the Ohmic bath at T = 0

For an Ohmic bath spectrum of the form
〈

F̂ F̂
〉T=0

ω
= 2αωe−ω/ωcθ(ω), the integration in

Eq. (2.25) can be carried out, yielding

K(t) = −2α ln(1 + iωct) , (A.12)

and therefore

eK(t) = (1 + iωct)
−2α . (A.13)

In the model of two dots, which couple like F̂+ = F̂ = −F̂−, this leaves the following
integral to be performed in Eq. (2.146) for the cotunneling rate contribution γ++:

∫ ∞

0

dτ>dτ< ei∆(τ<−τ>)

[(1 + iωcτ>)(1 − iωcτ<)]2α
×

∫ +∞

−∞
dt eiωt

[

(1 + iωc(t− τ<))(1 + iωc(t + τ>))

(1 + iωct)(1 + iωc(t− τ< + τ>))

]2α

. (A.14)
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In the expression for γ+−, the sign of the exponent of the second bracket has to be
inverted (due to K+−(t) = −K++(t)). Note that for t → ∞, the second bracket goes
to 1, which yields a 2πδ(ω) contribution to the t-integral, regardless of the value of the
exponent α. This gives a coherent term ∝ S(ω = 0) in the end-result, such that there is no
zero-bias anomaly in contrast to the case of sequential tunneling in presence of an Ohmic
bath. We emphasize that the expressions derived in [Odintsov92] for cotunneling across
two junctions in series with a resistor are similar but yet different in an important respect:
There, no such finite limiting value for t → ∞ is obtained, since the phase-correlation
functions entering the exponent are different. The physical reason for the difference is the
presence of potential fluctuations between the left and right reservoir electrodes in their
model, leading to a ZBA, while we always assume the fluctuations to be limited to the
interference region. Those “global” fluctuations would not lead to dephasing anyway, as
they do not distinguish between different paths.

For the special case of α = 1/2, the t-integral may be evaluated using the residue
theorem. The remaining integrals over τ>(<) can be carried out after expanding the
integrand in the limit ω → 0, in which case they give a result that rises as ω1 (i.e. like
the bath spectrum) at low frequencies, as predicted by perturbation theory.

A.5 Derivation of the transformed spectrum for the

Caldeira-Leggett model in vector gauge

The spectrum of the vector potential is changed due to the quadratic term e2Â2/(2mc2) ≡
CÂ2 from the kinetic energy of the particle. This leads to a change in classical eigen-
frequencies and -vectors of the bath oscillators. As the spectrum is independent of the
explicit expression for Â in terms of the oscillator variables, we deviate from the main
text and take Â =

∑

j gjQ̂j, as well as

Ĥ tot
B = CÂ2 +

∑

j

P̂ 2
j

2M
+
MΩ2

j

2
Q̂2

j , (A.15)

which is diagonalized by going over to new coordinates: Q̂l = Sln
˜̂
Qn and P̂l = Sln

˜̂
P n,

with a real orthogonal matrix S. Therefore, the new “effective” spectrum is

〈

ÂÂ
〉T=0

ω
=
∑

l,j

glgj

〈

Q̂lQ̂j

〉

ω
=
∑

l,j,n

glgjSlnSjn

〈

˜̂
Qn

˜̂
Qn

〉

ω

=
∑

l,j,n

glgj
SlnSjn

2MΩ̃n

δ(ω − Ω̃n) , (A.16)

where Ω̃n are the new eigenfrequencies. This is evaluated using the resolvent Rlj(ω
2) =
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〈

l|(ω2 − Ω̃2)−1|j
〉

, where l, j refer to the old (classical) basis vectors, and Ω̃2
lj ≡ δljΩ

2
l +

(2C/M)glgj is the matrix to be diagonalized. We obtain:

〈

ÂÂ
〉T=0

ω
=
∑

l,j

glgj

Mπ
ImRlj(ω

2 − i0+) θ(ω) . (A.17)

The resolvent can be calculated exactly (compare the next appendix), and the sum
over the resolvent turns out to be

∑

l,j

glgjRlj(ω
2) = (M/2C)





(

(2C/M)
∑

n

g2
n/(ω

2 − Ω2
n)

)−1

− 1





−1

, (A.18)

which leads to Eq. (3.12) of the main text, after inserting
〈

ÂÂ
〉(0)T=0

ω
=
∑

n δ(ω −
Ωn)g2

n/(2MΩn).
Now we add a linear term −λÂ to Ĥ tot

B and minimize the potential energy with respect
to A. This leads to

A
(min)
j =

∑

j

gjQ
(min)
j =

λ

M

∑

l,j

gl

(

Ω̃2
)−1

lj
gj ,

which is evaluated using a formal Taylor expansion in the “perturbation” (2C/M)glgj

to Ω̃2
lj:

∑

l,j

gl(D +G)−1
lj gj = −

∞
∑

n=1

(

−
∑

l

g2
l

Dl

)n

=

(

1 +
∑

l

g2
l

Dl

)−1(
∑

l

g2
l

Dl

)

, (A.19)

where Glj ≡ glgj and Dlj ≡ δljΩ
2
j(M/2C) = δljDl. After inserting the bath spectrum,

this results in Eq. (3.18) for the effective mass of the particle.

A.6 Coupled oscillator problem for the damped Fermi

sea

We want to solve the problem of coupled oscillators defined in Eq. (4.27), i.e. we have to
diagonalize

Ω2 + V (A.20)

with V0j = Vj0 = (g/m)
√

N/NB for j > 0 and all other entries of V equal to zero. In
fact, for our purposes we only need the spectral weight of the mode j = 0 of the original
problem in terms of the new eigenmodes and eigenfrequencies:
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W (ω) =

NB
∑

j=0

C2
0jδ(ω − Ω̃j) . (A.21)

This is related directly to the resolvent

R(ε) =

[

1

ε− (Ω2 + V )

]

00

, (A.22)

since

R(ε− i0) − R(ε + i0) = 2πi

NB
∑

j=0

C2
0jδ(ε− Ω̃2

j) , (A.23)

where Ω̃2
j is the j-th eigenvalue of the matrix Ω2 + V . Therefore, we have

W (ω) =
ω

πi
(R(ω2 − i0) − R(ω2 + i0))θ(ω) , (A.24)

where we used δ(ω − Ω̃j) = 2ωθ(ω)δ(ω2 − Ω̃2
j).

The evaluation of the resolvent R(ε) is straightforward, because the “perturbation” V
only connects 0 and j > 0. Using G−1 = ε− Ω2, we get

R(ε) = [G+GVG +GVGV G+ . . .]00

= G00

∞
∑

n=0

(

NB
∑

j=1

V 2
j0GjjG00

)n

=

[

ε− Ω2
0 −

∑

j>0

V 2
j0

ε− Ω2
j

]−1

. (A.25)

In the continuum limit, we may use Eq. (4.5) to evaluate

∑

j>0

V 2
j0

ε+ iδ − Ω2
j

= 2
N

m

∫ ∞

0

〈

F̂ F̂
〉T=0

ω
ω dω

ε+ iδ − ω2

≡ ∆(ε) − i

2
Γ(ε) sgn(δ) . (A.26)

Here the definitions

Γ(ε) = 2π
N

m

〈

F̂ F̂
〉T=0

√
ε
θ(ε) (A.27)

∆(ε) =
1

2π

∫

Γ(ν)

ε− ν
dν . (A.28)
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have been introduced. (where a principal value integral is implied in the last line).
Using this, we finally obtain (with (A.24)-(A.26)):

W (ω) =
ω

π
θ(ω)

Γ(ω2)

(ω2 − ω2
0 − ∆(ω2))2 + (Γ(ω2)/2)2

. (A.29)

A.7 Two-particle Green’s function of damped Fermi

sea

The fermion operators ĉn in the oscillator are related to the auxiliary fermion operators
ψ̂(x) via Eq. (4.14). Therefore, the special two-particle Green’s function we need is given
by:

〈

ĉn(0)ĉ†l′(t)ĉl(t)ĉ
†
n′(0)

〉

=

1

(2π)2

∫

dxdx′dydy′ ei(l′x′+n′y′−lx−ny)×
〈

ψ̂(y, 0)ψ̂†(x′, t)ψ̂(x, t)ψ̂†(y′, 0)
〉

(A.30)

We use the expression of ψ̂ in terms of the boson field φ̂, Eq. (4.16), to obtain (compare
the single-particle expressions Eqs. (4.21), (4.22)):

〈

ψ̂(y, 0)ψ̂†(x′, t)ψ̂(x, t)ψ̂†(y′, 0)
〉

=

1

(2π)2
ei(nF +1)(x+y−x′−y′)eE(2) , (A.31)

with the exponent

E(2) ≡
〈

φ̂(y, 0)φ̂(x′, t)
〉

−
〈

φ̂(y, 0)φ̂(x, t)
〉

+
〈

φ̂(y, 0)φ̂(y′, 0)
〉

+
〈

φ̂(x′, t)φ̂(x, t)
〉

−
〈

φ̂(x′, t)φ̂(y′, 0)
〉

+
〈

φ̂(x, t)φ̂(y′, 0)
〉

−
1

2
(Cx + Cy + Cx′ + Cy′) . (A.32)

Here we have introduced

Cx ≡
〈

φ̂(x, 0)2
〉

−
〈

φ̂(x, 0)2
〉

(0)
, (A.33)
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where the second correlator refers to the non-interacting case (without bath) and stems
from the factor r (see Eq. (4.16)).

Once again, we restrict the further evaluation to the special case of T = 0, where some
of the expressions become slightly simpler. We express the nontrivial c.m. mode contri-
bution to the correlator of φ̂ in terms of the b̂

(†)
1 -correlators α(t), β±(t) introduced above

(see Eqs. (4.37), (4.38) and (4.39)). Since the two-particle Green’s function involving
the oscillator fermion operators ĉn is related to that of the auxiliary fermion operators ψ̂
by means of a Fourier integral over the coordinates x, y, x′, y′ (cf. Eq. (A.30)), we find
it convenient to introduce the following abbreviations (similar to our approach for the
single-particle Green’s function):

X(′) ≡ eix(′)

, Y (′) ≡ eiy(′)

(A.34)

Then we obtain

Cx = β+(0) + β−(0) − 1 − α(0)(X2 +X−2) , (A.35)

as well as the form of the φ̂-correlator given already in Eq. (4.41).
Therefore, the exponent E(2) (A.32) is given as a sum of terms containing α, β± and

binomials constructed out of X,X ′, Y and Y ′, as well as non-interacting contributions
〈

φ̂(x′, t)φ̂(x, 0)
〉

(0)
, that also contain higher powers of these variables (see Eq. (4.42)).

According to Eq. (A.30), the two-particle Green’s function

〈

ĉn(0)ĉ†l′(t)ĉl(t)ĉ
†
n′(0)

〉

(A.36)

is obtained by expanding exp(E(2)) in a power series with respect to X, X ′, Y and Y ′,
and reading off the coefficient in front of the component

XδlX ′−δl′Y δnY ′−δn′

, (A.37)

where δl ≡ l − (nF + 1) etc. Using (A.30), (A.31) and (A.32), as well as splitting off
non-interacting terms, we find that the expression to be expanded can be written in the
following form:

A0e
Ẽ . (A.38)

Here A0 yields the correct result for the non-interacting case (cf. the application of
Wick’s theorem, Eq. (4.67)),

A0 =
∑

l̃<0

(

X

X ′

)l̃
∑

ñ≥0

(

Y

Y ′

)ñ

+

∑

ñ′≥0

(

X

Y ′

)ñ′
∑

ñ≥0

(

Y

X ′

)ñ

eiω0(ñ−ñ′)t , (A.39)
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and the exponent Ẽ is a rather lengthy expression involving α(t), α(−t) = α∗(t),
β±(t), β±(−t) = β∗±(t) and binomials made out of X,X ′, Y and Y ′:

Ẽ ≡ α(t) (X ′Y ′ +
1

X ′Y ′
−XY ′ − 1

XY ′
)+

α∗(t) (XY +
1

XY
−X ′Y − 1

X ′Y
)−

α(0) (XX ′ +
1

XX ′
+ Y Y ′ +

1

Y Y ′
)+

β̃+(t) (
X

Y ′
− X ′

Y ′
) + β̃∗+(t) (

Y

X ′
− Y

X
)+

β̃+(0) (
Y

Y ′
+
X ′

X
)+

β−(t) (
Y ′

X
− Y ′

X ′
) + β∗−(t) (

X ′

Y
− X

Y
)+

β−(0) (
Y ′

Y
+
X

X ′
)−

1

2
(Cx + Cy + Cx′ + Cy′) . (A.40)

In this equation, we have employed the abbreviation β̃+(t) ≡ β+(t)−e−iω0t. Note that
Ẽ vanishes if the coupling to the bath is switched off.

The approximate weak-coupling result is obtained by setting α(t) = β−(t) = 0,
β+(0) = 1 and keeping only the (slowly decaying) β+(t) (compare the main text, Sec.
4.7, and the corresponding discussion for the single-particle case in Sec. 4.4).

A.8 Some quantities for the damped oscillator

In this appendix, we list, for purposes of reference, the quantities relevant to our discussion
of the time-evolution of the quantum damped harmonic oscillator. These can also be found
in [Caldeira83] (in a slightly different notation).

The quantity C00 arises in evaluating SI along a pair of semiclassical paths, by inserting
the solution r(·) of Eq. (5.22) for the boundary conditions given by rt, r0 and determining
the coefficient of r2

0 in the result (see Eq. (5.25)). Necessarily, C00 contains only the
symmetric part of the bath correlator, since SI depends only on that:

C00 =
1

4
(sin(ω̃t))−2

∫ t

0

dt1

∫ t

0

dt2 exp
(γ

2
(t1 + t2)

)

× sin(ω̃(t− t1))
〈

{F̂ (t1), F̂ (t2)}
〉

sin(ω̃(t− t2)) . (A.41)

Here ω̃ ≡
√

ω2
0 − (γ/2)2 is the renormalized frequency of the (underdamped, γ < 2ω0)

oscillator.
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The other quantities needed for calculating 〈q̂2(t)〉 arise from the evaluation of ReScl

(Eq. (5.24)). In contrast to C00, which has to be evaluated numerically, they can be given
in closed form:

L00 = m(γ/2 + ω̃ cot(ω̃t)) (A.42)

Lt0 = −mω̃e
γt/2

sin(ω̃t)
(A.43)

The exponential increase of Lt0 cancels that of C00 when calculating the width in Eq.
(5.29). However, if the damping rate γ is set to zero, C00 still grows beyond all bounds
while Lt0 remains bounded.

A.9 Density matrix propagator from the Wigner den-

sity evolution

Using the classical Langevin equation (5.30), the kernel J which relates the reduced
density matrix of a linear dissipative system at time t to that at time 0 can be found
in a way which is physically more transparent than the corresponding derivation using
path-integrals (see Eqs. (5.1), (5.2), (5.18), (5.24) and (5.25)). One first solves for the
time-evolution of the classical phase space density (i.e. the Wigner density) under the
action of friction and the classical Gaussian random force F (·). Starting from a δ peak
located in phase space, the phase space density evolves into a two-dimensional Gaussian
distribution, whose covariances are related to the correlator of the force. This gives the
propagator JW of the Wigner density, which only needs to be Fourier transformed with
respect to the momenta in order to obtain the density matrix propagator J , expressed via
center-of-mass and difference coordinates R and r:

J(Rt, rt|R0, r0; t) =
∫

dptdp0 e
i(ptrt−p0r0)JW (Rt, pt|R0, p0; t) . (A.44)

Here we show how the propagator J for the density matrix of a free damped particle
subject to the Ohmic bath may be obtained in this way. Everything works the same for
the damped oscillator, only the resulting expressions are slightly more lengthy.

The propagator JW (Rt, pt|R0, p0; t) of the Wigner density is found by solving the
classical equations of motion for R and p for a given initial condition (R0, p0), taking into
account friction and the action of the force F :

dp

dt
= −γp + F (t) (A.45)

dR

dt
=

p

m
(A.46)
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This yields the solutions

pt = p0e
−γt + ξp (A.47)

Rt = R0 +
p0

η
(1 − e−γt) + ξR , (A.48)

where ξp and ξR are given as integrals over the force F (·):

ξp =

∫ t

0

ds e−γ(t−s)F (s) (A.49)

ξR =
1

η

∫ t

0

ds (1 − e−γ(t−s))F (s) . (A.50)

Since F (·) is a Gaussian random process, ξp and ξR are Gaussian random variables as well.
Therefore, the phase space density evolving out of δ(R−R0)δ(p−p0) is a two-dimensional
Gaussian distribution in phase space (R, p):

JW (Rt, pt|R0, p0; t) =
〈

δ(Rt − R̄t − ξR)δ(pt − p̄t − ξp)
〉

. (A.51)

The average values p̄t and R̄t may be read off from eqs. (A.47) and (A.48). JW has to
be Fourier transformed with respect to pt and p0 in order to arrive at the density matrix
propagator J(Rt, rt|R0, r0; t) (see Eq. (A.44)). In order to do this, we express JW as a
Gaussian density in terms of pt, p0, for fixed Rt, R0:

JW ∝ exp

[

−1

2
δP tK−1δP

]

, (A.52)

with

δP =

[

pt − p̄t

p0 − p̄0

]

(A.53)

and the covariance matrix

K =

[

〈δp2
t 〉 〈δptδp0〉

〈δptδp0〉 〈δp2
0〉

]

. (A.54)

We can solve (A.47) and (A.48) for pt, p0, in order to find the average values and the
deviations of pt and p0:

p̄t = λ(Rt −R0) (A.55)

p̄0 = eγtλ(Rt −R0) (A.56)

δpt = ξp − λξR (A.57)

δp0 = −eγtλξR (A.58)

λ ≡ η

eγt − 1
(A.59)
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p̄0 and p̄t are the momenta at time t and 0 which the particle must have if it is to go
from R0 to Rt in time t, provided no fluctuating force acts. δpt and δp0 are the deviations
from these values needed to compensate the effects of F (·).

Quadratic completion in the exponent of (A.52) immediately yields the result of the
Fourier integration (A.44) over pt and p0, which is the desired density matrix propagator
J :

J(Rt, rt|R0, r0; t) ∝

exp

[

i(Rt − R0)λ(rt − eγtr0) −
1

2

〈

(rtδpt − r0δp0)
2〉
]

. (A.60)

This reproduces the result given in [Caldeira83] (or [Golubev00], App. E). The
prefactor can be determined from the normalization condition, Eq. (5.20), and only
depends on the time t. The term in angular brackets still has to be averaged over the force
F (·). The resulting real part of the exponent equals −SI evaluated along the semiclassical
paths (compare the general structure given in Eq. (5.25)). In terms of F (·), δpt and δp0

read explicitly:

δpt =

∫ t

0

ds
eγs − 1

eγt − 1
F (s) (A.61)

δp0 =

∫ t

0

ds
eγs − eγt

eγt − 1
F (s) . (A.62)

Note that

δpt − δp0 =

∫ t

0

ds F (s) . (A.63)

The averages 〈δp2
t 〉, 〈δp2

0〉 and 〈δptδp0〉 to be evaluated in Eq. (A.60) contain time-
integrals over the force correlator 〈F (s1)F (s2)〉. At zero temperature, these integrals lead
to terms growing logarithmically in time, which are characteristic for the free particle
coupled to an Ohmic bath (compare the discussion in the main text, Sec. 5.6, also
Section 3.6).
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[Cedraschi01] P. Cedraschi and M. Büttiker: “Zero-point fluctuations in the ground
state of a mesoscopic normal ring”, Phys. Rev. B 63, 165312 (2001);
“Quantum Coherence of the Ground State of a Mesoscopic Ring”, Annals
of Physics, 289, 1 (2001).

[Chakravarty86] S. Chakravarty and A. Schmid: “Weak localization - the quasi-classical
theory of electrons in a random potential”, Phys. Rep. 140, 195 (1986).

[Chen93] H. Chen and X.-Q. Li: “Influence of the electon-boson interaction on co-
tunneling through two small junctions in the Coulomb-blockade regime”,
Phys. Rev. B 48, 8790 (1993).

[Cohen97] D. Cohen: “Unified model for the study of diffusion, localization and
dissipation”, Phys. Rev. E 55, 1422 (1997); “Quantal Brownian Motion
- Dephasing and Dissipation”, J. Phys. A 31, 8199 (1998).

[Cohen99] D. Cohen and Y. Imry: “Dephasing at low temperatures”, Phys. Rev. B
59, 11143 (1999).

[Delft98] J. v. Delft and H. Schoeller: “Bosonization for Beginners - Refermion-
ization for Experts”, Annalen der Physik, Vol. 4, 225 (1998).

[Devoret90] M. H. Devoret, D. Esteve, H. Grabert, G.-L. Ingold, H. Pothier, and C.
Urbina: “Effect of the Electromagnetic Environment on the Coulomb
Blockade in Ultrasmall Tunnel Junctions”, Phys. Rev. Lett. 64, 1824
(1990).

[Feynman63] R.P. Feynman and F.L. Vernon: “The Theory of a General Quantum
System Interacting with a Linear Dissipative System”, Ann. Phys. (N.Y.)
24, 118 (1963).



BIBLIOGRAPHY 173

[Feynman65] R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals,
McGraw-Hill, New York (1965).

[Fujisawa98] T. Fujisawa, T. H. Oosterkamp, W. G. van der Wiel, B. W. Broer,
R. Aguado, S. Tarucha, L. P. Kouwenhoven: “Spontaneous emission
spectrum in double quantum dot devices”, Science 282, 932 (1998).

[Giulini96] D. Giulini, E. Joos, C. Kiefer, J. Kupsch, I.-O. Stamatescu, and H. D.
Zeh: Decoherence and the Appearance of a Classical World in Quantum
Theory, Springer, Berlin (1996).

[Golubev98] D. S. Golubev and A. D. Zaikin: “Quantum decoherence in disordered
mesoscopic systems”, Phys. Rev. Lett. 81, 1074 (1998).

[Golubev99] D. S. Golubev and A. D. Zaikin: “Quantum decoherence and weak lo-
calization at low temperatures”, Phys. Rev. B 59, 9195 (1999).

[Golubev00] D. S. Golubev and A. D. Zaikin: “Interactions and weak localization:
Perturbation theory and beyond”, Phys. Rev. B 62, 14061 (2000).

[Golubev01] D. S. Golubev and A. D. Zaikin: “Comparison between Theory and
Some Recent Experiments on Quantum Dephasing”, cond-mat/0103166
(2001).

[Golubev02a] D. S. Golubev, A. D. Zaikin, and G. Schön: “On low-temperature de-
phasing by electron-electron interaction”, J. Low Temp. Phys. 126, 1355
(2002).

[Golubev02b] D. S. Golubev, C. P. Herrero, and A. D. Zaikin: “Interaction-Induced
Quantum Dephasing in Mesoscopic Rings”, cond-mat/0205549(2002).

[Golubev02c] D. S. Golubev and A. D. Zaikin: “Low temperature decoherence by
electron-electron interactions: Role of quantum fluctuations (reply to
cond-mat/0110545)”, cond-mat/0208140 (2002).

[Golubev02d] D. S. Golubev, G. Schön, and A. D. Zaikin: “Low-temperature Dephas-
ing and Renormalization in Model Systems”, cond-mat/0208548 (2002).

[Gougam00] A. B. Gougam, F. Pierre, H. Pothier, D. Esteve, N.O. Birge: “Compar-
ison of energy and phase relaxation in metallic wires”, J. Low Temp.
Phys. 118, 447 (2000).

[Grabert01] H. Grabert: “Transport in Single Channel Quantum Wires”, to appear
in ”Exotic States in Quantum Nanostructures” ed. by S. Sarkar, Kluwer,
cond-mat/0107175 (2001).



174 BIBLIOGRAPHY

[Groshev91] A. Groshev: “Resonance-level broadening by environmental fluctua-
tions”, Phys. Rev. B 44, 11502 (1991); X.-Q. Li, S.-J. Qin, and Z.-B.
Su: “Influence of electromagnetic environmental fluctuations on reso-
nant tunneling through double-barrier systems”, Phys. Rev. B 51, 5214
(1995).

[Guinea02] F. Guinea: “Aharonov-Bohm oscillations of a particle coupled to dissi-
pative environments”, Phys. Rev. B 65, 205317 (2002).

[Hakim85] V. Hakim and V. Ambegaokar: “Quantum theory of a free particle in-
teracting with a linearly dissipative environment”, Phys. Rev. A 32, 423
(1985).

[Hansen01] A. E. Hansen, A. Kristensen, S. Pedersen, C. B. Sørensen, and P. E. Lin-
delof: “Mesoscopic decoherence in Aharonov-Bohm rings”, Phys. Rev. B
64, 045327 (2001).

[Haule99] K. Haule and J. Bonca: “Inelastic tunneling through mesoscopic struc-
tures”, Phys. Rev. B 59, 13087 (1999).

[Holleitner02] A. W. Holleitner, R. H. Blick, A. K. Huttel, K. Eberl, J. P. Kotthaus:
“Probing and controlling the bonds of an artificial molecule”, Science
297, 70 (2002).

[Imry97] Y. Imry, Introduction to Mesoscopic Physics, Oxford University Press,
Oxford (1997).

[Imry99] Y. Imry, H. Yukuyama, P. Schwab: “Low-temperature dephasing in dis-
ordered conductors: The effect of ’1/f’ fluctuations”, Europhys. Lett. 47,
608 (1999).

[Imry02] Y. Imry: “Elementary explanation of the inexistence of decoherence
at zero temperature for systems with purely elastic scattering”, cond-
mat/0202044 (2002).

[Ingold92] G.-L. Ingold and Y. V. Nazarov: “Charge Tunneling Rates in Ultrasmall
Junctions”, in: Single Charge Tunneling, ed. by H. Grabert and M.
Devoret, NATO ASI Series B, vol. 294, Plenum, New York (1992).

[Keil02] M. Keil and H. Schoeller: “Nonperturbative analysis of coupled quantum
dots in a phonon bath”, cond-mat/0205308 (2002).

[Kirkpatrick02] T. R. Kirckpatrick and D. Belitz: “Absence of electron dephasing at
zero temperature”, Phys. Rev. B 65, 195123 (2002); Comment by D. S.
Golubev, A. Zaikin and G. Schön in cond-mat/0111527, and reply in
cond-mat/0112063. See also R. Ramazashvili, cond-mat/0208030 for a
critical discussion.



BIBLIOGRAPHY 175

[Kobayashi02] K. Kobayashi, H. Aikawa, S. Katsumoto, and Y. Iye: “Probe-
Configuration-Dependent Decoherence in an Aharonov-Bohm Ring”,
cond-mat/0204186 (2002).

[König96] J. König, J. Schmid, H. Schoeller, and G. Schön: “Resonant tunnel-
ing through ultrasmall quantum dots: Zero-bias anomalies, magnetic-
field dependence, and boson-assisted transport”, Phys. Rev. B 54, 16820
(1996).

[König02] J. König and Y. Gefen: “Aharonov-Bohm Interferometry with Inter-
acting Quantum Dots: Spin Configurations, Asymmetric Interference
Patterns, Bias-Voltage-Induced Aharonov-Bohm Oscillations, and Sym-
metries of Transport Coefficients”, Phys. Rev. B 65, 045316 (2002).

[Kramer93] B. Kramer and A. MacKinnon: “Localization: theory and experiment”,
Rep. Prog. Phys. 56, 1469 (1993).

[Landau77] L. D. Landau and E. M. Lifshitz: Quantum Mechanics, Pergamon, New
York (1977).

[Leggett87] A. J. Leggett, S. Chakravarty, A.T. Dorsey, M. P. A. Fisher, A. Garg,
and W. Zwerger: “Dynamics of the dissipative 2-state system”, Rev.
Mod. Phys. 59, 1 (1987).

[Loss91] D. Loss and K. Mullen: “Dephasing by a dynamic asymmetric environ-
ment”, Phys. Rev. B 43, 13252 (1991).

[Loss93] D. Loss and T. Martin: “Absence of spontaneous persistent current for
interacting fermions in a one-dimensional mesoscopic ring”, Phys. Rev.
B 47, 4619 (1993).

[Loss98] D. Loss and D.P. DiVincenzo: “Quantum computation with quantum
dots”, Phys. Rev. A 57, 120 (1998).

[Loss00] D. Loss and E. V. Sukhorukov: “Probing Entanglement and Non-locality
of Electrons in a Double-Dot via Transport and Noise”, Phys. Rev. Lett.
84, 1035 (2000).

[Mahan81] G. D. Mahan: Many-Particle Physics, Plenum, New York (1981), pp.
269-310.

[Marquardt00] F. Marquardt: “Time-evolution of reduced density matrix for fermions
under the action of a quantum bath” (2000). (unpublished)

[Marquardt01] F. Marquardt: “An introduction to the basics of dephasing”, at
http://iff.physik.unibas.ch/∼florian/dephasing/dephasing.html. (2001)
(unpublished)



176 BIBLIOGRAPHY

[Marquardt02a] F. Marquardt and C. Bruder: “Aharonov-Bohm ring with fluctuating
flux”, Phys. Rev. B 65, 125315 (2002).

[Marquardt02b] F. Marquardt: “The importance of friction in the description of low-
temperature dephasing”, cond-mat/0207692 (2002).

[Mello00] P. A. Mello, Y. Imry, and B. Shapiro: “Model for phase breaking in the
electronic conduction in mesoscopic systems”, Phys. Rev. B 61, 16570
(2000).

[Mermin66] N. D. Mermin: “A Short Simple Evaluation of Expressions of the Debye-
Waller Form”, Journ. of Math. Phys. 7, 1038 (1966).

[Milonni94] P. W. Milonni: The Quantum Vacuum, Academic Press, San Diego
(1994).

[Minnhagen76] P. Minnhagen: “Exact numerical solutions of a Nozieres-deDominicis-
type model problem”, Phys. Lett. A 56, 327 (1976).

[Mohanty97a] P. Mohanty, E. M. Q. Jariwala, and R. A. Webb: “Intrinsic Decoherence
in Mesoscopic Systems”, Phys. Rev. Lett. 78, 3366 (1997).

[Mohanty97b] P. Mohanty and R. A. Webb: “Decoherence and quantum fluctuations”,
Phys. Rev. B 55, R13452 (1997).

[Mohanty01] P. Mohanty: “Of Decoherent Electrons and Disordered Conductors”, in
NATO ASI Lecture Notes Norway 2001, eds. A. T. Skjeltorp and T.
Vicsek, Kluwer, Dordrecht, (2001). (cond-mat/0205274)
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