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Preface

The book at hand is a joint project of the Finnish Association for Research in
Mathematics and Science Education (Professor Erkki Pehkonen chair), and
the Finnish Graduate School of Mathematics, Physics and Chemistry Educa-
tion (Professor Maija Ahtee chair). The papers were presented at the semi-
nars during the year 2000. Research in mathematics and science education in
Finland is relatively young. Since education is delivered in Finnish (and Swed-
ish) and since one of the main aims of doing research in education is to find
ways of developing teaching and learning in the schools, most of the theses
are written in Finnish. It is also important that teachers read about research
findings.

However, one of the most important ways of raising the quality of research
is, of course, to get an international evaluation of the reports. At the meeting
of the board members of the Graduate School in the autumn of 2000 the idea
was brought up that we should offer the members of the Research Association
as well as the Graduate School students the possibility to publish their presen-
tations in English. Professors Maija Ahtee (University of Jyviskyld), Ole
Bjorkqvist (Abo Akademi University) and Erkki Pehkonen (University of
Turku) were chosen as the board of editors. Before papers were accepted for
publication, they were to pass a careful referee process.

The referees of the book are Ann Ahlberg (University of Gothenburg,
Sweden), Otto Bekken (University of Kristiansand, Norway), Harrie Eijkel-
hof (University of Utrecht, the Netherlands), Fulvia Furinghetti (University
of Genua, Italy), Richard Gott (University of Durham, UK), Barbro Grevholm
(University of Kristianstad, Sweden), Erika Kuendiger (University of Wind-
sor, Canada), Sinikka Lindgren (University of Tampere, Finland), Thomas
Lingefjard (University of Gothenburg, Sweden), Jukka Maalampi (University
of Jyviskyla, Finland), Olof Magne (University of Lund, Sweden), Robin Mil-
lar (University of York, UK), George Philippou (University of Cyprus), Phil
Scott (University of Leeds, UK), Jouni Viiri (University of Joensuu, Finland),
Mikko Vuolle (University of Jyviskyld, Finland). Our referees were very strict
but also helpful in case they thought the papers were sound and worth pub-
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lishing. We want to express our sincere thanks to all of them for their very
thorough work.

This volume also contains papers by professor Laurence Viennot, Univer-
site Paris VII, France, and professor Georgios Tsaparlis, University of loanni-
na, Greece, who gave lectures and workshops at the spring seminar of the
Graduate School in Joensuu, and by professor Erkki Pehkonen, who gave a
lecture at the summer seminar in Vaasa.

During the time period 1996-2001, the Finnish Graduate School was sup-
ported financially by the Ministry of Education. The activities of the Gradu-
ate School greatly promoted research done within mathematics and science
education. Today we are working to find other ways of raising the standard of
research within these fields in Finland.

Finally, we want to express our sincere thanks to professor Jouni Vilijérvi,
Institute for Educational Research, University of Jyviskyld. Without his sup-
port we would not have been able to publish this volume.

The Editors




The Finnish Graduate School of
Mathematics, Physics and Chemistry
Education

Maija Ahtee and Virpi Vatanen
Department of Teacher Education
University of Jyvaskylé

The new graduate school system was started by the Academy of Finland in 1995 to
promote the quality and effectiveness of the post graduate education. In this connec-
tion also a graduate school concentrating on educational problems in the fields of
mathematics, physics and chemistry was founded. Earlier only a few dissertations in
the field of science education had been presented and the doctorates had been work-
ing more or less alone with their research problems. In this article, the principles and
activities of the graduate school are described. Regrettably, the Academy of Finland
did not value high enough the work done in this graduate school in past five years and
so the funding of the graduate school will finish in the end of year 2001.

The rise of the graduate school

The Graduate School System to promote the quality and effectiveness in grad-
uate students’ education especially through the co-operation of the universi-
ties was initiated by the Academy of Finland in 1995. For example in science
the training of the post graduates consisted earlier mostly of some theoretical
studies and research work in small research groups in the specific depart-
ments. The aims of the new Graduate School System were to decrease the
average age of the new doctors (37 years) and to increase the co-operation of
the research groups both nationally and internationally. At the same time the
old research positions in the Academy for post-graduates were suspended.
As the Academy of Finland implied in the announcement that also new
types of graduate schools should be suggested an initiative was made to find
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Maija Ahtee and Virpi Vatanen

out the possibility to start a national graduate school for active mathematics,
physics or chemistry teachers who wanted to do research on educational prob-
lems. A preliminary effort had already been made in the Department of Teacher
Education at the University of Helsinki in autumn 1994 when Maija Ahtee
and Erkki Pehkonen had started a post graduate course in mathematics, phys-
ics and chemistry education. Approximately fifty teachers throughout Fin-
land expressed their interest to take part in this course.

After the first unsuccessful attempt the representatives from the depart-
ments of mathematics, physics, chemistry and teacher education of the five
universities, Helsinki, Joensuu, Jyviskyld, Oulu and Abo Academy were in-
vited to the Department of Teacher Education at Helsinki University. The
goal of the meeting was to discuss the practical issues related to a Graduate
School in the field of mathematics, physics and chemistry education. The
participants were all in favour of the project. One representative from each
university was selected to the board of the Graduate School. Professor Kaarle
Kurki-Suonio from the Department of Physics at Helsinki University agreed
to act as the director of the Graduate School. In spring 1995 the Academy of
Finland provided funding for a four-year period to four full time students starting
from September 1995.

From the beginning of 1998 the Graduate School expanded when the Min-
istry of Education provided funding for ten full-time researchers for a four-
year period. The expansion was not entirely complete since at the same time
the earlier four vacancies were terminated. The universities of Turku and Lap-
pland also joined the Graduate School, thus increasing the number of mem-
ber universities to seven and the number of departments to twenty-three.

The aim and activities of the Graduate School

The aim of the Graduate School is to create a solid, research-based founda-
tion for the continuous development of mathematics, physics and chemistry
education and educational research in Finland, both at school and university
level. To ensure the standard in both the pedagogical and subject matter knowl-
edge two supervisors are appointed for each postgraduate student, one repre-
senting educational expertise and the other scientific expertise. Research com-
bines content and methodological perspectives from mathematics, physics,

6

10




The Finnish Graduate School of Mathematics, Physics and Chemistry ...

chemistry, and education and serves the structural, content-related and meth-
odological development of teaching. The study areas of the Graduate School
consist of research and development of mathematics, physics and chemistry
education from pre-school to tertiary level. The current main research topics
include for example development of teaching in secondary school, research
on empirical methods, research on mathematics and science learning, beliefs
and concepts, multimedia-aided teaching, and primary school mathematics
and science teaching.

The Graduate School arranges two or three seminars annually in each of
the member universities in turn. Graduate students present their study-plans
to the supervisors and the students for evaluation. The summer seminar is
intensive one-week period concentrating on research methods, while the au-
tumn seminar is arranged in collaboration with the Mathematics and Science
Education Research Association. The plenary lecturers are well known inter-
national researchers in the field of mathematics and science education. Each
university also has its own local postgraduate study group.

The Graduate School offers full time researchers an opportunity to con-
centrate on studies and research and supports their participation in interna-
tional and national conferences: it also offers co-operation in the scope of the
Graduate School and maintains an information channel between the students
and the supervisors.

The principles of the Graduate School

Admission to the postgraduate program requires advanced studies in the ma-
jor subject and a personal study-plan for the completion of a licentiate or
doctoral degree. The study-plan should contain equal and meaningful amounts
of both pedagogical and subject studies. The student must be a qualified teacher
and preferably also have some experience in teaching. Subject studies in math-
ematics, physics or chemistry are required if the student has obtained his/her
Master’s degree in education. Permitting the licentiate degree as an aim for
postgraduate studies is based on the fact that it is a formal requirement for
becoming a lecturer in polytechnics or in departments of teacher education in
the universities.




Maija Ahtee and Virpi Vatanen

At the beginning of 2001 the Graduate School had a total of 107 students.
Ten full-time students were funded by the Ministry of Education and four
students by universities or foundations. There were 93 part-time students who
pursued their studies alongside teaching. The Graduate School had 54 super-
visors in the member universities.

The results

During the past five years, ten didactically oriented doctoral dissertations have
been completed; three in physics, one in chemistry, and six in education, where
two dealt with physics, two with chemistry, and two with mathematics teach-
ing. Furthermore, 25 licentiate degrees have been completed. The majority of
the degrees are completed at the Universities of Helsinki and Joensuu, which
together are responsible for eight doctoral and 17 licentiate degrees. The
amount of postgraduate degrees has increased in 2000; half of the disserta-
tions and 40% of the licentiate examinations were completed last year.

The publications of the graduate students include refereed articles in sci-
entific journals, proceedings and in congress abstracts, scientific theses, and
textbooks for schools and educational columns in the national media. Ap-
proximately 35 publications have been produced each year during the Gradu-
ate School’s existence (see Table 1).

TABLE 1. Publications of the graduate students in all the member universities bet-
ween 1.9.1995 - 31.8.2000.

Year Helsinki Joensuu Jyviskyli Oulu Turku Abo Total
Univ. Univ. Univ. Univ. Univ. Academy

1995 + 1996 23 4 . . - I 28
1997 19 I I 3 I 25
1998 20 13 3 4 6 46
1999 18 10 10 2 2 45
2000 4 9 It 3 1 32
Total 84 37 25 12 7 11 Avg. 35.2
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The Graduate School encourages students to participate in international
conferences and to carry out postgraduate studies abroad. For this activity a
grant of 800 EURO for travel expenses is reserved for each student. The pre-
requisite for this is that the student presents his/her research results either in
an oral or poster session at the conference. The students have taken ample
advantage of this grant: in 2000 nine full-time students presented their results
before an international forum. During the academic year 1999-2000 two stu-
dents carried out postgraduate studies at a foreign university. In the past five
years the students have had approximately 23 international contacts per year

(see Table 2).

TABLE 2. International contacts of graduate students in all the member universities
between 1.9.1995 — 31.8.2000.

Year Helsinki Joensuu Jyviskyldi Oulu  Turku Abo Total
Univ. Univ. Univ. Univ. Univ. Academy

1995 + 1996 16 2 . 2 . 2 22
1997 11 3 [ 2 10 27
1998 11 3 - 2 3 19
1999 10 4 3 6 1 . 24
2000 9 5 2 2 | 24
Total 57 17 6 14 6 16  Avg 23.2

The future of the Graduate School

Teacher’s enthusiasm for the Graduate School activity as well as qualified
examinations for the degrees is clear indication of the necessity of the Gradu-
ate School. From the governmental point of view this kind of activity has been
stated to be significant since the Ministry of Education stresses in the revised
edition of the Finnish Knowledge in Mathematics and Sciences in 2002 — program
(12% of October, 1999) that the Graduate School for Mathematics, Physics
and Chemistry Education will be continued and 1) the international co-oper-
ation in mathematics and science education research and development will
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Maija Ahtee and Virpi Vatanen

be increased, 2) the equality in mathematics and science education research
and development will be emphasised, and 3) the Academy of Finland pro-
ceeds to fund mathematics and science education research and development.
However, in their recent decision the Academy of Finland did not grant any
research positions for the Graduate School of Mathematics, Physics, and Chem-
istry Education. In the arguments it was shortly stated that the activity of the
Graduate School is important but the scientific level does not stand compar-
ison with the other mathematics, physics and chemistry graduate schools.

14



A Hidden Regulating Factor in
Mathematics Classrooms:
Mathematics-Related Beliefs

Erkki Pehkonen

Department of Teacher Education
University of Turku

This paper will focus on teachers’ and pupils’ mathematics-related beliefs which per-
tain to their subjective knowledge, and which act in mathematics classrooms as a hid-
den factor regulating the quality of mathematics teaching and learning. Some research-
based examples of teachers’ and pupils’ beliefs are exposed and discussed. The mean-
ing of beliefs for the teaching / learning process is dealt with. At the end, the possibil-
ities to change those beliefs that are not optimal for the up-to-date understanding of
learning and teaching are put forward, and some change solutions from the literature
are discussed.

Introduction

Within school research, researchers have mainly focused on the cognitive
results in the understanding of learning. However, affective by-results of learning
that are in connection with an individual’s meta-cognitions (Schoenfeld 1987),
as a hidden factor, determine the quality of learning, though they are often
put aside in research. During the last twenty years, mathematics educators all
over the world have placed more and more emphases on the aspect of meta-
cognition in learning, especially in the form of pupils’ beliefs (Schoenfeld 1992).
Beliefs are situated in the “twilight zone” between the cognitive and affective
domain, since they have a component in both domains.

The purpose of this paper is to draw attention to the role and meaning that
beliefs have in learning and teaching mathematics. Beliefs present some kind

11
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Erkki Pehkonen

of tacit knowledge; everybody has his' personal tacit knowledge which is in-
volved in every learning and teaching situation, but is rarely explicated. Be-
liefs differ from the scientific knowledge (objective knowledge) which can
explicated and discussed. Teachers’ and pupils’ mathematics-related beliefs
are dealt with mainly in the paper, but similar statements are also valid e.g. for
university students and professors.

Theoretical background

An individual continuously receives perceptions from the world around him.
According to his experiences and perceptions, he makes conclusions about
different phenomena and their nature. The individual’s personal knowledge,
e.g. his beliefs, is a compound of these conclusions. Furthermore, he compares
these beliefs with his new experiences and with the beliefs of other individu-
als, and thus his beliefs are under continuous evaluation and change. When
he adopts a new belief, this will be automatically connected to a part of the
larger structure of his personal knowledge, of his belief system, since beliefs
never appear fully independently. Thus, the individual’s belief system is a com-
pound of his conscious and non-conscious beliefs, hypotheses or expectations
and their combinations. (Green 1971)

Today we stress the active conception of learning behind which con-
structivism lies. According to a view of learning compatible with constructiv-
ism, a learner has to work actively in order to elaborate and to up-to-date his
knowledge structure (e.g. Davis & al. 1990; Ahtee & Pehkonen 1994). The
meaning of pupils’ own beliefs about mathematics and its learning is empha-
sized as a regulating system of their knowledge structure. Since the teacher
has a central role as an organizer of their learning environments, also his be-
liefs are essential for the success and quality of learning. Therefore, teachers’
and pupils’ mathematical beliefs play a key role when trying to understand
their mathematical behavior (Noddings 1990).

VIf the gender is unknown, I have used the male form.
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Beliefs in Math Classroom

What are beliefs?

During the last ten years of belief research, some research synthesis have been
published on mathematics-related beliefs (e.g. Underhill 1988; Thompson 1992;
Pehkonen 1994; Op ‘t Eynde & al. 2001) which all try to clarify the fuzzy scenery.
In the paper Furinghetti & Pehkonen (2001), the fuzziness of belief characteriza-
tions is discussed in detail, and they result the following recommendations. When
dealing with beliefs and related terms, it is advisable
e to consider two types of knowledge (objective and subjective)
e to consider beliefs belonging to subjective knowledge
e to include affective factors in the belief systems, and distinguishing
affective and cognitive beliefs, if needed
e to consider degrees of stability, and to acknowledge that beliefs are
open to change
e to take care of the context (e.g. population, subject, etc) and the rese-
arch goal in which beliefs are considered.

Therefore, it is of the uttermost importance to explain also here how one
characterizes beliefs. We understand beliefs as an individual’s subjective knowl-
edge, which also includes his feelings, of a certain object or concern to which
tenable grounds may not always be found in objective considerations. This
definition is very near to the one given by Lester & al. (1989).

The individual himself set the reasons why a certain belief is adopted —
usually non-consciously. The adoption of a belief may be based on some gen-
erally known facts (and beliefs) and on conclusions drawn from them. But
each time, the individual makes his own choice of the facts (and beliefs) to be
used as reasons, and his own evaluation on the acceptability of the belief in
question. Thus, a belief, in comparison to objective knowledge, always con-
tains an affective coloring (dimension). This dimension influences the role
and the meaning of each belief in the individual’s belief structure. (Green
1971)

Beliefs are usually held with a different degree of conviction (Abelson 1979).
For example, Kaplan (1991) refers to the concepts “deep belief” and “surface
belief”, which could be understood as non-conscious beliefs and conscious
beliefs. In the literature, authors often use conceptions as a parallel to beliefs.
Here, we define conceptions, according to Saari (1983), as conscious beliefs,
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Erkki Pehkonen

i.e. we understand conceptions? as a subset of beliefs. Thus, conceptions are
higher order beliefs, they are based on such reasoning processes for which the
premises are conscious. Therefore, there seems to be a reasoning basis for
conceptions, at least they are justified and accepted by the individual himself.

An individual’s mathematics-related beliefs are often divided into subgroups,
e.g. beliefs about the nature of mathematics, beliefs about mathematics learn-
ing and teaching, and beliefs about oneself as a learner of mathematics (e.g.
Underhill 1988). Such a division is actually artificial, in the sense that many
beliefs belong to more than only one of these four groups. For example, pupils’
beliefs about the nature of school mathematics influence their conceptions of
how mathematics will be learned (and how it should be taught). Neverthe-
less, such a grouping of beliefs will help us to structure the situation.

Furthermore, an individual’s beliefs are quasi-logically connected with each
other, i.e. the individual himself defines the logic between the beliefs, and
thus they form a belief system (Green 1971). Such a structure of the indi-
vidual’s mathematics-related beliefs is called his view of mathematics, which is
a wide spectrum of his beliefs and conceptions. It contains, among others,
four main components: (1) beliefs about mathematics, (2) beliefs about one-
self as a learner and as a user of mathematics, (3) beliefs about mathematics
teaching, and (4) beliefs about mathematics learning.

The question “What is mathematics?” goes back to the philosophy of math-
ematics. Mathematics philosophers (e.g. Ernest 1991; Hersh 1997) have stat-
ed that there are many different views of mathematics, of which the following
three seem to be the most important one (see also Grigutsch & al. 1998): The
instrumental view (mathematics is a “tool-box”), the Platonist view (mathe-
matics is in the first place a formal system), and the constructivist view (math-
ematics is a process which is realized e.g. in problem solving).

Beliefs and knowledge
Often two parts are separated in knowledge: objective knowledge and subjec-

tive knowledge. Objective knowledge in mathematics means the generally ac-
cepted structure of mathematics, which is a compound of all mathematicians’

2 As for belief, there are many competing characterizations for “conception”
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Beliefs in Math Classroom

research work for over more than 2000 years. This structure of mathematics is
today so large that it is outside of any human being. The last mathematician
who is said to possess an overview of the “whole mathematics” was Poincaré
(e.g Boyer 1985, 650). When studying mathematics, we can only learn a part
of it, and usually in our own characteristic way, i.e. we form our own concep-
tions on the topics to be learned. In the recent psychological research on
learning, the concepts “learning” and “knowledge building” have been sepa-
rated (e.g. Bereiter & Scardamalia 1996).

One of the main features of mathematical knowledge is its pure logic. A
premise for objective knowledge is that all the beliefs that form its basis are
logically justified and publicly accepted, in the sense that also all other facts in
the world of phenomena speak for them. An individual’s subjective knowledge
is something unique which usually only he possesses, since it is based on his
experiences and understandings.

There are many connections between an individual’s subjective knowledge
and objective knowledge. On one hand, an individual may study mathematics
(objective knowledge), and thus enlarge his subjective knowledge. For exam-
ple, the concept of function might be the topic of his study. But all the time,
the knowledge he possesses on function belongs to his subjective knowledge,
although his conception may asymptotically approach the official concept of
function which concept pertain to objective knowledge (cf. the idea of know-
ledge building in Bereiter & Scardamalia 1996). Thus, his view of mathemat-
ics contains, among others, his conceptions of mathematics as a whole and in
detail. On the other hand, an individual’s subjective knowledge may enrich
objective knowledge, when a certain piece of his subjective knowledge is pub-
licly presented, justified, discussed, and socially accepted.

Sfard (1991, 3) goes deeper into the connection between beliefs and knowl-
edge. She considers conceptions as the subjective /private side of the term
‘concept’ defined as follows: “The word “concept” (sometimes replaced by “no-
tion”) will be mentioned whenever a mathematical idea is concerned in its “official”
form as a theoretical construct within “the formal universe of ideal knowledge™”.
Whereas she explains that “the whole cluster of internal representations and asso-
ciations evoked by the concept — the concept’s counterpart in the internal, subjective
“universe of human knowing” — will be referred to as “conception”. The distinction
between conception and knowledge is complicated by the fact that an indi-
vidual’s conception of a certain concept can be considered as a “picture” of

15
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Erkki Pehkonen

that concept. Since a picture and its object are not the same, and usually the
picture shows only one view on the object, similarly a conception represents
only partly its object (concept).

Knowledge as a network

As mentioned, mathematics is a cultural artifact that is more than 2000 years
old. Therefore, it can be considered as a human created network (structure)
of knowledge. It is well-known that mathematical knowledge is divided into
procedural knowledge, as algorithmic knowledge, and conceptual knowledge,
as fact knowledge, which both are needed when learning mathematics (Hie-
bert & Lefevre 1986). Often knowledge structure is represented as a graph
(e.g. Kiesswetter 1977) that is a compound of facts (knots) and their connec-
tions (paths). As a result of studying, which aims for understanding, new con-
nections are constructed in the knowledge graph. In the best case, an individ-
ual’s mathematical knowledge will be formed to be a clear logical network — a
mathematical knowledge structure.

The meaning of a rich knowledge structure in mathematicsis evident in
problem solving situations. In the model of Kiesswetter (1983), a solution for
a problem can be produced, if the solver is able to construct enough addition-
al connections in his knowledge structure between the old facts. This proce-
dure has near connections with creativity (e.g. Silver 1997).

But in practice most of each individual’s mathematical knowledge is on
belief level (cf. Sfard 1991). It is a compound of personal (more or less clear)
conceptions or memory pictures on eatlier learned mathematics that might
also deviate significantly from the generally accepted conceptions. Further-
more, there are emotion-laden memories, mostly frustrations, in connection
to an individual’s knowledge structure (cf. with Bereiter’s module theory of
learning, Bereiter 1990).
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FIGURE 1. A schematic picture on an individual’s knowledge structure as a graph
(black circles represent facts and white squares emotions).

A mathematician strives toward an ideal, purely cognitive knowledge struc-
ture where knowledge units are only logically connected with each other with-
out any emotional coloring. A well-known example of this was the bourbakist
trial to structure the whole mathematics starting with the set theory (cf. Boy-

er 1985).

Beliefs in action

Especially in the early years of belief research, i.e. in the 1980’s, several re-
searchers tried to sketch what kind of beliefs teachers and pupils possess re-
garding mathematics and its learning and teaching (e.g. Frank 1988; Thomp-
son 1989). Some researchers also have sketched beliefs conveyed by public
opinion, i.e. in newspapers (e.g Weber 1995). Further sources of classroom
beliefs are derived, for example, through teaching materials and school ad-
ministrational orders.

What kinds of beliefs may one observe in mathematics classes?
In mathematics lessons, teachers’ and pupils’ mathematics-related beliefs form

an important influencing factor for the quality of teaching and learning. Addi-
tionally, pupils are under the influence of the beliefs of textbook authors, pu-

17

21



E

Erkki Pehkonen

pils’ parents and relatives, etc. On the one hand, a teacher’s beliefs conduct
his pupils’ learning. If the teacher considers mathematics primarily as calcula-
tions, then his pupils will have to calculate much during the mathematics
lessons. On the other hand, pupils’ beliefs direct their performance in learn-
ing situations. If pupils believe that mathematics is merely calculating and
using ready-made formulas, they will have difficulties in problem solving, where
one must first think and discover the kind of method to apply.

Many researchers have listed mathematics-related beliefs that pupils have
revealed. Among others, Martha Frank (1988), based on her research, was
able to extract the following five beliefs from pupils:

* Mathematics is computation.

* Mathematics problems should be quickly solvable in just a few steps.

* The goal of doing mathematics is to obtain “right answers”.

* The role of the mathematics student is to receive mathematical know-

ledge and to demonstrate that it has been received.

* The role of the mathematics teacher is to transmit mathematical kno-

wledge and to verify that students have received this knowledge.

Frank’s study was conducted among a group of talented middle school pu-
pils, but other researchers have obtained similar results from different pupil
populations.

Also teachers’ beliefs are investigated in many studies. For example, Alba
Thompson (1989) condensed teachers’ beliefs on problem solving, when in-
terviewing some middle school mathematics teachers, into the following five
statements:

* It is the answer that counts in mathematics, once one has an answer,

the problem is done.

*  One must get an answer in the right way.

* An answer to a mathematical question is usually a number.

* Every context (problem statement) is associated with a unique pro-

cedure for “getting” answers.

* The key to being successful in solving problems is knowing and re-

membering what to do.

Furthermore, she noticed that conventional mathematics teaching sup-
ports the development of such beliefs, both for pupils and teachers.
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Both of these examples are from North-American researchers, but similar
results have also been obtained in other countries, e.g. in Finland (cf. Pehko-
nen 1992, 1993). Furthermore, during teacher in-service courses, held by the
author in Finland, in Estonia and in Germany, participants have confirmed
that Frank’s and Thompson’s results also are valid in their countries. An in-
teresting observation is that teachers’ and pupils’ beliefs about problem solv-
ing and related mathematics are very similar.

On the structure of belief systems

The structure of belief systems differs totally from that of a knowledge system.
Within a knowledge system, one strives for the inner logic, since logic is one
of the basic requirements for knowledge. Whereas in a belief system, an indi-
vidual tries to be logical, though usually the result is somewhat quasi-logical,
i.e. he puts himself forward the rules of his logic and his axioms. Based on
these kinds of observations, Green (1971) has introduced three dimensions of
belief systems: quasi-logicalness, psychological centrality and cluster struc-
ture (see more e.g. Pehkonen 1994). As a fourth dimension, the degree of
conviction that is due to Abelson (1979) is discussed here.

Level of conviction

Kaplan (1991) introduced two levels of beliefs: deep beliefs and surface be-
liefs, but this bipolar division is too rough. We need more levels than these
two, in order to keep our statements powerful. As a solution we might accept
a wide spectrum of beliefs: deep beliefs are at one extreme, and surface beliefs
at the opposite. Let us consider as an example a researcher’s beliefs. If he has
learned to use only statistical methods in his research, the positivist paradigm
is for him self-evident. It is not a question to discuss about, because he knows,
and therefore, does not accept any other method as research. Thus, beliefs
connected with this paradigm situation are very deep-rooted. Whereas, for
example, the following one may be a surface belief: “In the list of references, one
should always use the APA guidelines”. Between these beliefs, there are many
levels of certainty for beliefs.

Such deep-rooted beliefs (e.g. those connected with research paradigm)
are self-evident to the individual in question, and therefore, their certainty

19




Erkki Pehkonen

for him is 100%. They form the "axioms” in the individual’s worldview. Nev-
ertheless, the individual might possess beliefs of which he is 100 % sure, but
which he is ready to change when there is enough evidence for that. For
example, the belief "Seville is situated in the middle of Spain” could be changed
easily, since a look at a reliable map shows that Seville is almost on the sea-
side. The difference between these two types of beliefs held with a 100 %
certainty might lie in the amount of affect in them and in their psychological
centrality.

Most beliefs are held with a lower amount of certainty than 100 %. For
example, a pupil may give the following characterization: “In order that an
algebraic expression is an equation, there should exist x in some form”, but if you
ask how sure he is of his answer, he may say e.g. “about 80 % sure”. One of the
topics in the dissertation of Kaarina Merenluoto (2001) are such certainty
estimations of pupils on their responses.

The meaning of beliefs for mathematics
teaching and learning

The central role of beliefs for the successful learning of mathematics has been
pointed out again and again by several mathematics educators (cf. Schoenfeld
1992). In this connection, the following points are given as an explanation for
these effects: Beliefs may have a powerful impact on how children learn and
use mathematics, and therefore, beliefs may also form an obstacle for the ef-
fective learning of mathematics. Pupils who have rigid and negative beliefs of
mathematics and its learning easily become passive learners, who emphasize
remembering more than understanding in learning.

Beliefs and learning form a devil’s circle (Spangler 1992): On the one hand,
pupils’ experiences in mathematics learning influence and form their beliefs.
On the other hand, beliefs have an effect on how pupils will behave in math-
ematical learning situations, and thus conduct their ability to learn mathe-
matics. Therefore, pupils’ beliefs, revealed through research, reflect teaching
practices in the classroom.
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(9% R



Beliefs in Math Classroom

Mathematical beliefs as a regulating system

In her dissertation, Martha Frank (1985) introduced a schematic picture of
some factors affecting pupils’ problem-solving behavior. Since most of the fac-
tors act via pupils’ belief systems (their view of mathematics), I have orga-
nized the components in the scheme in another way (Figure 2). This scheme,
in fact, emphasizes the regulating character of a pupil’s view of mathematics.

Beliefs play a central role as a background factor for pupils’ thinking and
acting. A pupil’s mathematical beliefs act as a filter that regulates almost all
his thoughts and actions concerning mathematics. A pupil’s prior experiences
of mathematics affect fully at the level of his beliefs — usually non-consciously.
When he uses his mathematical knowledge, his beliefs are also highly involved.

In contrast to this, a pupil’s motivation and needs as a learner of mathema-
tics are not always connected with his mathematical beliefs. Additionally, there
are many societal mathematical myths, e.g. that mathematics is merely calcu-
lation (for more myths see e.g. Frank 1990 or Paulos 1992); these myths also
influence a pupil’s mathematical behavior via his belief system.

Apuplls math o P
behavior

RN,

Prlor
experiences
in math

Needs
as a math
student

Motivation )
as a math
student

Mathematical
knowledge

“/A pupil's view of mathematics =

to

" ‘Societai mathematical myths

FIGURE 2. Factors affecting pupils’ mathematical behavior.
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The scheme of Figure 2 shows such a situation in which a pupil’s mathema-
tical performance is influenced by several factors that affect through a system
or a net of his own beliefs. However, this is only part of the truth, in fact, the
situation is much more complex. Pupils act within a very complex net of influ-
ences — Underhill (1990) speaks about a web of beliefs. For example, their
mathematics teacher, classmates, friends, parents, relatives and teachers of
other subjects all have their own views of mathematics and its teaching and
learning. These beliefs more or less affect learners’ beliefs, and usually in a
contradicting way. Furinghetti (1997) also pointed out in a recent paper a
similar complexity in the influence of beliefs.

Mathematical beliefs as an indicator

There is another practical meaning of beliefs: An individual’s view of mathema-
tics (mathematical beliefs) may form a practical indicator in a situation which
one is not otherwise able to observe’. Since the view of mathematics trans-
mitted through beliefs, expressed by an individual, gives a good estimation of
his experiences within mathematics learning and teaching, we have a method
to indirectly evaluate the instruction he has received/has given: In the case of
a teacher, the view of mathematics may act as an indicator

(1) of teachers' university studies,

(2) of teachers’ professional views,

(3) of teachers' in-service training.

In the case of pupils and students, the view of mathematics could function as
an indicator
(4) of students' experienced teaching (in schools and universities).

Generally, one may consider the view of mathematics as an indicator
(5) of the functioning of the whole school system.

3 The idea of beliefs as an indicator of implemented instruction can be attributed to Giinter
Torner (University of Duisburg).
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Mathematics teaching forms a part of the general education provided by the
school that is implemented within a societal context. In the research done
(e.g. Pehkonen & Torner 1999), one may see connections with the change
processes within the society, connections arising outside the framework of
mathematics education. Thus, the view of mathematics also has a role as an
indicator

(6) of social sensitivity.

Mathematical beliefs as an inertia force

If we aim to develop mathematics teaching in schools, we are compelled to
take into account teachers' beliefs (their view of mathematics), and also pu-
pils’ beliefs. Usually, the question is of experienced teachers’ rigid attitudes
and their steady teaching styles, which will act as an inertia force for change.
Thus, the problem is how to help teachers to develop and enlarge their own
pedagogical knowledge. Also, pupils’ view of mathematics might not be opti-
mal for the up-to-date understanding of learning and teaching, and therefore,
the conditions of change should be considered. Thus, beliefs have a central
position when trying to change teaching.

Changing beliefs

Since teacher change (i.e. a teacher’s professional growth) is still a “hot” topic
in mathematics education, there are many interesting longitudinal research
projects reported during the last years (e.g. Fennema & al. 1996, Cooney &
al. 1998, Chapman 1999). In the literature, there are also several descriptions
of trials to change pupils’ beliefs (Franke & al. 1997b; Wood & al. 1997), as
well as edited books dealing with the change problems (e.g. Fennema & Nel-
son 1997).

Conditions for teacher change

To change an individual’s beliefs is a long-term process, and this usually de-
mands the cooperation of the object person. It is not possible to force some-
body to change his beliefs. Such a training that aims to involuntarily change
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one’s beliefs is called indoctrination — the common name “brainwash” is a
very fitting description for it. Therefore, speaking about changing beliefs should
be understood as “offering opportunities for change”.

If someone from outside the school aims to achieve a change, he should
keep an eye on several factors. The experiences revealed that, for example,
the support given to teachers in their schools was essential for teacher change.
It was important to visit other classrooms and discuss observations made with
colleagues, in order to achieve a change of beliefs on the practical level. It also
seemed to be important to organize such situations in which teachers could
reflect on their thinking and actions.

One of the basic requirements for change seems to be perturbance. An
individual should see himself that something does not match in his own belief
system. Based on research experiences, the following conditions of teacher
change could be explicated (Shaw & al. 1991): In order to affect a successful
and positive change, (1) teachers need to be perturbed in their thinking and
actions, and (2) they need to commit to do something about the perturbance.
In addition, (3) they should have a vision of what they would like to see in
their classrooms, and (4) develop a plan to realize their vision (Figure 3).

Cultural Environment

Reflection Reflection

Perturbance Commitment
Reflection

FIGURE 3. Framework for teacher change (Shaw & al. 1991).
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In the framework (Figure 3), there are four central concepts. The cultural
environment is different for each teacher. For each teacher in the research
project of Shaw & al. (1991), some central cultural elements were noticed
which have their impact on the process of change. Such elements are e.g. the
support given by others, time, money, other resources, taboos, customs, and
common beliefs. The change cannot happen without a perturbance in a teach-
er’s thinking and actions. For example, pupils, colleagues, parents, adminis-
trators, teacher-educators, books, articles, and self-reflection may act as sources
of perturbance *. Commitment is a personal decision to implement the change
as a result of one or more perturbances. For teachers in the process of change,
they need to form a personal vision of what mathematics teaching and learn-
ing should look like in their classes. Thus, if we want to have a change in
teaching, teachers should already be actively involved in the planning stage of
the innovation.

Edwards (1994) exposed a similar model. He stated that there are six fac-
tors which “drive the teacher change process: (1) experiencing a perturba-
tion, (2) having commitment to change, (3) constructing a vision what specif-
ic changes might look like within a teacher’s own classroom, (4) projecting
the teacher’s self into that vision, (5) deciding to make changes within a given
context, and (6) being a reflective practitioner”. Thus he developed further
the model of Shaw & al. (1991) by adding three more factors to the originally
three (perturbance, commitment, vision).

The component of having a personal vision seems to be a powerful, but
often neglected factor in the formation and development of beliefs. For exam-
ple, Presmeg (1993) has conducted research on it in a larger context of image-
ry. She emphasizes that when trying to change teachers’ visions, one must get
on the level of teachers’ imagery, since imagery imparts an “affective coloring”
to memory.

As an example of a practical situation, teacher change described by Cobb
& al. (1990) fits in very well with the explained theory. The teacher in ques-
tion was willing to cooperate and planned with the researchers new ways to
teach. But the researchers noticed that, in classroom situations as soon as the

4 Pehkonen & Tomer (1999) revealed a similar list of change factors in interviews with Ger-
man teachers.
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researchers were no more there, she used her old conceptions of mathematics
teaching when making her decisions. The change occurred until when her
thinking became perturbed through observing with interviews that the teach-
ing strategies she used were not powerful enough. In the book of Fennema &
Nelson (1997), there are described several research project aiming to teacher
change.

Development of teachers’ beliefs

If a teacher is willing to change his own beliefs, the first phase is to be aware of
and reflect on them. Here the following theoretical model of teacher change,
exposed by Thompson (1991), might be helpful. It sketches some levels in the
development of teachers’ conceptions of mathematics teaching. Thompson
proposed a framework for the development, and this is based on her own
reflections of the training carried out with twelve pre-service and in-service
teachers over five years. “The proposed framework consists of three levels ... Each
level is characterized by conceptions of:

What mathematics is.

What it means to learn mathematics.

What one teaches when teaching mathematics.

What the roles of the teacher and the students should be.

What constitutes evidence of student knowledge and criteria for judging cor-
rectness, accuracy, or acceptability of mathematical results and conclusions.”

Nk N =

Her model is partly similar to the earlier published considerations of Schram
& Wilcox (1988) and Schram & al. (1989).

In her paper, Thompson (1991) gave a brief verbal characterization of each
level. Based on these, I have elaborated a table of the characterizations (Table
4), in order to give a better overview. I reduced the five components of the
Thompson model to four by combining the second and third components
(learning and teaching mathematics). In addition, I added the development
of conceptions in problem solving as a fifth column.

In the first column, the conception of mathematics is developed from rote
calculations to the complex system of interconnected mathematical entities.
In the second column, the conception of learning and teaching mathematics
is changed from mere memorization to understanding via doing mathematics.
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In the third column, the role of the teacher develops from a demonstrator to
a facilitator of learning, and the role of pupils from imitators to active learners.
In the fourth column, criteria for judging correctness are changed from the
teacher’s authority to self-regulated action. In the fifth column, the concep-
tion of problem solving is developed from solving separate “story problems” to
a teaching method.

TABLE 4. A modified set of the Thompson levels in the development of teachers’
conceptions of mathematics teaching.

What is What is learning | What are the What are the What is problem
mathematics? /teaching roles of the teacher | criteria for judging | solving?
mathematics? and pupils? cotrectness!
L | * common uses ¢ memorization of | ¢ the teacherisa ¢ the teacher is an | ¢ getting answers to
E | ofarithmeticskills | collections of demonstrator of authority for “story problems”
V | indailysituations | facts, rules, well-established correctness * helping pupils to
E | ¢ mathematical formulas and procedures * accurate answers | identify the right
L | knowledge means | procedures ¢ pupils imitate as the goal of procedure (“rules of
rote, procedural ¢ teaching mathematics thumb”)
0 | proficiency sequences of instruction
topics and skills
specified in a book
L | ¢ rulescontinue to | * an emerging * much as in Level O | ¢ authority for ¢ viewed as a sepa-
E | governall work in | awareness of the * the teacher attends] correctness still rate curricular strand
V | mathematics use of instructional | to the “reasons lies with experts ¢ taught separately
E | < appreciation for | representations behind the rules” * problems unrelated
L | understandingthe | ¢ use of manipula- | ¢ pupils include some to mathematical
concepts and prin- | tives in instruction | understanding topics being studied
1 | ciples behind rules | * promote the view| ¢ teaching “about”
that “math is fun” problem solving
L | ¢ understanding ¢ teach for under- | ¢ the teacher steers | ¢ the process of ¢ problem solving is
E | mathematicsasa | standing pupils’ thinking in | doing mathematics |used as a teaching
V | complex system of | * understanding mathematically pro- | is the goal of method
E | different intercon- | grows out of ductive ways teaching ¢ teaching “via"
L | nected concepts, engagement in the | * the teacher listens | ¢ pupils themselves | problem solving
procedures and process of doing to pupils' ideas check their
2 | representations mathematics + pupils express their | answers for
ideas correctness
5 27
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Thompson (1991) observed three levels in teachers’ development (Table
4). But it is worthwhile noting that actually the researcher’s beliefs will deter-
mine the framework, within which the development of teachers’ conceptions
of teaching mathematics is considered. One may imagine that, in the future,
some teachers will develop themselves further, e.g. into the third or the fourth
level (level 3 and 4), whatever they are.

Thompson’s model has been used e.g. by Sinikka Lindgren in evaluation of
the levels of teacher students’ mathematical beliefs (e.g. Lindgren 1996). Within
the research project “Developments in Pupils’ Beliefs” (Hannula & al. 1996),
we tried to create an indicator for the levels of pupils’ beliefs that is based on
Thompson’s model. The fitting of the model was checked through investigat-
ing both of its extreme poles: On the one hand, the conceptions of school
beginners about mathematics were clarified (cf. Pehkonen 1995b) — they should
be on the most elementary level (level 0) or on the pre-zero level. And on the
other hand, the most developed mathematical conceptions (level 2) were in-
vestigated. Here one possible group of test subjects is formed by professional
mathematicians from institutes of mathematics (cf. Pehkonen 1999).

Also Franke & al. (1997a, 264) have developed levels of teacher change
“that encompass information about a teacher’s beliefs, knowledge, and use of chil-
dren’s thinking in classroom practice”. They used four general levels with the
fourth level being a compound of two sublevels. The levels form a hierarchic
structure, each building on the previous one.

Is it possible to change pupils’ beliefs?

If a teacher wants to change some of his pupils’ beliefs, such as “The textbook
should be worked through page by page, and dll the tasks should be done”, he should
be prepared for a long process. About ten years ago I acted as a teacher in a
grade 7 class beside of my activities as a teacher educator. When beginning
with a new class, I did not introduce a textbook for a couple of weeks, since |
realized that the pupils needed repetition, and I became acquainted with my
new pupils’ skills by using some proper problem-centered tasks. As the pupils
then after two weeks said that they should also have a textbook, since parallel
classes had already been calculating from the textbook a long time, I promised
to give them the books immediately in the next lesson. Then we calculated
from the textbook diligently, and I copied the answer sheets for the pupils’
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use, in order to let them check the tasks independently. During those lessons,
the pupils only calculated and checked their answers, nothing else. After about
a week, they began to ask whether we would be doing something else besides
calculating only from the textbook. From then on, I had no difficulties with
the pupils when skipping around in the textbook, as long as I explained why to
them.

Optimal mathematics teaching for developing proper beliefs

Shulman (1987) has stressed that a teacher needs beside his content knowl-
edge also pedagogical knowledge that he labels to pedagogical content knowl-
edge. As a hypothesis one may say that instructional circumstances for devel-
oping optimal pupils’ beliefs require from the teacher content knowledge deep
enough, proper pedagogical content knowledge, the most developed view of math-
ematics as well as flexibility in implementing instruction. None of these four
aspects can be left aside. The first three requirements are clear for a teacher’s
ability to act as a mathematics teacher. But in addition, the teacher should be
flexible to take into account pupils’ needs and earlier beliefs in planning in-
struction and in implementing it. '

One important connected aspect in a teacher’s flexibility is the sharing of
authority in instruction, i.e. how much freedom and responsibility the teacher
gives his pupils for their learning. The sharing of authority has been one of the
central themes in international discussions on improving mathematics teach-
ing (cf. Cooney 1993). If a pupil is compelled to take responsibility for his own
learning, his view of learning and mathematics will change (e.g. Hart 1993).
The other side of the coin is pupils’ autonomy in learning mathematics that is
discussed e.g. in the published paper of Furinghetti & Pehkonen (2000).

From these aspects, one can deduce some criteria for teaching: From a
pupil’s view point, this change of focus is connected essentially with his more
personal attitude toward mathematics and its learning (cf. Hoskonen 1999).
The mathematics to be learnt then has a meaning for the pupil. Secondly, the
striving to understand the topics and their relationships is connected organi-
cally, if possible, with the teaching and learning, compatible with the devel-
oped view of mathematics. The third important factor is the promoting of
application of mathematics and skills to use mathematics. One additional factor
that supports effective learning is mathematical communication between pu-
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pils; the communication can be fostered i.a. with different forms of coopera-
tive learning (cf. NCTM 1996).

One possible method to help a teacher to create such a learning environ-
ment advantageous to pupils is the overall accepted “open approach” which
was developed in Japan in the 1970s (e.g. Nohda 1991, 2000). For this, one
can use open-ended tasks that have proven to be a promising solution for
generating a proper learning environment; for examples see Pehkonen (1997).
They seem to offer an opportunity for such teaching and learning that is more
meaningful from pupils’ viewpoint. The influence of open-ended tasks on pupils’
motivation has also been clarified in Finland (cf. Pehkonen 1995a). The main
result in the study was that pupils were clearly more interested in these types
of tasks, but that the teacher and his way to realize teaching was the most
influential factor.

Conclusion

With the rise of constructivism, teachers’ and pupils’ beliefs are seen as a
paramount factor for understanding their performance in teaching and learn-
ing. An individual’s beliefs act as invisible glasses through which he observes
the world around. These glasses “color” his perceptions and thus further his
understanding of the world around and its phenomena. In that sense, the
individual’s beliefs form a filter that regulates his performance in mathemat-
ics.

When aiming a change in school teaching, one should remember that con-
structivism stresses the meaning of beliefs as a “real-life” factor that should
then be counted. Beliefs might form a real obstacle for change or, at least, act
as a strong inertia force against the change. This means that the change will
not happen in short time period. The length of the change depends on the
depth of beliefs that should be changed (cf. Kaplan 1991).

Also in the case of educating new teachers, we should be aware of the
meaning of beliefs. If we want to change mathematics teaching in schools, one
possible way is to try to reach a change in teacher pre-service education. And
this means that all three components of teacher education (departments of
mathematics, departments of teacher education, practice schools) should con-
voy similar messages to students. Students’ beliefs are more formed by such
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hidden messages (e.g. how learning happens) than direct lecturing. Already in
the beginning of the 1960’s, Marshall McLuhan said that “the medium is the
message”.

Therefore, all teacher educators — both in departments of mathematics
and departments of teacher education — are in key positions, regarding the
development of teacher students’ mathematical beliefs. We know that conven-
tional mathematics teaching creates certain types of beliefs, and the resulting
view of mathematics is considered as a too restricted one. On the one hand,
also in departments of mathematics, professors should consciously strive for
enlarging a student’s view of mathematics by using different types of learning
methods. On the other hand, teacher educators in departments of teacher
education and teachers in practice schools are key elements in changing the
dominant teaching tradition: If their own teaching does not contain enough
components, generating new ideas which are also implemented (cf. Pehkonen
1998), prospective teachers will go to schools using their old conceptions and
practices. It is not enough to talk about the theory of change, one should
reflect and model it!
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Primary School Teachers’ Mathematics
Beliefs, Teaching Practices and
Use of Textbooks

Péivi Perkkila
Department of Teacher Education
University of Jyvaskyla

The study-in-progress underlying this paper investigates relationships between 7- to 8-
year-old children’s teachers’ beliefs and their mathematics teaching practices — espe-
cially the use of textbooks. Data were gathered through a belief questionnaire from
140 teachers, videotaped classroom observations and interviews from 6 teachers. An-
alyse includes the categorisation and comparison of beliefs and practice, particularly
the relationship between beliefs and the use of mathematics textbooks. Findings indi-
cate that there were inconsistencies between beliefs and teaching practices. Teachers’
recollections of mathematics studies at school and their dependence on mathematics
textbooks influenced their teaching practices.

Background

The role of the mathematics’ textbook is essential when the standard mathe-
matics lesson begins with some initial teacher exposition, and is followed by
the children working through the same exercises in their textbooks. The quick-
est children count some extra exercises from their textbooks. The homework
is also a further exercise from the textbook. (Kallonen-Rénkks 1997, 264.)
The right answers are found from answer keys in the classroom, and no atten-
tion is paid to the different solution models of exercises. The right answer is
more important than the different solutions. This kind of traditional mathe-
matics teaching model is still alive in the mathematics’ textbooks. My licenti-
ate study gives support to this fact. In my licentiate study (1998) I analysed
both the exercise and the concept structures of the two series of first and the
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second grade mathematics textbooks published before and after the Finnish
curriculum reform in 1994. The study showed that the structure of exercises
in mathematics textbooks supports traditional mathematics teaching in which
most of the lesson is quiet counting. According to Lerman (1993, 71), this
kind of traditional teaching and teachers’ dependence on the textbooks gives
the text, the textbook and the textbook writers complete authority in the
classroom. Furthermore, the structure of first and the second grade mathe-
matics textbooks does not reveal the whole picture. According to Pehkonen
(1998), a teacher’s system of beliefs guides his practices and also filters and
interprets the teacher’s perceptions. To capture the whole picture about math-
ematics teaching at the first and second grade in primary school, I decided to
study the relationships between teachers’ mathematics beliefs, mathematics
teaching practices, and the dependence on mathematics textbooks. In my
study the individual’s beliefs are understood to be composed of his subjective
experience-based implicit knowledge of mathematics and its teaching and
learning. According to Pehkonen (1998, 45), “conceptions are understood to
be conscious beliefs. The beliefs — conscious and unconscious — can be seen as
a belief system.” When the object of the belief system is mathematics or math-
ematics teaching/learning I use the term: “view of mathematics”.

The view of mathematics

Ernest (1989, 250) has distinguished three different conceptions of the na-
ture of mathematics, which answer the question “What is mathematics?”.
These are “the instrumentalist view, the Platonist view, and the problem solv-
ing view”. The teacher’s view of mathematics is the basis for the teacher’s
mental models of teaching and learning mathematics. When the teacher has
an instrumentalist view of mathematics, a typical feature of his teaching is the
strict following of teaching models and, for example, the strict following of a
textbook’s text and scheme. The teacher is a distributor of knowledge and
completed rules. Typical of this model is children’s compliant behaviour and
mastery of skills model. The children are counting and, utilising rules and
procedures. In the Platonic view of mathematics the role of the teacher can
be seen as an explainer. This model is likely to be associated with conceptual
understanding with unified knowledge. Children’s learning is still the recep-
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tion of knowledge model. Thus mathematics is discovered, not created. In
the problem-solving view of mathematics the teacher is a facilitator and a
child is an active constructor of knowledge. This model is based on the child’s
active construction of understanding model and exploration and autonomous
pursuit of own interest’s model. (Ernest 1989, 251; see also Dionne 1984,
223-224.)

According to Pehkonen (1998), beliefs can have a strong effect on how
children learn mathematics. Children’s learning experiences affect their be-
liefs, and on the other hand their beliefs influence how children approach
new mathematical learning situations. Kaasila’s study (2000) gives hints “how
the recollections of teachers have a central significance for the images pupils
have of mathematics itself, of the teaching of mathematics, of the role of a
student in a class”. Also according to Grigutsch (1998, 185), pupils’ view of
mathematics is influenced by the teacher as a person and his practices in
mathematics education.

Method

I make use of quantitative and qualitative data in my study. A Likert-scale
belief questionnaire was sent to first and the second grade teachers (N=230)
in primary schools. The belief questionnaire included 70 statements concern-
ing teachers’ beliefs and conceptions about mathematics, learning mathemat-
ics, teaching mathematics, and mathematics teaching practices. To make com-
parisons, the teachers’ answers were classified on the following scale: tradi-
tional, primarily traditional, mixed, primarily non-traditional, and non-tradi-
tional. For the basis of this classification there were the previously mentioned
three Ernest’s views of mathematics. The traditional answers were near the
instrumentalist view of mathematics, and the non-traditional answers were
near the problem solving view of mathematics.

On the basis of the questionnaire I selected 6 representative the first and
the second grades’ teachers from different primary schools. Teaching experi-
ence of these 6 teachers was between two to almost thirty years. Each teacher
was contacted first by phone and all of them volunteered to participate in the
study. Data collection for each teacher included: (a) two week’s classroom
observations (video-taped), (b) teachers’ written lesson plans, (c) after the
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classroom observation period an interview (the questions during the inter-
view focused on the nature of mathematics, mathematics teaching and learn-
ing practices and mathematics textbooks, assessment, school recollections
about mathematics and teachers’ mathematics studies) (d) analysis of the vid-
eo-taped mathematics lessons together with the teacher.

Results

Most of the teachers (N= 1;}0) answering the questionnaire had beliefs that
were between primarily traéﬁtional and primarily non-traditional. The beliefs
of those who had only a fewg‘years teaching experience were nearly non-tradi-
tional (33.9 %). Kupari (1999) has obtained the same kind of results.

Notes from classroom observations and interviews from those 6 teachers
are used to describe consistencies and inconsistencies between teachers’ be-
liefs and teaching practice. According to Ernest (1989, 252-253), there are
three key elements that influence the practice of mathematics teaching: “the
powerful influence of the social context; the teacher’s level of consciousness
of his own beliefs and the extent to which the teacher reflects on his practice
of mathematics.” [ found that teachers’ recollections of their experiences in
mathematics at school influenced their teaching practices. Teachers’ school-
time recollections, e.g. difficulties in mathematics learning, their school-time
teacher’s dependence on mathematics textbooks and inclination to the rules
and routines methods, have significance for their teaching practice. The study
of Lindgren (1998) gives support to this. In Lindgren’s study (1998, 344) “spe-
cial attention was paid to the emotional memories of the students’ math teach-
ers”. Her interviews with student teachers revealed hints for “correlation be-
tween recalled math teachers’ harshness, sharpness, and dependence on math-
ematics schoolbooks with student teacher’s distrust of the open-approach meth-
od and inclination to the rules and routines method.”

The use of manipulative in the teaching/learning situations was often re-
garded as useful for promoting the view that “math is fun”. For example teach-
er’s beliefs about mathematics were primarily non-traditional but his instruc-
tional practice was still focused on textbooks, rules, and procedures. There
appeared inconsistencies between their beliefs and practices. Thompson (1984),
Brown (1985) and Cooney (1985) have identified inconsistencies between
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the relationships of beliefs and classroom actions, too. They consider this re-
lationship complicated because many social norms with possibilities and lim-
its are connected: the values, the expectations and the beliefs of pupils, par-
ents, and administrators. The influence of the curriculum, the practices of
assessment and the dominating views and values of learning are connected.
Those factors mentioned above have an effect on teacher’s instruction.

Sometimes teacher’s school-time recollections, e.g. difficulties in mathe-
matics learning, were so deep that he wanted to protect the children — he did
not give children space to think. Interviews and observations revealed that
teachers should have more deepened mathematics studies during teacher ed-
ucation. Because of the uncertainty of mathematics, teachers mainly followed
the order and the instructions of the mathematics books. The right answers
were more important than solution procedures. Next [ restrict my attention
to case of Paula.

The case of Paula

Paula’s teaching philosophy:
“I think it is this understanding mathematics by doing it through activities and
also co-operative learning. I think that if you put such children who have
difficulties in mathematics together with those who are good in mathematics
they can help each other. Those who know story problems can teach those
who do not know story problems.”

Paula has been a teacher over twenty years. She taught the first class. Ac-
cording to the questionnaire, Paula’s answers about mathematics were rules
and strict orders but also problem solving and creativity. On the basis of Paula’s
answers, mathematics learning meant for Paula children’s creativity, concrete
learning environments and also confidence in the power of mathematics text-
books and their complete patterns as though those patterns would have formed
some kind of limits for her on how to learn mathematics. Paula’s answers
about mathematics teaching were emphasising understanding through prob-
lem solving and the use of manipulative, children’s own solutions but also
mathematics exactness and rote learning and routines.

During the interview Paula explained that she had had difficulties in math-
ematics at school as a child:
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“I like to teach mathematics. Very often I am recollecting how I had difficulties
in story problems and mental arithmetics in mathematics in the third and the
fourth grade in primary school. [ remember that I was very poor in mathemat-
ics. That is why mathematics teaching is to me a challenge and it is very
important for me to do mathematics teaching practice meaningful to these
children.”

Especially the story problems had been difficult for her and she wanted
that her pupils should learn mathematics properly.

During the classroom observations I found that the mathematics textbooks
were sometimes very dominating. For example Paula was so dependent on the
textbooks that she did not hear child’s right explanation of the right solution
or she did not give any space to children’s thinking — she only waited right
answers or sentences that should be filled in the textbooks. After the class-
room observation Paula analysed her teaching and her dependence on the
mathematics the textbooks like this:

“Here my teaching is teacher-directed because I thought that you should see
this how I teach this addition over ten. If I had more time I could have used
manipulative and co-operative working....because the children can’t read so
well at the first grade we have to do these story problems together. It is also
important to give to children good experiences in mathematics and by doing
together story problems everyone can calculate them. There are still those who
can do these problems alone.”

Comments: Although the children worked sometimes together and had
activities, [ found that the mathematics textbooks were very dominating. All
her lessons were not teacher directed but textbook-centered. Because of her
own difficulties in mathematics during her school-time she wanted her pupils
to learn mathematics properly and should not have the same kind of difficul-
ties in mathematics.

Conclusion

In teacher education we should pay more attention to students’ own thinking
and reflection. According to Raymond (1997, 574), “early and continued re-
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flection about mathematics beliefs and practices, beginning in teacher prepa-
ration, may be the key to improving the quality of mathematics instruction
and minimising inconsistencies between beliefs and practice.” Also teachers
should not work in such isolation but as members of learning communities. It
is important to encourage them to work and pursue new ideas together be-
cause by considering both the positive and negative consequences of various
teaching practices teachers would come to a better understanding their own
beliefs and would consider whether they are consistent with their goals for
their pupils (Barnett 1998, 92). In teacher preparation it is important to pay
more attention to learning theories and their connection to the mathematics
teaching and learning situations. We should read the child and know how she
or he learns. It is not the most important thing to cover the textbooks and
give right answers. If we do not listen to children’s answers the children be-
come uncertain and they will eventually answer what they think the teacher
expects.
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In this paper I shortly describe those things I have learnt while trying to find out what
mathematics prospective primary school teachers should learn during their teacher
education. Main result is that as important as it is to think what to teach, is to think
how to teach and to whom we teach. The ways of teaching and learning should be the
same what we expect our students to use whith their pupils in future. And we should
be more conscious of our students beliefs concerning mathematics and its teaching
and learning.

Introduction

In Finland primary school teachers work in grades 1-6 where pupils are from
7 to 12 years old. Teachers are “class teachers” and thus they have to be able
to teach every subject and, for example, primary school teachers teach over
70 % of the mathematics, which is taught to children during the period of
compulsory education.

Future teachers pursue their studies at Universities, in Departments of
Teacher Education, and their studies include a minimum of 160 credit units
(one credit unit = 40 hours of work). Mathematics accounts for 3—4 credits
of compulsory studies. Students then have a possibility to acquire 15 credits of
mathematics as optional studies, and the Department of Mathematics offers
these studies.

At the university of Joensuu optional mathematics courses have been very
popular during last seven years. Mostly because they are held during summer-
time and weekends, and because teachers get more salary when they have
done this mathematics unit, named mathematics approbatur (15 credits). The
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problem is that students (and teachers) feel that those studies are not useful
when teaching — they give so little help for real classroom situations.

In my study I have tried to find out if there exists such mathematics which
develops teachers skills in teaching mathematics, which gives teachers not
only mathematics substance knowledge but also that kind of mathematical
know-how which makes persons to be better teachers of mathematics?

Theoretical background

This study belongs to the field of belief research. It starts from the assumption
that beliefs are related on practices (Pajares 1992; Thompson 1992; Lindgren
1995 and 1997; Pehkonen 1998 and Kupari 1999) and the following model by

Ernest has been used as framework (Figure 1).

view of nature of mathematics

espoused model of learning espoused model of teaching
mathematics mathematics

/ AN

constrains and opportunities provided by the social context of

teaching
enacted model of learning enacted model of teaching use of mathematics
mathematics mathematics texts

FIGURE 1. Relationship between Beliefs, and their Impact on Practice (Ernest 1989a,
252)
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In Ernest’s model, a view of the nature of mathematics provides a basis for
teachers’ mental models of the teaching and learning of mathematics, and
although Ernest is well aware that social context can disturb this system, the
main idea is that practices can develop only with the development of the
individual’s view of the nature of mathematics.

Since teachers’ mathematical views consist of mathematical beliefs, we
next concentrate on teachers’ beliefs of mathematics and its teaching and
learning. Beliefs are here understood as one’s stable subjective knowledge
(which also includes his feelings) of a certain object or concern to which
tenable grounds may not always be found in objective considerations, and
conceptions are conscious beliefs (Pehkonen 1995).

Although there exist several classifications applicable to teachers’ mathe-
matical beliefs (e.g. Dionne 1984; Ernest 1989b; Grigutsch et al. 1995; and
Thompson 1992), the classifications seem to be rather analogous and the
beliefs can be divided into three main categories. Figure 2 sums up and divides
beliefs into three views of mathematics and its teaching and learning.

beliefs concerning the nature of beliefs concerning teaching and
mathematics learning of mathematics
I | traditional/instrumentalist/toolbox teacher as instructor, mastery of skills
aspect with correct performance, content

oriented with emphasis on instruction
Thompson level 0

11 | formalist/Platonist/system aspect teacher as explainer, conceptual teacher
as explainer, conceptual knowledge,
content oriented with emphasis on
conceptual understanding

Thompson level 1

III | constructivist/constructivist/process teacher as facilitator, confident problem
aspect posing and problem solving, pupil
oriented

Thompson level 2

FIGURE 2. Compilation of teachers’ beliefs concerning school mathematics and its
learning and teaching
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Because the descriptions of Thompson'’s levels 0, 1, 2 simultaneously portray,
both the conception of the nature of mathematics and the conception of teaching
and learning it is taken here to serve as a representative of levels I, II, IIL

I At Level O the conception of mathematics is based on perceptions of
common uses of arithmetic skills. This implies that instructional practice fo-
cuses on facts, rules, formulas, and procedures. The role of the teacher is
perceived as a demonstrator of well-established procedures, and the pupils’
role is to imitate the demonstrated procedures and to practice them diligently.
Obtaining accurate answers is viewed as the goal of mathematics instruction.
The assessment of the correctness or accuracy of the answers is the responsi-
bility of the teacher. Problem solving is viewed as getting right answers — usu-
ally by using prescribed techniques - to ‘story problems’.

II At Level 1 the conception of mathematics is broadened to include an
emerging valuation for understanding the concepts and principles ‘behind
the rules’. However rules still play a basic part of mathematics. The teaching
of mathematics is characterised by an awareness of the use of instructional
representations and manipulatives. Teaching for conceptual understanding is
not viewed as a central goal. Thus the use of manipulatives is often regarded
as useful for promoting the view that ‘maths is fun’. The connections between
the actions performed on objects, the verbalisation of those actions, and their
representations in mathematical symbolism is not explicitly discussed. The
role of the teacher is perceived somewhat as in Level 0. Views of the role of
the pupils are broadened to include some understanding. Problem solving is
regarded as important in the mathematics curriculum but it is viewed as a
separate strand from the ‘traditional content’.

III At Level 2 the conception of how mathematics should be taught is
characterised by a view that pupils themselves must engage in mathematical
investigation. The view of teaching for understanding that begins to develop
at Level 1 is transposed to a view that understanding grows out of engagement
in the very processes of doing mathematics. The physical and pictorial repre-
sentations are regarded as a provision both for doing tasks carefully designed
by the teacher and for generating non-standard procedures by the pupils. The
role of the teacher is to steer pupils’ thinking in mathematically productive
ways. The questions intend to stimulate, guide, and focus pupils’ thinking.
The pupils are given opportunities to express their ideas and the teacher lis-
tens to and assesses their reasoning. (Thompson 1991)
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When we think about what kind of experiences of school mathematics our
students have, we can probably conclude that, based on their own mathemat-
ical background, their beliefs settle mostly on levels I and II. But level III
represents such beliefs which we call modern ones and which we would like
our future teachers to have. Therefore the aim of the mathematics education
offered to those students is to promote construction of such beliefs.

Method and research question

The renewed mathematics unit had started in summer 1994. During follow-
ing years I supervised a big number of practising lessons which were held both
by students who have studied optional mathematics and by those who have
done only compulsory courses. While following the lessons I got the feeling
that those students who had studied more mathematics had better touch in
their teaching.

This observation made me curious and I wanted to detect how the stu-
dents themselves had experienced the relationship between their mathemat-
ics studies and their mathematics teaching.

Among qualitative research, persons’ experiences are studied by using their
own narration’s (written or spoken). In my study I used semistructured inter-
views where the themes were 'what students had taught and how at their
practising lessons’, "how they had felt with mathematics and mathematics teach-
ing’, 'what and how they would have liked to teach’, 'what kind of attitudes
the children had against mathematics’ and "what and how they would like to
teach in future?’. Predominantly the study is a fenomenografical one.

In the beginning the question was: "What mathematics?’. I had an idea
that mathematics exists in different forms at different levels; there are lower,
middle and higher versions of the same mathematical thing. For example,
children can concretely play with a model of Towers of Hanoi but in the same
time those towers include some high level mathematics. And I assumed that
one can go somehow from top to down — that means to take topics taught at
university level and find out how those topics are used at primary school.

Based on that assumption, | interviewed ten students who had done op-
tionally 15 weeks of studies in mathematics and done their last teaching prac-
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tice in autumn 1996, and asked them 'which parts of that mathematics they
had learned on courses, they found to be useful when they taught at school?’.

Results

When listening through interviews, I was first disappointed because I found
no such things that I had been looking for. But after analysing interviews more
carefully I felt that I had found something else: First, the use of concrete and
visual representations was something which students had found to be very
helpful, useful and worth for using also in their own teaching. Secondly, con-
cerning to some contents, students were more conscious of their own cogni-
tion’s and also of children’s cognition; the difficulties in their own learning
when studying binary operations in different number systems had showed them
what kind of problems children might have when they study binary operations
in ten based number system.

And one thing, which every interviewed student mentioned, was the course
'empirical geometry’. They told that teaching and learning on that course
departed from all other mathematics lessons they had seen before and was
something which they would like to use also in their own future teaching; On
that course teaching (and learning) usually began so that the teacher gave
students a problem or exam to solv. Students worked in little groups and found
different kind of solutions. Then every group introduced its own solutions and
these different solutions were discussed together. Teacher acted like a chair-
man or like an expert and every solution was checked and evaluated.

So I got a feeling that it was more of a question 'how they had learnt math-
ematics’ or 'what kind of topics about mathematics’ than 'what mathematics’.
And I made a conclusion that [ have to change my research to be 'what kind
of mathematics?’.

Discussion

The rest of the study is done by making acquaintance with earlier research
made among primary school teachers and prospective primary school teach-

ers (Ball 1991; Borko et al. 1992; Castro-Martinez and Castro-Martinez 1996;
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Lindgren 1995 and 1997; Llinares and Sénchez 1996) and by trying to find
out what is included in teachers mathematical know-how (Ernest 1989b, Pe-
terson 1988, Schulman 1986, Turner-Bisset 1999).

I was satisfied when I noticed that these earlier results affirmed my results.
For example Ball’s study (1991) where she describes teacher students’ know-
how concerning place value shows that prospective teachers have difficulties
to really understand what happens in simple mathematical algorithms — what
is the mathematics behind mechanical calculations. The studies of Llinares
and Sanchez (1996) and Castro-Martinezs (1996) for their part establish that
student’s knowledge of representations; concrete, visual and verbal are quite
inadequate for prospective teachers.

From what is said about teachers’ mathematical knowledge for teaching I
like to mention two things which, after my mind, tell in compact way the most
essential. First is Shulmans’ concept 'pedagogical content knowledge’ which
“includes the most regularly taught topics in one’s subject area, the most use-
ful forms of representations of those [content] ideas, the most powerful anal-
ogies, illustrations, examples, explanations, and demonstrations — in a word,
the ways of representing and formulating the subject that make it comprehen-
sible to others”. It also includes an understanding of what makes the learning
of specific topics easy or difficult: “the conceptions and preconceptions that
students for different ages and backgrounds bring with them to learning”
(Schulman 1986, 9).

Secondly Peterson (1988) sums up briefly teacher’s mathematical know-
how when she argues that in order to be effective, teachers of mathematics
need three kinds of knowledge:

a. how pupils think in specific content areas,

b. how to facilitate growth in pupils’ thinking, and

c. self-awareness of their own cognitive processes.

Peterson does not ignore the content knowledge necessary to teach, but
argues convincingly that this knowledge must be regarded in relation to the
three categories she has identified. Mathematics knowledge isolated from chil-
dren’s cognition and teachers’ metacognition does not appear important to
her.

Thus teachers’ mathematics is mathematics which is very closely related
with the teaching and learning of mathematics. Situation can be illustrated
with the following simple triangle:
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"teaching"

7\

"mathematics" ______________ ‘learning"

Implications

Since teachers’ mathematics is tightly related with teaching and learning, it is
reasonable to learn it in this same context. Thus the mathematics which is
offered to future teachers should start from the contents taught at school, but
those contents ought to be approached from the ‘teacher’s perspective’, relat-
ed to the problems of teaching and learning of those contents. This kind of
mathematics is here called didactical mathematics.

The ways of teaching and learning should be the same what we expect our
students to use with their pupils in future. Thus students themselves must
engage in mathematical investigations. The view of teaching for understand-
ing that begins to develop at Level 1 is transposed to a view that understand-
ing grows out of engagement in the very processes of doing mathematics. The
physical and pictorial representations are regarded as a provision both for
doing tasks carefully designed by the lecturer and for generating non-standard
procedures by the students. The role of the lecturer is to steer students’ think-
ing in mathematically productive ways. The questions intend to stimulate,
guide, and focus students’ thinking. The students are given opportunities to
express their ideas and the lecturer listens to and assesses their reasoning.
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The Metalevel of Cognition-Emotion
Interaction

Markku S. Hannula
Department of Teacher Education
University of Turku

The focus of this paper is in the building of theory; more specifically, the metalevel of
emotion and cognition. Several authors have presented different, overlapping con-
cepts that parallel metacognition, and extend the idea of meta-level of mental process-
es onto the affective domain. Based on a literature review, the metalevel is in this
paper reconceptualised by dividing it into four domains. The four domains are 1) met-
acognition (cognitions about cognitions), 2) emotional cognition (cognitions about
emotions), 3) cognitive emotions (emotions about cognitions), and 4) meta-emotions
(emotions about emotions).

Introduction

The motive for this theoretical paper stems from my efforts to make sense
how students’ attitudes towards mathematics and their beliefs about mathe-
matics develop (Hannula 1997, 1998a, b, 1999, submitted). Within this do-
main the theory is under development, and experts lack agreement on how to
define the concepts on this field. For example, Furinghetti & Pehkonen (1999)
did not find agreement among 18 experts on any of the nine different charac-
terisations used for concepts on this field. Interplay of cognition and emotion
seems to be significant to the development of beliefs and attitudes. This paper
aims to provide a conceptual framework for the complex interaction of cogni-
tion and emotion.

Just as there is no general agreement on the terminology of attitudes and
beliefs, the concepts around the psychology of emotions are also defined in
the literature in a variety of ways. I prefer to use the term emotion in the sense
of an emotional state. Unlike some other researchers I do not restrict the term
emotion to intensive, ‘hot’ emotions. Following the terminology by Buck (1999),
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emotions in this paper refer to certain aspects of the psychological-physiolog-
ical state of the person that often have low intensity and that are not always
observable by self or others. Emotion and cognition are seen as highly inte-
grated modes of information processing that regulate human behaviour.

Although mathematics sometimes is described as cold logic, emotions have
an important role in learning and doing mathematics. Research on this field
has been reviewed for example in McLeod (1994). This paper examines the
self-referential aspects of human mind — emotions and cognitions one has
about oneself — in the context of doing and learning mathematics. Schoenfeld
(1985) brought the idea of metacognition to the focus of research on math-
ematical thinking. Later, several researchers have extended the idea of self-refer-
ence into emotional sphere. In this paper, I shall describe six of them. Unfortu-
nately these concepts are either too broad for fine-grained analyses or too specific
for analysing all self-referential aspects of human mind and their interaction. Fur-
thermore, these concepts are partially overlapping and incompatible.

In order to reconceptualise the metalevel of human mind; a distinction
will be made between emotion and cognition as two aspects of human mind.
However, these borderlines do not separate one part from another. Rather,
they are seen as two sides of the same coin. Using emotion and cognition as
the central concepts, the self-referential aspects of human mind will be divid-
ed into four categories: cognitions about cognitions (metacognitions), cogni-
tions about emotions (emotional cognition), emotions about cognitions (cog-
nitive emotions), and emotions about emotions (metaemotions).

Mathematics and emotions

Research on mathematical thinking has mainly concentrated on the cogni-
tive processes of the individual (e.g. Schoenfeld 1985; Silver 1987; Presmeg
1999). Although people during problem solving often encounter intensive
emotions of frustration and/or joy, this has usually been regarded as somewhat
peripheral to the actual problem solving. Although affective issues in mathe-
matics learning have also been studied extensively the method has mostly
been surveys that describe students’ liking of mathematics, degree of math
anxiety, self-efficacy beliefs etc. Few studies focus on the connections between
affect and mathematical thinking.
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Some researchers have analyzed emotional processes in problem solving.
Mandler’s constructivist approach (e.g Mandler 1989) sees emotions as initi-
ated by a gut reaction to a discrepancy of an expected schema, which is fol-
lowed by cognitive analyses. According to Mandler, emotion is always expressing
some aspect of value. Although Mandler’s theory has been important on the
field of mathematics education, it is based on an ovetly simplistic theory of
emotions and it does not properly incorporate the influence of less intensive
emotional states.

Goldin (1988, 2000) presented “affective pathways” as a framework for the
dynamics of affective domain in mathematical problem solving. These path-
ways are established sequences of states of feelings that interact with cogni-
tion, and suggest strategies, during a problem solving process. Affects are not
merely ‘noise’ of human behavior in problem solving, but a representational
system parallel to, and crucial for, cognitive processing. This affective repre-
sentational system was later divided into four facets of affective states, which
interact on the individual level: emotional states, attitudes, beliefs, and val-
ues/morals/ethics (DeBellis and Goldin 1997). Other researchers (Carlson
2000; Schoenfeld 1985, 122—125) have documented emotions and managing
emotional responses as characteristic for professional mathematicians’ prob-
lem solving behaviour.

Previously defined self-referential concepts

The intention of this paper is to describe a conceptual framework for self-
referential aspects of human mind. That includes processes that either con-
trol mental processes or code important information about (e.g. monitor)
mental processes. Next we shall briefly describe six concepts that other re-
searchers have proposed for this domain: metacognition, meta-affect, metaemo-
tion, metamood, self-awareness, cognitive emotions, and cognitive affects.
Metacognition is an established concept in the domain of mathematical
thinking, and it has been typically defined as (a) knowledge about cognitive
processes, and (b) the steering of one’s own cognitive processes (e.g. Simons
1994). Schoenfeld (1985, 137, 143) stated that metacognition, and control in
particular, is “a major determinant of problem-solving success or failure”. Few
authors recognise that the usual definition includes some emotions as part of
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metacognition, since emotions direct attention and bias cognitive processing
(summary by Williams, Watts, MacLeod & Mathews 1988, in Power & Dal-
gleish 1997, 73).

DeBellis and Goldin (1997) extended the idea of metacognition to the
emotional sphere. They defined meta-affect as “(a) emotions about emotional
states, and emotions about or within cognitive states, and (b) the monitoring
and regulation of emotions”. This is a broad definition, which includes several
different phenomena.

Also Hooven, Gottman & Katz (1995) define their concept of meta-emo-
tion as paralleling meta-cognition. Reflecting their research question these
feelings about feelings include interpersonal aspects: “parents’ awareness of
specific emotions, awareness and acceptance of these emotions in their child,
and their coaching of these emotions in their child.” This definition partially
overlaps with DeBellis’ and Goldin’s meta-affect. It includes the aspects of
monitoring and regulation of emotions, and also emotions about emotional
states. However, the idea of other persons is clearly an extension of the con-
cept of meta-affect.

Both meta-affect and meta-emotion include the aspect of awareness of
emotions. Some other researchers have used concepts that are restricted to
this aspect. Metamood has been defined as awareness of one’s own emotions
(mentioned in Goleman 1995, reference not given) and self-awareness as an
ongoing attention to one's internal states, “an interested yet unreactive wit-
ness” (Goleman 1995). The latter concept, obviously, includes also metacog-
nitive processes.

Baron-Cohen, Spitz & Cross (1993), defined cognitive emotions as reac-
tions in a situation produced by one’s beliefs (expectations). Their study con-
cerned surprise. Also Buck (1999) defines cognitive affects (curiosity, inter-
est, surprise, boredom, burnout) to involve expectancies of reward or punish-
ment.

Theoretical background

This article makes a distinction emotion and cognition as two aspects of hu-
man mind. These two have some phenomenological differences that make
this split reasonable. Cognition is neurone-based information processing,
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whereas emotions include also other kinds of physiological reactions. Howev-
er, this splitting is only an analytical tool, and the interaction between cogni-
tion and emotion is so intense, that neither of the two can be fully understood
in separation from the other.

The present view of cognition shall be outlined relatively briefly. Emotions
need significantly more elaboration for two reasons. Firstly, there is less agree-
ment on this field over the theories of emotion or even the definitions for
emotion. Therefore the present standpoint can not be explained with such
brevity, as is the case with cognition. Secondly, the emotions are more central
to the present paper.

The present approach to cognition has its background in the cognitive
science. Cognition is seen in a connectionist perspective, emerging from neu-
ral activity in the brain. It consists of several parallel subsystems, and most of
its processes are unconscious. Its three basic processes are pattern recogni-
tion, categorisation, and association. Yet, it can learn complicated rules, pro-
cedures, and concepts. Lakoff and Niies (2000) present some ideas as to how
this is possible.

Although researchers have not agreed upon what they mean with emo-
tions, there is agreement on certain aspects. First and foremost emotions are
seen in connection to personal goals: they code information about progress
towards goals and possible blockades as well as suggest strategies for overcom-
ing obstacles. Emotions are also seen to involve a physiological reaction, as a
distinction from non-emotional cognition. Thirdly, emotions are also seen to
be functional, i.e. they have an important role in human coping and adapta-
‘tion. (E.g. Buck 1999; Lazarus 1991; Mandler 1989; Power & Dalgleish 1997)

The two main issues that researchers have not agreed upon are the border-
line between emotion and cognition, and the number of different emotions.
The present approach adopts the controversial standpoint by Buck (1999),
that emotions are always present in human existence. However, only when
the intensity of emotions is high enough, they may become observable by self
and others. According to Buck emotions have three mutually independent
readouts: adaptive-homeostatic arousal responses (e.g. releasing adrenaline
in blood), expressive displays (e.g. smiling), and subjective experience (e.g.
feeling excited). Emotions that are primarily self-regulative do not always have
an expressive display and if the function of the emotion is to regulate cogni-
tion, adaptive-homeostatic arousal might also be weak. Regarding the number
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of emotions, this paper adopts the basic approach that there are only a few
basic emotions (happiness, sadness, fear, anger, disgust, and surprise), and the
more complex emotions are based on these (Buck 1999; Power & Dalgleish
1997). For example, jealousy could be a mixed emotion of fear, anger, and
disgust towards someone, who one perceives to threaten a valued relation-
ship.

Metamind

The metalevel of the mind consists of emotions and cognitions that are about
our own mind. This metalevel of mental processes is the focus of this paper.
Our conscious awareness and control of our thoughts and feelings are part of
this metalevel. However, there are also unconscious cognitive states that mon-
itor and regulate mental processes. The approach chosen here for the ‘about-
ness’ of emotions is through goals. While emotions are always related to goals,
we can distinguish mental goals: desired cognitive-emotional states. When
we approach these goals or we perceive obstacles related to these goals, our
emotional state changes. These emotions are about our mind and thus part of
the metalevel.

Because emotions and cognitions are by their nature quite different, it is
useful to distinguish them both as meta-level processes in mind, and as ob-
jects of those processes. Thus the metalevel of mind will be divided into four
aspects:

1) metacognition (cognitions about cognitions),

2) emotional cognition (cognitions about emotions),

3) cognitive emotions (emotions about cognitions), and

4) meta-emotions (emotions about emotions).

Within each of these, we can separate the aspects of monitoring and control.

Let us take a hypothetical student to illustrate these different aspects. A
student, who is blocked during a task because he does not remember a neces-
sary formula, would experience frustration (cognitive emotion). This frustra-
tion could make him anxious (meta-emotion). He might be aware of these
emotions and he could even consciously try to calm down (emotional cogni-
tion). Then he could decide to use a different strategy (metacognitive regula-
tion), and proceed with the task. I will now elaborate on each of these as-
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pects, and relate them to previously defined concepts.

1) The present paper slightly sharpens the definition of metacognition by
restricting steering to cognitive steering. This definition does not include di-
rection of attention and bias of cognitive processing that is caused by emo-
tions.

2) Emotional cognition is the sister of metacognition. It includes the sub-
jective knowledge of one’s own emotional state and emotional processes.
However, the subjective experience of an emotion fits more appropriately to
the domain of emotions, although it, too, is a kind of cognition (Buck 1999).
Of the previously defined concepts, metamood is the awareness-aspect of
emotional cognition. On the other hand, self-awareness extends the monitor-
ing aspect to include the monitoring of cognitions as well. Furthermore, meta-
affect and meta-emotion include emotional cognition as part of the broader
concept.

Students are aware about the different emotions they have in different
situations and they even know of their typical emotional reactions in mathe-
matics class. The subjective knowledge of one’s own emotions is the basis for
emotional expectations in different situations, and thereby it directs the ap-
proaches one has towards mathematical situations. For example, some cases
of mathematics anxiety presumably are based on the expectancy to experi-
ence an unpleasant emotion. Likewise, positive expectations are the basis for
some students’ motivation to engage in mathematical situations. Elsewhere
(Hannula 1998, 2000, submitted), I described a case study of one student,
whose attitude towards mathematics changed dramatically. The reasons she
gave for her more positive attitude were that mathematics is ‘more fun’, be-
cause she had ‘beén understanding more’.

Emotional cognition also includes the direct cognitive control of emotions,
typically inhibition. For example, I had observed one anxious having prob-
lems at one point during the lesson. When we discussed that situation after
the lesson, almost an hour later, she started to cry because she felt unable to
understand anything during the lessons. Yet, she had kept herself calm in
front of her classmates. (Hannula 2000)

Emotional cognition and metacognition are the two kinds of cognitions
one can have about one’s own mind. These are the aspects of mind that sub-
jects in interviews can tell about themselves. Therefore, these concepts are of
interest with respect to methodology of mathematics education.
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3) Emotions exist in relationship with goals. Sometimes goals may be cog-
nitive, as was the case in Schoenfeld (1985), in which the professional math-
ematician wanted to remember one geometrical construction. On his not-so-
straightforward way towards this goal, he experienced surprise, chagrin, and
pleasure (p. 122-125). In this paper, emotions that are related to cognitive
goals are called cognitive emotions. Cognitive goals may be explicit, like when
one wants to remember a fact or a procedure, or when one tries to solve a
mathematical problem. Sometimes the goal may be vague, like ‘to understand’
a topic.

Cognitive emotions seems to be the focal point in Goldin (1988, 2000),
where he describes affective pathways as controlling cognitive processes dut-
ing problem solving behaviour. Later, this idea is extended to a broader con-
cept of meta-affect. The concepts of cognitive emotions (as used by Baron-
Cohen et al 1993) and cognitive affects (Buck 1999) seem, at first; different
from the one used here. However, they are related. Surprise (as a cognitive
emotion) is the emotional reaction when the cognitive goal of creating apt
expectations is not met. Similarly, as Buck points out, all cognitive affects in
his list are related to learning goals.

4) Meta-emotions are emotional reactions to one’s own emotions. These
meta-emotions code important information about the appropriateness of the
emotion in question and they also control that emotion. On an interpersonal
level, this aspect is the centre of the concept of Hooven et al.’s (1995) meta-
emotion. In this paper the concept is restricted to individual level. Also meta-
affect as a broad concept includes this aspect (DeBellis & Goldin 1997). Pre-
sumably all humans share the goal to experience pleasure and avoid unpleas-
ant emotions. Humans have also the capacity to tolerate unpleasant emotions
if reward of pleasure is to be expected later. For example, successful problem
solvers are prepared to tolerate frustration on their way towards solution. There
are, however, different norms and individual coping strategies concerning
emotions. Therefore, the same emotion may be more stressful for one individ-
ual than the other.

Within a context of mathematical problem solving, students may use emo-
tions to code information, and these emotions are accepted more easily than
‘real’ emotions. For example, DeBellis & Goldin (1997) reported how a stu-
dent expressed dislike, while she described the difficulty to divide a round
cake in three equal pieces. This dislike, however, did not cause any discomfort
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for the student. The meta-emotional reaction to this emotion in this context
was neutralising.

Concluding remarks

Metacognition has been accepted as an important aspect of mathematical
thinking Recent research indicates also the important role of emotions in
mathematical thinking. To combine these two approaches and focus on the
metalevel of emotion-cognition interaction was a logical next step. In this
paper this domain of research was divided into four categories that all are
phenomenologically different. This approach provides a new way to look at
the emotional-cognitive processes during mathematical thinking and learn-
ing, and it has been useful in understanding of the development of attitudes
and beliefs (Hannula, submitted).

The distinctions made here are important also methodologically. In inter-
views students can tell only about the aspects of their mind they are aware of.
Therefore self-report based research can reach only metacognition and emo-
tional cognition. However, emotions can be reached directly through measur-
ing adaptive-homeostatic response (e.g. Isoda & Nakgoshi 2000) or observing
facial expressions (e.g. DeBellis & Goldin 1997).

There are also some implications for teaching practice. If we accept that
cognitive emotions (e.g. surprise, interest, and frustration) have an important
role in the control of cognitive processes, then educating about these emo-
tions is important. Relevant emotional education would include the aware-
ness of these emotions and knowledge of their importance to thinking skills
(emotional cognition), acceptance of emotions as part of cognitive processes
(meta-emotion), and finally, increased control over them.
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Science Education
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This paper reviews some important contributions to problem solving in chemistry and
science education. The subject of stoichiometry calculations is separately treated. In
the past, attention was centred on the methods and procedures used by both students
and experts when solving problems. Subsequently, emphasis has been shifted to the
role of psychometric factors. Working-memory capacity is crucial in the Johnstone-El
Banna predictive model; while disembodying ability, “chunking” of the problem into
familiar parts, as well as the so-called “noise” which may be present in the problem
have an effect too. We have stated a number of necessary conditions for the successful
application of the Johnstone-El Banna model, and have tested the model in the case of
organic-synthesis problems. In complicated problems, such as molecular-equilibrium
ones, important becomes the logical structure of the problem. Extensive practice can
turn the problems into algorithmic exercises; developmental level plays an important
part then. Finally, mention is made of a recent innovation of applying methods of
complexity theory to problem-solving data.

Introduction

Problem types

There is a vast variety of problems: closed problems, with one answer; open
problems, which can have more than one answer and for which data may not
be supplied; problems that can be solved by pencil-and-paper or by the com-
puter; problems that need experiment in order to be solved; and real-life prob-
lems versus scientific problems or even thought problems.

At the outset, a distinction must be made between problems and exercises,
with the latter requiring for their solution only the application of well-known
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and practised procedures (algorithms). The skills that are necessary for the
solution of exercises are as a rule lower-order cognitive skills (LOCS). On the
other hand, a real/novel problem requires that the solver must be able to use
what has been termed as higher-order cognitive skills (HOCS) (Zoller 1993;
Zoller & Tsaparlis 1997). However, the degree to which a problem is a novel
problem or an exercise depends on the student background and the teaching
(Niaz 1995a); thus, a problem that requires HOCS for some students may
require LOCS for others in a different context.

A more thorough classification of problem types has been made by John-
stone (1993) and is reproduced here in Table 1.

TABLE 1. Classification of problems (Johnstone 1993).

Type Data Methods Outcomes/Goals Skills bonus

1 Given Familiar Given Recall of algorithms

2 Given Unfamiliar Given Looking for parallels to known methods

3 Incomplete  Familiar Given Analyses of problem to decide what
further data are required.

4 Incomplete Unfamiliar Given Weighing up possible methods and then
deciding on data required.

5 Given Familiar Open Decision making about appropriate
goals. Exploration of knowledge
networks.

6 Given Unfamiliar Open Decisions about goals and choices of

appropriate methods. Exploration of
knowledge and technique networks.

7  Incomplete  Familiar Open Once goals have been specified by the
student these data are seen to be
incomplete.

8 Incomplete Unfamiliar Open Suggestion of goals and methods to get

there; consequent need for additional

data. All of the above skills.

Types 1 and 2 are the “normal” problems usually encountered in academic
situations. Only type 1 is of the algorithmic nature (exercise). Type 2 can
become algorithmic with experience or teaching. Types 3 and 4 are more com-
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plex, with type 4 requiring very different reasoning from that used in types 1
and 2. Types 5 to 8 have open outcomes and/or goals, and are very demanding.
Type 8 is the nearest to real everyday problems.

Overview of problem-solving research

In the earlier studies of problem solving in the physical sciences, attention was
centred on the methods and procedures used by both students and experts
when solving problems. Subsequently, emphasis has been shifted to the role of
psychometric factors. Working-memory capacity is crucial in the Johnstone-
El Banna predictive model, while dis-embedding ability, “chunking” of the
problem into familiar parts, as well as the so-called “noise” which may be
present in the problem have an effect too. In complicated problems, impor-
tant becomes the logical structure of the problem, while developmental level
plays an important part in algorithmic quantitative problems. We have stated
a number of necessary conditions for the successful application of the John-
stone-El Banna model, and have tested the model in the case of organic-
synthesis problems. Our attention is then focused on molecular-equilibrium
problems and their logical structure. Finally, mention will be made of a recent
innovation with the application of complexity theory to our data. An earlier

review has been presented at the 4* ECRICE (Tsaparlis 1993 and 1997).

Review of some earlier work

Methods and procedures of problem solving

A number of researchers (Simon & Simon 1978; Larkin & Reif 1979; Larkin

1980; Reif 1981) have studied the differences between expert and novice prob-

lem solvers. The basic differences were:

(a) the comprehensive and complete scheme of the experts, in contrast to
the sketchy one of the novices

(b) the extra step of the qualitative analysis taken by the experts, before they
move into detailed and quantitative means of solution.
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Various suggestions have been made for the improvement of the problem-
solving capabilities of students. Mettes and co-workers (Mettes et al. 1980;
Kramers-Pals & Pilot 1988) have proposed useful algorithmic methods, in
which they include the steps that characterise expert solvers, viz. the qualita-
tive estimation (prediction) of the result, the check of the validity of the equa-
tions and relations, as well as the evaluation of the result. Genya (1983) has
proposed the so-called sequences of problems of gradually increasing com-
plexity, in which qualitative problems appear at the beginning.

To become good solvers, students must be given ample practice in solving
problems. This will not give them just practice, it will develop confidence.
The following should be constantly in the mind of every teacher (Frazer 1985)

“Students need to be confronted with problems carefully selected to provide tasks,
which are not beyond their level of knowledge and skills. Our intention must be that
students should succeed and not to fail.”

Further, students who have obtained good answers should not be ignored
by the teacher; they also need guidance and help. The problems must be chal-
lenging, real problems, selected from the chemical literature, the solution of
which will not be obvious to the student, and yet the necessary information
and reasoning is likely to be within students grasp. Frazer has tested with both
university and high-school students a method of problem solving in tutorials,
in which emphasis is given to peer group teaching (Frazer 1982). One prob-
lem is given at a time. Students work first on their own, then in-groups of four.

Stoichiometry calculations

Stoichiometry calculations are central and unique to chemistry. They are dif-
ficult for many students, not so much because of their mathematical complex-
ity, but mainly because of the abstract concepts involved. A number of meth-
ods for tackling stoichiometry calculations have been suggested. They can be
distinguished grossly into logical and rote methods. As logical methods we
assume the proportion method, the common sense method (Navidi & Baker
1984), the unit-base method (Beichl 1986), and the step-by-step method on a
“road map” (Fast 1985). As rote methods we assume the rule-of-three meth-
od, the factor-label method, and the conversion matrix method (Berger 1985).
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Schmidt (1997) has reviewed both the methods and the research on stoichi-
ometry calculations.

The proportion method is considered difficult for students because it in-
volves proportional reasoning, formal-operations ability. The factor-label meth-
od is based on dimensional analysis. According to Navidi and Baker (1984),
the common sense method should be used first, while the factor-label method
should be postponed. On the other hand, Gabel and Sherwood (1983) com-
pared the effectiveness of four methods for teaching stoichiometry problems
and concluded that the factor-label method was the most effective, while a
method based on proportions was the least effective.

The rule-of-three method is used, for instance, in Germany (Schmidt 1997)
and Greece. To demonstrate its use in Greece as a rote method, consider the
following problem:

How many grams of NO will be produced when 20.0 g of O, has reacted

according to the equation 4 NH, + 50, -4 NO + 6 H,0?

Solution:
From 5 mol O, that is from 160.0 g O,, 4 mol NO, that is 120.0 ¢ NO are
produced
From 20.0 g O, — x g NO are produced
x = (120.0) * (20.0)/160.0 = 15.0

We are of the opinion that the use of rote methods in the teaching of
stoichiometry problems should be avoided in the first encounter of students
with chemistry (Tsaparlis 1988). Instead, a logical method should be preferred
and in particular one that makes the calculations easy to understand. Propor-
tions should be avoided in the first place. Later, when students are more com-
fortable with chemistry, one can switch to the logic of proportions, and even
to a rote method. This opinion is in accord with the findings of research
(Schmidt 1990 and 1994; Zarotiadou, Georgiadou & Tsaparlis 1995). Schmidt
(1997) recommends that initially problems should be used that can be solved
easily mathematically as well as by “pure logic”.

s




Georgios Tsaparlis

The Johnstone-El Banna predictive model and related
neo-piagetian studies

Basic concepts

Problem-solving research has entered a new phase with the consideration of
the importance of information processing. Each subject has a certain working
memory capacity, X, while each problem has a Z-demand. One definition of
demand is “the maximum number of thought steps and processes which have to be
activated by the least able, but ultimately successful solver, in the light of what he has
been taught” (Johnstone & El-Banna 1989). The Johnstone-El Banna model
(Johnstone & Kellet 1980; Johnstone 1984; Johnstone & El-Banna 1986 and
1989) is a predictive model which states that a subject will not be successful
in solving a problem, unless the problem has a Z-demand which is less or
equal to the subject’s X-capacity.

Related to the working memory capacity X is the mental capacity or M-
capacity, which derives from Pascual-Leone’s neo-piagetian theory. A mental
power, or M-space or M-capacity, is attributed to each subject, which is fur-
ther distinguished into the maximum available M-capacity or structural M-
capacity (M), and the actually mobilised M-capacity or functional M-capac-
ity (M). Niaz has reported significant correlations between M-capacity and
M-demand (which is synonymous to Z-demand) in numerous studies (e.g.
Niaz & Lawson 1985; Niaz 1987, 1988a, 1988b, 1989a, 1989b, 1989¢, 1991,
1994a and 1996). Even small changes in M-demand can lead to working-
memory overload; further, the manipulation of the logical structure (that is
the degree to which the problem requires formal operational reasoning) could
also lead to significant changes in the student performance (Niaz & Robinson
1992). Niaz (1994b) has also studied the mobility-fixity dimension.

Both working memory and M-capacity refer to some kind of hypothesised
limited capacity mental resource which can be applied to learning and prob-
lem solving, and the two steps appear to be used interchangeably (Niaz &
Logie 1993; Vaquero, Rojas, & Niaz 1996).
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Blocking mechanisms in problem solving and
necessary conditions for the Johnstone-El Banna
model

In a number of cases, the Johnstone-El Banna model may be violated. Using
non-numerical organic chemical-synthesis problems of Z-demand of two, we
have examined mechanisms that block the solution (Tsaparlis 1994, 1995,
and 1996). Table 2 has examples of such problems.

TABLE 2. Some organic synthesis problems with Z-demand of two.

Suggest routes for the synthesis of the following organic compounds, using as reactants the
organic compound given in each case plus any inorganic compounds (e.g. water, acids, bases,
salts, metals) and any requived conditions (e.g. heating, light, catalysts).

o Isopropyl bromide, CH,CHBrCH;, from isopropyl chloride, CH,CHCICH,.
[Answer:
CH,CHCICH, + NaOH — CH,CH=CH, + NaCl + H,O
CH,CH=CH, + HBr — CH,CHBrCH,]
e Racemic mixture of the D and L optical isomers of galactic acid,
CH,*CH (OH)COOH, from propionic acid, CHJCHZCOOH
[Answer:
CH,CH,COCH + Cl, (in the presence of red P or light) — CH,*CHCICOOH +

HCI
CH,*CHCICOOH + OH~ — CH*CH(OH)COOH + Cl7]

These problems not only exclude numerical or algebraic calculations, but
also have a unique chemical logical structure. The number of logical schema-
ta involved in a problem may be the main factor in determining the difficulty
of the problem, overriding its Z-demand (Niaz & Robinson 1992). The sub-
jects were first-year chemistry students. The following blocking mechanisms

have been verified:

(1) The lack in the subject’s repertoire of even a single step in the solution.
(2) The non-equivalence of the partial steps of the solution.
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(3) The blocking that occurs when subjects fail to solve a problem, even if
they have the partial steps available.

(4) The presence of “noise” in the problem (Johnstone & Wham 1982).
By "noise” one means information that is in the problem, but has no
actual involvement in the solution process. It was found that predomi-
nantly students with low working memory capacity are affected by the
“noise” (see also Johnstone & Al-Naeme 1991).

Qur findings, together with other bibliographical evidence have led us to
state the following necessary conditions that must be observed for the suc-
cessful application of the Johnstone-El Banna model to problem solving in
science education. (Tsaparlis 1994, 1995 and 1998).

1) The partial steps must be available in long-term memory, and accessible

from it.

2) The partial steps must be easily accessible. The organisation and the
connections in long-term memory are crucial for the accessibility of
knowledge (Johnstone 1991).

3) The logical structure of the problem must be simple; otherwise, deve-
lopmental level may play a more important role than working-memory
capacity (Niaz & Robinson 1992). The best situation is when only one
operative schema exists in the problem. The organic-synthesis prob-
lems, which exclude numerical or algebraic calculations, are one examp-
le of such simple-structure problems.

4) No “noise” should be present in the problem statement. The presence
of “noise” may lead to working-memory overload.

5) The degree of field independence (disembodying ability) may have an
effect. Low and, to a lesser extent, intermediate working-capacity sub-
jects who are field dependent may experience a working-memory over-
load, caused by “noise” (Johnstone & Al-Naeme 1991).

6) Familiarity with the problem, as well as chunking of the problem into
familiar chunks, result in a reduction of the Z-demand of the problem.
Therefore, the model must be valid in the case of actual problems and
not of exercises.

Failure to observe these conditions may lead to data that will not follow the
model, or it will not follow it closely. In our opinion it is such failure which has
led to the invalidation of the model in the work of Opdenacker et al. (1990),
where highly competent medical students who were likely to be field inde-
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pendent and who had many learning strategies were involved. These students
never overloaded, and this explains the lack of fit of their performance with

the model.

Operation, validation and usefulness of the model:
The case of organic-synthesis problems

Predictive-explanatory models are very useful for understanding the factors
that influence the ability of students to solve problems. They place on a rigor-
ous and quantitative basis both the factors that affect the general problem-
solving ability of students, and the structure of the problems themselves. We
have stated above a number of necessary conditions for the application of the
Johnstone-El Banna model. In a recent publication (Tsaparlis & Angelopou-
los 2000) we used again organic-synthesis problems to test the validity of the
model. Problems with varying Z-demand of 2, 3, 4, 5, 6, 7 and 8 were used.
Table 3 has some examples. For the degree of realisation of the above stated
necessary conditions see the original paper (Tsaparlis & Angelopoulos 2000).

TABLE 3. Examples of organic-synthesis problems with varying Z-demand.

® Acetaldehyde, CH,CHO, from ethene, CH,=CH,.

e 1,2 3-trichlorobutane, CHJCHCICHCICHZCI from ethyne, CH=CH.

® 2.cetopropionic acid, CHJCOCOOH, from acetone, CH,COCH,.

® 2.methylbutanoic acid, CH,CH(CH,)COOH, from acetaldehyde, CH,CHO.
e Formaldehyde, HCHO, from sodium acetate, CH,COONa.

® Propyne, CH,C=CH, from 2-propanol, CH,CH(OH)CH,.

e Pentane, CHJCHZCHZCHZCHJ, from 1-propanol, CH,CH,CH,OH.

® 3-hydroxypropionic acid, HOCH,CH,COOH, from formaldehyde, HCHO.

Our subjects were upper-secondary students in their final school year, pre-
paring to take entrance examinations for tertiary education (age 17-18) who
attended three public urban schools (N = 191) in the greater Athens region.
In addition, there was another sample of students (N = 128) from two urban
special private schools (“frontisteria”). These students have not received pre-

o 75 '7 '?
ERIC

IText Provided by ERI( b



Georgios Tsaparlis

vious instruction (practice) to this type of problems. On the other hand, be-
cause most public-school students attend at the same time frontisteria, a con-
siderable number of them had previous experience with the problems.

Figure 1 shows the performance in terms of completely right or wrong, that
is the facility value (FV) of public school students (N = 191) in problems of
varying Z-demand, according to the measured working memory capacity of
the students. Figure 2 shows the corresponding information for frontisteria
students (N = 128). The operation of the Johnstone-El Banna model is evi-
dent in both cases, but it is more pronounced in the case of frontisteria stu-
dents. It is clear that students with a measured working memory capacity X =
4 do well on problems up to a Z-demand of 4, but decline rapidly for questions
with a Z value equal to or greater than 5. Similarly, those with X = 5 do badly
for questions with Z > 6. A similar pattern appears for those with X = 6 and
X = 7. In the case of public schools (Figure 1), there is a less dramatic fall for
the X = 7 group, showing that their previous experience and their chunking
skills may be operating. On the other hand, frontisteria students with X = 7
approached the ideal prediction of 100% success up to Z < X, followed by a
large drop when Z > X.
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Summarising, we find that as Z increases, there is a general slow fall in
performance, but no difference is significant until Z just exceeds X. The fall is
significant at the “break” point, but, after that, a gentle slow fall occurs again,
in which none of the differences is significant. In each case, the significant fall
is when Z = X + 1. Finally, a number of students, notably higher for higher
information-processing capacity, can use chunking devices, and this keeps
performance from eventually falling to zero.
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FIGURE 2. Frontisteria (N = 128). Marking: Successful or failed.

The main conclusion is that it can be predicted that students who have a
high working memory capacity (at least of six) [and at the same time are not
field-dependent (see Tsaparlis & Angelopoulos 2000)] are capable of high
information processing, having an advantage in problem solving. Results ob-
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tained in this study, together with those from other studies (Niaz 1995a and
1995b; Tsaparlis, Kousathana & Niaz 1998), suggest that problem solving is a
very complicated process, involving more than one cognitive variable, as well
as affective ones, and have important implications for instruction in problem
solving.

The role of the logical structure: The case of chemical
equilibrium problems

Review of research on chemical equilibrium

Chemical-equilibrium problems are among the most important, and at the
same time most complex and difficult general chemistry problems. Camacho
and Good (1989) studied the problem-solving behaviours of experts and nov-
ices engaged in solving chemical-equilibrium problems, and reported that un-
successful subjects had many knowledge gaps and misconceptions about chem-
ical equilibrium. Wilson (1994) examined the network representation of knowl-
edge about chemical equilibrium, and found that the degree of hierarchical
organisation varied, and that the differences reflect achievement and relative
experience in chemical equilibrium. Gussarsky and Gorodetsky (1988) have
previously reported similar findings. It is noteworthy that students use algo-
rithmic methods without understanding the relevant concepts (Gabel, Sher-
wood & Enochs 1984). Niaz (1995a) has reported that students who perform
better on chemical-equilibrium problems requiring conceptual understand-
ing also perform significantly better on computational problems; he further
suggested that solving computational problems before conceptual problems
would be more conducive to learning. Tsaparlis and Kousathana (1995) have
reported student’s common misconceptions and errors in solving molecular
equilibrium problems. Finally, Pedrosa and Dias (2000) have compared stu-
dent alternative conceptions about chemical equilibrium with chemistry text-
book approaches to that topic.
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The logical structure of the problem

Niaz and Robinson (1992) have examined the effect on student performance
of the manipulation of the logical structure of stoichiometry problems. They
reported that the developmental level of students is the most consistent pre-
dictor of success when dealing with significant changes in the logical com-
plexity of chemistry problems, so that the number of operative schemata in-
volved in a problem may be the main factor in determining the difficulty of
the problem, overriding its M-demand. According to the above authors, “the
logical structure of a problem represents the degree to which it requires formal oper-
ational reasoning, that is, use of proportions, making quantitative correlations, gen-
eration of all possible combinations, controlling variables, and hypothetico-deduc-
tive reasoning” (Niaz & Robinson 1992, p. 212).

The logical structure of a problem is specified by the number of operative
schemata entering the problem. According to Piaget, a schema is an internal
structure or representation, while the ways we manipulate schemata are called
operations. In Piaget’s theory, schemata are continually growing and develop-
ing rather than remaining fixed. Describing thinking at various stages thus
becomes a problem of trying to define the schema (or mental structure) and
the operations (or internal actions) that a problem solver is using (Niaz &
Robinson 1992).

Manipulation of logical structure and of Z-demand in
the case of molecular-equilibrium problems

In our work (Tsaparlis, Kousathana & Niaz 1998), we examined the effect on
student performance of the manipulation of the logical structure as well as of
the Z-demand of chemical (molecular) equilibrium problems. Note that we
dealt only with chemical schemata that enter molecular-equilibrium problems,
but not with mathematical schemata (algebraic or calculational). We have iden-
tified the following schemata of molecular equilibrium:

Schema 1. The process of establishment of the chemical equilibrium.

Schema 2. The condition of chemical equilibrium.
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Schema 3. The case of gaseous systems, with use of partial and total pressu-
res as well as of K .

Schema 4. The disturbance of the equilibrium and the establishment of a
new equilibrium.

TABLE 4. A chemical-equilibrium problem with analysis of schemata and Z-demand.

In a vessel of fixed volume V=4.5 di’, 198 g COCI, plus 44.8 dm’ CO (in STP) are
introduced. The mixture is heated to 100°C and let to reach the equilibrium COCI,(g)
<=> CO(g) + Cl,(g)- You have to calculate the equilibrium constant K, taking into

account that at equilibrium the total pressure of the gas mixture is 82 atm, at 1000°C.

Three schemata enter here:

(1) The process of establishment of the chemical equilibrium
(2) the ideal-gas equation

(3) the condition of chemical equilibrium (K)

(1) Establishment of equilibrium

Calculation of moles of COCI, : a mol (Step 1)
Calculation of moles of CO: b mol (Step 2)
COCLe = COE + CL@
initially: a mol b mol (Step 3)
react (-) or produced (+): -x mol +x mol +x mol (Step 4)
at equilibrium (moles): (a-x) mol {b+x) mol X mol

at equilibrium

(concentrations): (a-x)/Vmol/L (b+x)/Vmol/L  x/Vmol/L (Step 5)
(2) Ideal-gas equation
boua V=1,,RT (Step 1)
Nt = Do V/RT) (Step 2)
Calculation of n_, (Step 3)
Calculation of x (Step 4)
(3) Condition of chemical equilibrium (K)
K = (CO)(CL)/(COCL,) (Step 1)
K = [(b+x)/V]x/V)/[(a-x)/V] (Step 2)
Calculation of K, (Step 3)

Estimation of M-demand. Schema (1) of the establishment of equilibrium involves the

largest number of steps (five), hence we postulate an M-demand of 5 for this problem.
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Nine problems of varying number of operative schemata as well as of vary-
ing number of Z-demand were used. The number of schemata varied from a
minimum of two, to a maximum of four, while within each logical schema we
had a specific Z-demand, varying from 4 to 6. The structure of the nine prob-
lems was as follows (the first number stands for the number of schemata, the
second number stands for the Z-demand): (2, 4), (2, 5), (2, 6), (3, 4), (3, 5),
3, 6), (4, 4), (4, 5), (4, 6). Table 4 has an example of a problem, with an
analysis of schemata and Z-demand.

Table 5 gives the percentage mean performance in the sets of problems
with the same number of schemata, as well as in the sets of problems with the
same Z-demand. We note that the overall performance was relatively high;
this is due to the fact that our subjects were highly motivated for this course,
because it was very crucial for their university entrance examinations. We
note also that there was a larger drop in performance when one increased the
logical structure by adding schemata than when one increased the Z-demand.
This finding is accordance with that of Niaz and Robinson (1992).

TABLE 5. Percentage mean performance of all students (N = 154) in the sets of
problems with (a) the same number of schemata [e.g. problems (3,4), (3,5) and (3,0)1,
and (b) the same Z-demand [e.g. problems (2, 5), (3, 5) and (4, 5)}. Standard devia-

tions are given in parentheses.

Problems with Problems with Problems with
2 schemata 3 schemata 4 schemata
92.0 83.4 71.0
(10.1) (16.0) (26.0)
Problems with Problems with Problems with
Z-demand = 4 Z -demand = 5 Z -demand = 6
88.7 84.3 73.4
(13.2) (18.8) (20.0)

In addition, the correlations between four cognitive variables (develop-
mental level, working memory, functional M-capacity and disembodying abil-
ity) and the student achievement were reported (Tsaparlis, Kousathana &
Niaz 1998). It was found that all cognitive variables are quite consistent in
correlating with achievement only when the logical structure is fairly complex
and even when the Z-demand is relatively low. Developmental level plays the
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dominant part which can be accounted for by taking into account that these
problems were of an algorithmic nature for the subjects of this study, because
of their extended practice (the “training effect”), in accordance with the re-
search finding of Niaz and Robinson (1992). On the other hand, working
memory maintains some importance too, because there is always a need for
information processing in solving the problems; however, training on task could
lead to “chunking”, which reduces the Z-demand of a task and thus improves
student performance (Pascual-Leone et al. 1978). Finally, working memory
and functional M-capacity, the two variables representing information process-
ing, correlate significantly with all problems (except problem 2,4) at about the
same level. However, it may be that the latter has a smaller power to explain
variance.

Application of complexity theory to problem-solving

A novel attempt to test the Johnstone-El Banna model has been made recent-
ly by introducing non-linear methods in the treatment of problem-solving
quantitative data. The work correlates the rank order of the subject achieve-
ment scores in problem solving with the working-memory capacity and shows
how the effect of working memory on problem solving can be observed with
means and tools of complexity theory.

A problem-solving data set consists of achievement scores. In order to ap-
ply complexity theory to this data set, dynamics need to be introduced. This is
achieved by using the rank-order sequences of achievement, which are treat-
ed as dynamical flows. Rank-order sequences of achievements of the subjects,
according to their scores, are generated, and in the place of each subject, his/
her score is then replaced by the value of his/her working-memory capacity.
These dynamic sequences when treated with tools of complexity theory may
appear to posses order or disorder that characterise its fractal geometry. The
characterisation of that geometry can be made by using indexes of complexity
theory such as the Hurst exponent, fractal dimensions, or entropy.

The working hypothesis, which is behind the non-linear treatment, is wheth-
er there exist scale-invariant, long-range correlations in the created sequence
of working memories. The study of these correlations was made by means of
the working-memory random walk method. This method has previously been
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reported (Stamovlasis & Tsapatlis 1999; Tsaparlis & Stamovlasis 1999). Data
have been taken from the achievement scores in simple organic-synthesis prob-
lems (Tsaparlis & Angelopoulos 2000).

In the hypothetical one-dimensional space of the rank order achievement
scores, we take a random walk among the subjects with working memory ca-
pacity 4 and 5. This walk is named random walk 4/5. It is observed that the
Hurst exponent for low values of Z-demand, 2,3, and 4 has a low value close
to the surrogate exponent, which corresponds to theoretical randomness: H=
0.5, a normal random walk. The results for the Hurst exponent are shown in
Figure 3. At Z-demand 5, the value of Hurst exponent increases, showing
long-range correlation, because subjects with working memory capacity 5 out-
score subjects with working memory capacity 4. When the Z-demand of the
problem becomes 6, the problem becomes difficult for everybody, and the se-
quence becomes disordered again. A similar pattern is observed for random

walk 5/6.
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FIGURE 3. The Hurst exponent versus Z-demand of the problem for the random
walk 4/5. (P(i) = -1, for X = 4; ¥(i) = +1, for X =5). The sudden increase appears
from Z-demand 4 to Z-demand 5.
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A recent publication (Stamovlasis & Tsaparlis 2000a) provides further re-
lated information, while an extended version of this work will appear in the
journal Non-linear Dynamics in Psychology and Life Sciences early in 2001 (Sta-
movlasis & Tsaparlis 2000b).
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Physics Education Research:
Inseparable Contents and Methods -
The Part Played by Critical Details

Laurence Viennot
Laboratoire de Didactique des Sciences Physiques
Université Denis Diderot (Paris 7)

This address centres on the interrelation that exists — de facto — between conceptual
teaching goals and what are often called “methods”. Three examples are taken, two
from mechanics and one on colour, to illustrate this idea. In each case, the implica-
tions of research based teaching strategies in terms of conceptual content, and vice
versa, are discussed. In line with this idea, the part of some aspects of practice that may
seem of minor importance, but may prove critical in terms of learning effects is also
analysed. A brief discussion of the implications of these views, particularly in terms of
teacher training, ends the paper.

Introduction

It is often said that physics — or chemistry or math — education research is
devoted to methods, the content to be taught being independently decided.
A common idea among teachers at various levels is that didactics is concerned
with how to teach, whereas what to teach is only a matter of selection of
topics. The content matter would be unquestionable, the only decision being
about what slice to select in this content, taking into account “the level of the
students”.

In order to support the opposite claim, I will show how an investigation
concerning student’s difficulties and a discussion about “what-and-how” to
teach in this domain are overlapping concerns, which lead one to examine
classically taught physics with a renewed look.
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This interrelation operates via the consideration of “critical details”, i.e.
apparently “small” aspects of student’s comments, of the methods and of the
taught theory that echo each other. Of course, practical activities proposed to
students raise as well such a combined reflection. This will constitute the
third example of the paper.

This paper will be concluded by some remarks on the implications con-
cerning teacher acceptance of the innovative, research-based sequences, and
teacher training.

Examples of interrelated “What” and “How”:
looking more closely at Newton’s laws

Newton’s second law stipulates that the total force exerted by “the exterior”
on an object of mass m is linked with the acceleration of the centre of mass of
this object, G, by the following simple relationship:

S F=m.d,

(in fact, the third law is hidden in this relationship, as it is used to demon-
strate that the internal forces have a zero sum).

Students’ ideas on this topic have raised innumerable studies, which main-
ly stress a common trend to linking force and velocity, or more broadly force
and motion, instead of force and acceleration. Two aspects have been much
less emphasised, and are commented on hereafter.

Common ideas on some aspects of the content:
reconsidering the “what” as well as the “how”

An aspect of the second law is the fact that, in order to analyse the motion of
the centre of mass G, it is not needed to know the particular point on which
the external forces are acting. In this respect, this law is extremely simple and
convenient to apply. In order to see if this aspect was well understood, a ques-
tion has been posed by Menigaux (1994) to students who knew very well this
law and were used to bringing it to bear in solving classical problems.
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A circular puck can move across a rectangular horizontal frictionless table.
At initial time it is situated against one of the edges. A same, constant, force is
acting on it, this in two cases. In case (a), the force is applied at the point of
the puck which is the nearest to the opposite edge, in case (b), it is exerted on
a point of the puck that is initially on the side of the puck.

The question is: will the puck take the same time to cross the table and hit the
opposite edge, in the two cases, and if not in which case does it take the longer
time?

FIGURE 1. A puck on a horizontal frictionless table; a constant force is applied
always at the same point, either A (case a) or I (case b).

The correct answer is that it takes the same time in the two cases, because
only the total exerted force matters to determine the motion of the centre of
mass G, motion which itself determines the travel time. This correct answer
relies on the relationship recalled above:

J F=m_a,

The motion of the puck is different in the two cases. In the first case, the
motion is rectilinear with a constant acceleration; in the second case, two
things are happening at the same time: a rectilinear motion for G (the same as
in case (a)) and a pendular rotation of the puck around G. Some studies about
students’ common ideas permit to predict that case (b) is likely to favour the
‘answers: “longer time, because there is a rotation before the translation oc-
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curs”, or “longer time, because it takes more time to effectuate these two
things at a time”; or else, “the point on which the force is applied travels a
longer way in case (b)”. Indeed, such answers were found in the consulted
students, a result confirmed by a very recent replication (Rigaut 2000). In
these two research studies, the salience of the particular point on which the
force acts is patent. In particular, the trajectory of this point draws students’
attention, and intervenes many times in their justifications.

Paying attention to this common answer leads one to realise that a funda-
mental aspect of this law is not commonly underlined in teaching. Indeed, the
situation used by Menigaux may seem somewhat exotic, but in fact it points to
the great power of the above relationship. By using only, in teaching, examples
of motion that are pure translations or at best complicated motions of isolated
systems, a striking aspect of the theory is left aside, if not hidden. If one de-
cides to fight “wrong ideas” as those investigated by Menigaux, for instance by
introducing “apparently complicated” but in fact still simple examples of com-
bined motions, then a new teaching goal is adopted, that is, to “make physics
speak”, in this case to show that — in a large range of problems — the points
where the forces are acting are not relevant (the only thing mattering being if
they act or not on the considered object or system). The goal is not only to
teach how to avoid a trap and to fight an obstacle, but to express more explic-
itly, although without calculation, what physics says. The questions of “how”
and “what” to teach are interrelated.

Critical details of students’ answers: “force of...”, and
the mixing of Newton’s second and third law

As seen above, analysing students’ ideas is an opportunity to reconsider not
only our “methods” but also the taught matter and possible teaching goals in
terms of content. Such a reflection may be raised by apparently small aspects
of students’ comments.

A critical detail in learners’ common way of speaking is the expression
“force of “. Instead of mentioning, as explained above, the force exerted on
an object, learners often say for instance that a mass “has” some upward force
that explains its upward motion, or comment that the force “of” an object
being larger, its velocity is larger. This may go with the wish of finding a cause
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to a motion, whereas the required cause is anterior to the considered time:
storing the cause into the mobile may be seen as helpful. Scholars use as well,
or at least do not pay attention to this kind of expression. Commenting a
dialogue during which a pupil said: “I don’t think the table has a force”, Mc-
Dermott (1984, p 145) wrote “the idea that the table could exert a force was
generally not accepted by the children” with no special comment about the
difference between “to have”, and to “exert” a force. In the Berkeley Physics
Course (vol. 3, p 86) it is said that a mass “had” a return force (per...) to mean
that a force was exerted on it (by a spring). These examples are not isolated.
Often, the weight of an object is said to “act (as well) on its support”, or the
centrifugal force “of” a ball in circular motion at the end of a string is seen as
acting on the ball itself (in the frame of reference of the room). But there is a
risk of confusing, under the shelter of this “of”, the object that exerts the force
with the object on which it is applied. This improper expression coincides
with an anthropomorphic style, and might contribute to blurring the distinc-
tion that should be done between Newton'’s second and third law.

The third law, indeed, puts into play two distinct objects or systems, A and
B. It is worth recalling that the well known relationship F (A on B) = - F (B
on A) holds whatever the motions of A and B may be. For example, when a
body suspended from a spring is accelerating upwards, the action of the body
on the spring s still exactly opposite to the reaction of the spring on the mass.
But an anthropomorphic view of such a situation leads to seeing it as a dy-
namical conflict between two objects in which the strongest of them deter-
mines a global motion in the direction of its own effort: “the spring imposes its
forces to the body”. Then, the common link between (total) force and ob-
served motion applies with an “F” which is the “total” force in a balance
implying the mutual forces between two distinct objects (other forces being
forgotten). A common conclusion is that “the reaction of the spring is larger
than the action of the body” or “the third law does not hold anymore”. In the
same way, a driver (A) pushing its car (B) on a flat road towards a garage, or a
nail (A) hammered into a board (B), are very commonly said to violate the
third law, A exerting on B a force larger than the reciprocal.

Rather paradoxically, situations with objects in contact are still more diffi-
cult because it is tempting to compare the forces acting on the contact point,
point seen as an object in itself, as if the second law was to be used here.
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One of the facets of students’ difficulties being to mistake forces acting on
distinct objects for forces acting on the same object, it is necessary to look for
some means of clarifying which force is acting on what. Verbal language should
be unambiguous but the correct expression “Force exerted by A on B” easily
becomes “Force of A on B”, which meets with the “Force of” denounced above,
ascribed to the object itself as an anthropomorphic feature. This verbal close-
ness weakens the clarifying power of verbal statements. Common drawings of
objects in contact, with mutual forces drawn on the contact point, are also
improper to evacuate the usual confusions.

This is why it seems useful to draw the forces in a more appropriate way,
objects being represented with a space between them even if they are actually
in contact (Fig. 2b). A different coding for each interaction, the compulsory
mentioning of two forces per interaction -gravitation included — are addition-
al aids which require students to perceive, for instance, that a body with a
mass M does not “exert its weight on the spring”, or that the Archimedes’
interaction also results in a downwards push of the immersed body in the
liquid. In such a mapping, equality between intensities — at rest (Fig. 2c) —
does not mean an indistinction. The weight of the body is explicitly “married”
with another force exerted on the earth; and its action on the spring, though
of same intensity, is married with another force, the force exerted by the spring
on the body.

In the end, when stressing this method, a new way of looking at the con-
tent is adopted: less emphasis on detailed motion, kinematics of point mass,
point on which a force is applied, more on identifying which object a force is
acting on, which partners are interacting, distinguishing properly the second
and the third law, unifying the description of interactions (Archimedes’ inter-
action is an ordinary interaction: there are reciprocal forces), utilising the
hard core of the laws. Actually, doing this, it seems as if new teaching goals
were aimed at. Such goals have actually inspired the syllabus for grade 11 in
France in 1992.

To sum up, being aware of the importance of a “detail” in students’ com-
ment “force of..”, attentive to the content (the second and the third laws are
not identical), and in search of an efficient technique to represent forces, are
interrelated concerns. Each of these attitudes is linked to the others, and, in
the present case, is not straightforward.
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Practical activities, details and content: an example
about colour

The next example will show that methods and content analysis may be simul-
taneously reconsidered. An innovative sequence has been designed by Chau-
vet about colour, on the basis of an investigation about common ideas on this
topic. It can be briefly described as follows.

This sequence aims to clarify the concept of colour for teachers. It stresses
the fact that colour is a perceived response to received light (for more detail,
see Chauvet 1996a and b). A structure is proposed to analyse all phenomena
of colour and to guide students’ reasoning about colour: a chain of transfor-
mation of information carried by light to the observer’s eye (Fig. 3).

source object eye and visual
emission of light > transformation of > system
light response "colour’

light light

FIGURE 3. “Chain”: analysing successive changes in information about colour car-
ried by light to the eye.

The sequencing of taught concepts is not a traditional one. The classical
spectral analysis is postponed after two phases of teaching. The first phase
consists of destabilising students by adding coloured lights (red, green, and
blue), which produces colours that are different from those obtained by mix-
ing paints. In the second phase, devoted to absorption, a situation of coloured
shadows is analysed: when an obstacle blocks off one of the coloured lights
that, when added, constitute white light, the lack of a spectral band results in
colour. The part played by absorption is stressed and shown to be similar for
filters and pigments. Additive and subtractive syntheses are analysed within
the same frame of interpretation: the chain of events occurring to light, and
the response of visual system.
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An overall feature is that a particular emphasis is put on learning cycles
involving prediction, experiment and debate. One of the practical activities
envisaged in this sequence concerns the colour of coloured letters lit in col-
oured lights, on a black background. Then, a difficulty occurs, which provides
us with an instructive example.

A red letter lit in blue should, in principle, appear as black, because as a
red filter (third of spectra), it should absorb a blue light, the sole light received
in this case. In fact, it appears dark violet. This coincides with a prediction
inspired by a wrong idea. Indeed, students commonly consider that lighting a
coloured object with coloured light is like mixing paints, and, if understood as
paints, red + blue gives violet: the observed colour. Would experimental facts
betray correct physics and favour wrong ideas? This misleading effect is due to
experimental problems (there is some ambient light in the classroom, includ-
ing some red radiation, and the red paper does not diffuse a spectrum with a
sharp bandwidth, which results in violet diffused light of very weak intensity).

What is recommended by Chauvet is to focus students’ observation not on
the hue of the observed letters, but on their visibility. This means that atten-
tion is drawn on the amount of diffused light. This is very convincing, because
in this respect the prediction based on correct physics coincides with what is
observed: the red letter lit in blue light is hardly visible on a dark background,
which witnesses the strong absorption which constitutes the first order effect.
This is also in line with the conceptual backbone of the sequence: the “chain”
of events occurring to light, at the expense of juggling with rules about hues.

This example is typical of the combined effort that is necessary in didactic
research here concerning the part of experiments in teaching: attention to
details, be they “practical”, and, given that experiments do not speak by them-
selves, specification of how observation should be guided and debate-orient-
ed, in close relationship to the particular aspects of the content the under-
standing of which is aimed at. This effort changes critically the outcome of
teaching, as shown by Chauvet.

It is an understatement to say that this is not obvious. For instance the idea
of questioning students about the visibility and not the hue of the coloured
letters does not emerge naturally from teaching practice. It is even difficult for
trained teachers to realise its importance.

The wish to “show” is always to be tightly framed by a thorough didactic
analysis of the conceptual aspects involved. Another, less subtle, example is
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that of the “materialised rays” so much in favour to “demonstrate” rectilinear
propagation of light, and which, if not very cautiously presented and discussed,
are likely to reinforce the idea that light is visible in itself: what to say about
“materialised rays” that, due to a light source placed behind a slit on a diffus-
ing paper, are therefore not in the same plane as the source?

Critical details: a problematic take-up by teachers

Two recent research studies (Hirn & Viennot 2000; Chauvet submitted) con-
cern the teaching of elementary optics, and bear on the way teachers, when
implementing research-based teaching sequences, transform the didactic in-
tentions of the innovators, a theme more widely developed in the STTIS pro-
gramme (see STTIS 1998, 1999 a and b).

The findings indicate that some aspects of the innovative sequences are
willingly adopted, such as a new theme — vision — or, still more easily, a new
device - like punched screens or a small white tetrahedron lit in lights of wide
bandwidth (a third of the spectrum of white light). But what appears as much
more difficult is the take-up of details that are critical to ensure the conceptu-
al consistency and the didactic efficiency of the sequence. For instance, Hirn
shows that the way teachers use “materialised rays” in their teaching is quasi
unanimously classical, that is as a demonstration of the rectilinear propaga-
tion at the beginning of the sequence, the presence of dust being mentioned
without explaining the path of the light to the observers’ eye. Or else, contra-
ry to what is recommended in official texts, teachers without special training
do not link, in their explanation, the brightness of some areas of a screen and
what can be seen from behind a hole punched in each of these areas. Rather,
they put separate questions on these two aspects. Similarly, Chauvet under-
lines that the global organisation of her sequence about colour, as well as the
suggested material devices, are reasonably well accepted, whereas some spe-
cific conceptual nodes are neglected. Thus, the recommended way of con-
ducting debates about coloured letters lit in coloured lights (see above) is
quasi unanimously “forgotten” by the consulted teachers.
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Conclusion

This discussion and the experimental facts recalled above may appear as dis-
couraging. Obviously, didactics is not simply a matter of arranging series of
concepts in new syllabuses, it cannot either be conducted only on the basis of
broad, although indispensable — guidelines such as “take students’ ideas into
account”, or “foster scientific debate in the classroom”. Most probably, it is in
their detailed implementation that such principles play their actual relevance.
This meets with what Millar (1989) was recommending, i.e. designing teach-
ing sequences at the micro-level. One may regret this state of affairs, the over-
all difficulty, the lack of universal recipies. But there are positive aspects.

One is that physics — chemistry, biology, and math — also becomes more
interesting when “pushed into the corners”. It is because it says things that are
different from common sense that we learn something from physics. And it is
by examining in detail what is said in both registers that the differences ap-
pear. In this sense, a training in didactics fosters a better knowledge of physics.
Didactics does not invent a new physics, but may lead one to consider differ-
ently a given corpus of knowledge, in particular by stressing some points that
are often occulted.

Another good reason to go on with optimism is that, when research-based
sequences associate carefully designed strategies with precise teachings goals,
a great attention being given to (many) apparently small aspects, the success
is impressively stable, even if limited. The sequence by Chauvet is an example
of such a success as regards the trained students (Chauvet 1996 a and b; see
also, for a sequence about electrostatics, Viennot & Rainson 1999). It is also
very effective in terms of teacher training. For instance, the trained teachers
actually take-up the recommended management of practical activities, asking
for a reasoned prediction before experimenting, then for debates, whereas it is
observed in other cases (STTIS 1999b), for instance in Hirn’s study, that teach-
ers massively ignore this type of recommendation. Another clue is that teach-
ers’ attitude with respect to images concerning colour is impressively changed
after such a training.

The relative failure of teacher training which is often observed (Gil-Perez
& Pessoa de Carvalho 1998) might be partly due to an approach of the re-
quired changes which is either too general, aiming for instance at changing
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teachers’ views of science, or too technical, i.e. focused on the take-up of a
given sequence. The interrelation between the desirable components of a di-
dactic sequence need to be illustrated at the micro-level in order to convince
teachers of the importance of each one.
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Diagnosing the Conceptual
Understanding of Newtonian
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A project has been started at the University of Helsinki in the Department of Physics,
which aims at the assessment of learning results of introductory mechanics in Finnish
upper secondary schools. Conceptual understanding of mechanics is evaluated by us-
ing the Finnish translation of the Force Concept Inventory (FCI) developed at the
Arizona State University. FCI is one of the most used conceptual tests. It is intended to
determine whether students are able to distinguish between correct Newtonian an-
swers and popular but erroneous common-sense beliefs. The first results in Finnish
upper secondary schools are reported and the results are compared with the results

from the USA.

Background

During the last years much emphasis has been paid to the improvement of
physics instruction in Finland. The programmes of the government of Finland
in 1995-99 and 1999 onward started efforts to raise the level of skills in sci-
ence and mathematics in Finnish schools (LUMA 1999). Experimentality
(demonstrations, practical work, and investigations) is seen in a central role
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of science education and it is believed to improve learning results. In the
latest national guidelines for school curriculum design, prepared by the Finn-
ish National Board of Education, the idea of experimental approach in sci-
ence teaching was addressed and recommended (NBE 1994). However, there
have been very few quantitative instruments for evaluating instruction in Fin-
land. Therefore the Force Concept Inventory (FCI) (Hestenes et al. 1992)
has been translated into Finnish to be used for evaluating physics instruction.

The purpose of the study

The purpose of the study presented here is to test the applicability of the
translated FCI in evaluating student performance in Newtonian mechanics in
Finnish upper secondary schools.

The research questions are:

1. What is the average level of conceptual understanding of Newtonian
mechanics in Finnish upper secondary schools measured with the trans-
lated FCI?

2. How common are the common-sense conceptions, especially the im-
petus and dominance conceptions, among Finnish pupils?

3. How do the Finnish results compare with the results obtained in the
USA?

The present study is part of a more extensive research, which aims at investi-
gating teachers’ conceptions of the role of experimentality and the concept of
interaction in instruction of mechanics, and among all clarifying how these
conceptions affect students’ conceptual understanding of Newtonian mechan-
ics.

Common-sense conceptions

Physics education research has shown the important role of students’ com-
mon-sense conceptions based on everyday experiences, in learning (e.g. Driv-
er 1983; Pfundt & Duit 1993). In order to be effective instruction has to take
these conceptions into account. Especially it has turned out that the com-
mon-sense conceptions concerning force and motion are incompatible with
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Newtonian mechanics. These conceptions are firmly established and it is very
difficult to produce change in them (Duit 1993; McDermott 1998).

The two most frequent common-sense conceptions in mechanics are im-
petus and dominance (Halloun et al. 1985a). According to impetus concep-
tion a force has to be exerted on an object in order to keep it in motion. An
object can acquire impetus from a hit and the motion stops when the impetus
wears out, as if the force is bound in the object as a kind of internal force. This
conception is inconsistent with the Newton's first law. According to the dom-
inance principle a greater object exerts a greater force on the other in an
interaction. This conception is in turn inconsistent with the Newton’s third

law (e.g. Viiri 1995).

Multiple-choice diagnostics in surveying students’
common-sense conceptions

Multiple-choice diagnostics have become a popular instrument to evaluate
physics instruction and assess students’ common-sense beliefs. One of the
most used and best-known diagnostics is the Force Concept Inventory (FCI)
(Hestenes et al. 1992). The test is based on research results on students’ com-
mon-sense conceptions about motion (Halloun et al. 1985a). The FCI was
designed to improve the Mechanics Diagnostic test described in Halloun et
al. 1985b. The validity and the reliability of the test have been carefully estab-
lished e.g. by using interviews. Because the questions are essentially the same
the validation for the Mechanics Diagnostics is valid for the FCI as well
(Hestenes et al. 1992).

The diagnostics consists of 30 multiple-choice, qualitative questions about
mechanics. The choices have been designed so that the student has to decide
between a common-sense and a Newtonian conception. Below is an example
of a question of the renewed version of the FCI (published in e.g. Mazur 1997).
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A boy throws a steel ball straight up. Consider the motion of the ball only after it has left
the boy’s hand but before it touches the ground, and assume that forces exerted by the air
are negligible. For these conditions, the force(s) acting on the ball is (are)

a) adownward force of gravity along with a steadily decreasing upward force.

b) asteadily degreasing upward force from the moment it leaves the boy’s hand until it
reaches the its highest point; on the way down there is a steadily increasing down-
ward force of gravity as the ball gets closer to the Earth.

c) analmost constant downward force of gravity along with an upward force that steadily
decreases until the ball reaches its highest point; on the way down there is only an
almost constant downward force of gravity.

d) an almost constant downward force of gravity only.

e) none of the above. The ball falls back to ground because of its natural tendency to

rest on the surface of the Earth.

BOX 1. An example of an item of the FCI.

The Force Concept Inventory probes for students’ ability to apply basic
concepts and laws of Newtonian mechanics in various contexts. The test ig-
nores problem-solving skills. It should be pointed out that the FCI-results
give only a very restricted view on the understanding and mastering of the
Newtonian mechanics, but it makes the comparison of the results possible.
Despite of its restrictions the results of the test have proved to be useful in
improving instruction (Wells et al. 1995).

Methods and material of the present study

Since the FCI provides a means to probe for the frequency of occurrence of
common-sense beliefs among students participated in the research, it was
chosen as the diagnostic method. The FCI was chosen also in order to be able
to compare the results in Finland with international ones. The sample con-
sisted of almost 400 students from different parts of Finland. The results to be
obtained here can thus be generalised concerning understanding of basic con-
cepts of mechanics in Finnish upper secondary schools.

The translation was done carefully. First, the researchers became familiar
with the research in the field of students’ conceptions in mechanics. Second,
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the researchers discussed with the authors of the original FCI to confirm of
the meaning and background of different alternatives. Third, three research-
ers translated the FCI separately and then compared these translations, from
which the final translation was derived. Fourth, 15 university students read
and answered the FCI and gave feedback about translated version. Conse-
quently, the translation can be considered to be adequate for this study.

The research was conducted during 1999-2000 in Finnish upper second-
ary schools. 18 teachers from 18 different schools participated as volunteers in
the research. The FCI was given to 386 students after mechanics instruction,
which concluded the basics kinematics, dynamics and the Newton’s laws. The
teachers were given the test just before testing, so it was not possible to teach
to the test. The results were analysed with the SPSS-programme.

Results

Means and distributions of the total score

The mean score of the FCI test is 17.4 (maximum 30) and the standard devi-
ation 6.3. The distribution of the total scores is displayed in Figure 1.

FCl total score

% of students
=

79 1012 1315 1618  19-21 2224 2527 28-30

Total score

FIGURE 1. Distribution of the total scores.
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The designers of the test have proposed an idea of the Newtonian concep-
tual threshold, that is a minimum level of understanding the Newtonian me-
chanics, to be 60% of the maximum score (Hestenes et al. 1992). In this
study, 52% of students score below this threshold. Students whose total score
is at least 80% of the maximum can be regarded as Newtonian thinkers
(Hestenes et al. 1992). Only 20% of the students in this study reach this level
of understanding of Newtonian mechanics.

29% of the students are girls. Their mean score is 15.3 (s. dev. 5.9), while
the mean score of boys is 18.3 (s. dev. 6.2). The difference is statistically sig-
nificant (t=4.4*%).

Scores on kinematics

The understanding of the concepts of position, velocity and acceleration is
probed by two questions in the test. 48% of the students had difficulties in
these questions. 16% of the students answered in both questions incorrectly.
These results suggest that about half of the students have difficulties in under-
standing the concepts of position, velocity and acceleration, which are an
essential foundation for the Newtonian force concept.

Scores on items revealing the conceptions of impetus

According to the impetus belief an object receives, for example in a hit, an
internal force, which keeps the object in motion. Three items were especially
designed to detect that belief. In those items a situation where a ball was
thrown or a puck was hit were described. The question was about the forces
acting on the object after the hit or throw. The choices with a force in the
direction of the motion were considered as expressions of the impetus belief.
Figure 2 represents the number of choices according to the impetus belief.
36% of the students answered according to the impetus belief consistently in
all the three items. 19% answered in two and 12% in one item according to
the impetus belief. 27% of the students chose all alternatives according to
Newtonian mechanics. The Newtonian choices are indicated in the following
figures with a dark column. In addition, 6% chose an alternative according to
some other conception.
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% of students

Number of cholces

FIGURE 2. Distribution of the number of incorrect choices for items measuring the
impetus belief (3 items altogether).

As figure 2 shows, the majority of the students answered consistently ei-
ther according to the impetus belief or to the Newtonian concept.

According to the Newton’s Second Law constant force implies constant
acceleration. Four items were designed to probe for the ability to apply this
law in various contexts. Only 9% of the students answered correctly to all
these items. Figure 3 shows how students were uncertain in their choices and
chose sometimes according to Newtonian mechanics and sometimes accord-
ing to a common-sense conception.

35
30 25
25
20 ?
15
10 — —

% of students

0 1 2 3 4

Number of cholces

FIGURE 3. Distribution of the number of correct choices for items measuring the
mastering of Newton’s Second law (4 items altogether).
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Scores on items revealing the conception of dominance

Two basic questions were designed in the test to probe for the dominance
principle. In the first a situation is described where a large truck collides with
a small car, in the second two students are sitting on office chairs. One stu-
dent has his feet on the knees of the other student and pushes outward with
his feet. In both items it is asked to compare the forces, which the parties
exert on each other. In figure 4 the number of choices according to the dom-
inance conception is displayed. About half of the students answered accord-
ing to the Newton’s Third Law in both items. Whereas, 22% of the students
systematically answered according to the dominance principle. According to
them the bigger or more active party exerts a greater force on the other.

% of students

Number of choices

FIGURE 4. Distribution of the number of incorrect choices for items measuring the
dominance principle (3 items altogether).

- The understanding of the Newton’s Third Law in a more complicated con-

text was probed by two other questions in addition to the above-discussed
ones. In these items a system in motion with constant velocity or constant
acceleration is considered. It turns out that 92% of those who answered cor-
rectly to the first two items answer also correctly according to Newton’s Third
Law in the case where the system is in constant motion. However, only 59% of
them mastered the symmetry of the interaction also in a system with constant
acceleration. In all, only 28% of the students mastered the Newton’s third law
in all various contexts.
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The differences in results between schools are of no importance for the
present study. This comparison will be reported in an other study, where the
connection with teachers’ conceptions of the role of experimentality and learn-
ing results is discussed in more detail.

Comparison of the Finnish results with the results
from the USA

The Force Concept Inventory has widely been used to evaluate physics in-
struction in the USA. During the last decade data has been amassed on 20
000 high school students. In the USA the average scores after traditional
(teacher-centred) instruction is 42% and 2/3 of the students fail to reach the
Newtonian conceptual threshold of 60%. Students of teachers, who have ful-
ly adopted the Modelling Method, a research based teaching methodology
(e.g. Hestenes 1996) in physics instruction reach the average score of 69%.
(Popp 2000)

In this study the average score of the Finnish students is 58%. That is
higher than the average score after traditional physics instruction in the USA
but lower than the average score after instruction according to the Modelling
Method. The more accurate comparison of the Finnish results with the re-
sults from the USA was therefore chosen to be done with data containing
both teachers using traditional methods and Modelling Methodology. The
respective American sample consists of 2118 students of 34 teachers all over
the USA. 24 of the teachers reported using the Modelling Method, whereas
10 used mostly traditional methods. The mean score is 57%. The data is col-
lected during 1994-99. (Popp 2000)

The distributions of the chosen alternatives in each item were compared
with the chi-square test. In three items, where 20% of the expected values
were less than 5 or at least one expected value was zero, the Yates correction
was used in order to determine the value for chi-square. The chi-square test
shows that in 8 items out of 30 there is no statistical difference in the distribu-
tions of the chosen alternatives between Finnish and American students. For
example the distribution of the item 29 (x? = 8,0™) is displayed in Figure 5.
The question is displayed in Box 2. The alternative 2 is the correct one.
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An empty office chair is at rest on a floor. Consider the following forces:
A. A downward force of gravity.
B. An upward force exerted by the floor.
C. A net downward force exerted by the air.
Which of the forces is (are) acting on the office chair?
1. A only.
A and B.
BandC.
A,Band C.
None of the forces. (Since the chair is at rest, there are no forces acting
upon it.)

bl ol

BOX 2. Item 29.

Item 29

100

80

60
40

O Finland
OUSA

% of students

20

Alternative

FIGURE 5. Distributions of the chosen alternatives in item 29.

In 25 items out of 30 the chi-square is below 50. For example in item 25
displayed in Box 3 and Figure 6. (x*=49.8**). The alternative 3 is the correct
one.
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A woman exerts a constant horizontal force on a large box. As a result, the box
moves across a horizontal floor at a constant speed v,
The constant horizontal force applied by the woman
1. Has the same magnitude as the weight of the box.
2. Is greater than the weight of the box.
3. Has the same magnitude as the total force that resists the motion of the
box.
4, is greater than the total force that resists the motion of the box.
5. Is greater than either the weight of the box or the total force that resists
its motion.
BOX 3. Item 25.
Item 25
60
50
8
§ 40
3 % Fintand
- USA
°
° 20
2

Alternative

FIGURE 6. Distributions of the chosen alternatives in item 25.

Although the statistical analysis of the distributions of the chosen alterna-
tives shows a difference between the Finnish and the American students, the
Figure 6 indicates that students in both countries choose the same alterna-
tives even though not with exactly equal frequency. The chi-square was greatest
for the item 13 (x* = 156.2**). The question has been displayed earlier in
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Box 1. The distribution of the chosen alternatives is shown in Figure 7. The
alternative 4 is the correct one.

item13
60
50 ]
8 &3 -
§ 40 ‘
g 30 CIFinland
= BUSA
e 20
xX
10
0 T T T —
1 2 3 4 5
Alternative

FIGURE 7. Distributions of the chosen alternatives in item 13.

The figure 7 shows that the choices of Finnish students are concentrated
on the 3. and 4. alternatives, while the American students quite frequently
choose also the 2. alternative. This suggests that Finnish students have less
the conception that the downward force of gravity increases significantly when
the ball falls down. It is unlikely that this difference of the distributions is due
to the translation. Also in the other 4 questions where the chi-square is high
and the distributions differ from each other the students in both countries
choose the same alternatives although not quite with the same frequency.

The statistical analysis shows that the distributions of the chosen alterna-
tives are largely the same for the Finnish and the American students. This
means that the students choose the same alternatives in Finland and in the
USA. Which in turn indicates that the students in both countries have the
same common-sense conceptions.

Had there been large deviations in the distributions in the chosen alterna-
tives between the Finnish and American pupils, there could have been reason
to revise the translation. Because this was not the case, there were no items
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which are either rejected or accepted with much larger frequency than in the
USA, we assume that the translation does not lead to anomalies due to appar-
ent hints of correct or incorrect answers contained in the wording or way of
posing the questions (Hestenes 2000).

Conclusions

In this study the average level of conceptual understanding of Newtonian
mechanics of 386 students in Finnish upper secondary schools has been ex-
amined during 1999-2000 using the Finnish translation of the Force Concept
Inventory. The results suggest that only 48% of students reach the minimum
level of understanding of the Newtonian mechanics during the mechanics
instruction. Only 20% of the students can systematically apply the Newtoni-
an concepts in various contexts.

The results presented are consistent with the results obtained by Viiri (1995).
Viiri has used part of the Force Concept Inventory in evaluating a teaching
experiment at a technical institute. The mean of the test, which contained 14
items, was 58%, which is exactly the same as the mean of the complete test of
the students participating in this study.

Results obtained by the Finnish translation of FCI were compared with the
results from the USA. The translation of the test, which is also available as a
web version, can be used in physics education research. The results presented
in this report can be used as a reference in evaluating the effectiveness of
teaching experiments. In addition the translation is a valuable diagnostic tool
for teachers in recognising students’ common-sense conceptions before in-
struction and in improving instruction.
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An Evaluation of Interactive Teaching
Methods in Mechanics: Using the FCI
to Monitor Student Learning

~ Antti Savinainen
Kuopio Lyseo High School

This paper addresses issues relating to the teaching and learning of Newtonian me-
chanics in a Finnish High School (student aged 16-19). The impact of interactive
teaching methods on student learning was investigated using the Force Concept In-
ventory (FCI). The work presented here is part of the preliminary phase of an ongoing
research program in which the author acts as teacher and researcher. The results indi-
cate that the teaching approach is very promising in enhancing conceptual under-
standing in mechanics.

Introduction

This paper reports part of an on-going research program on teaching for con-
ceptual understanding and conceptual coherence in high school physics. The
research is directed towards a doctoral thesis in physics education but profes-
sional development is also a goal. High school refers to the Finnish “lukio”
and International Baccalaureate (IB) programs. Completing high school in
Finland usually takes three years (age 16-19). The author teaches physics in
both programs in Kuopio Lyseo High School, and carries out research at the
same time.

The research was motivated by the results that a group of students in the
preliminary IB year (age 16) achieved in the Force Concept Inventory (FCI) a
few years ago. It was an eye-opener: the students had not learnt much in
terms of conceptual understanding. The outcome was disappointing and made
me wonder why only a few students scored well. The teaching then consisted
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of traditional lecturing and demonstrations. Students were asked questions
involving conceptual understanding but only the most active students actual-
ly participated in the lessons; the majority was silent and spent their time
writing down lecture notes. I realized that something very crucial was missing
from the teaching. Interestingly, Mazur (1997) realized the very same thing
after giving the FCI to his students in Harvard University for the first time.
As a result of his experience Mazur (1997) developed an interactive teach-
ing method called Peer Instruction to improve students’ conceptual understand-
ing in an introductory university physics course. I decided to adopt Peer In-
struction for two reasons: firstly, Mazur provided evidence that there actually
was a significant change in learning after using Peer Instruction, and secondly,
Mazur’s method seemed to be adaptable to a high school setting. I integrated
several other research-based methods into Mazur’s Peer Instruction. The in-
structional approach developed is described in detail in the next section.
Mazur had used the FCI to evaluate Peer Instruction (Crouch & Mazur
2001). The FClI is a systematically developed and validated multiple choice
tests (Hestenes et al. 1992a). It has gained a lot of popularity in assessing
introductory mechanics courses in high schools, colleges and universities in
the USA. The teaching approach I developed and used has also been evaluat-
ed in terms of student gains in the FCI. It was not possible to use an experi-
mental design in this study for two reasons. Firstly, a rigorous sampling of
students into control and experiment groups is very hard to implement in the
Finnish high school system. Secondly, the experimental approach, in which
one would teach the control group using conventional methods, would be
ethically difficult to justify because I am convinced that the developed teach-
ing approach is better than the lecturing method I employed earlier. Using

other teachers in teaching control groups is problematic as well, for the rea-
sons discussed by Leach and Scott (2000).
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Interactive Conceptual Instruction

The teaching approach I used — Interactive Conceptual Instruction (ICI) -
can be divided into three components, which overlap with each other to some
extent:

e Conceptual focus

e Classroom interactions and research-based materials

e Use of texts

Conceptual focus

A considerable amount of attention is devoted to developing students’ con-
ceptual understanding before they start quantitative problem solving. Con-
ceptual focus is achieved by utilising the principle of “concepts first” (van
Heuvelen 1991; Gautreau & Novemsky 1997). New ideas are first developed
at a conceptual level with little or no mathematics (definitions are usually
expressed in mathematical form). Graphical and diagrammatic representa-
tions are introduced at an early stage as well; they are used in conjunction
with verbal explanations. Only after the students have a good grasp of con-
cepts is quantitative problem solving introduced. An understanding of con-
cepts as they are applied to empirical situations is developed through simple
demonstrations and collaborative pair discussion. The students do not, how-
ever, “discover” concepts by themselves. The teacher carefully stages teach-
ing activities, the term “staging” referring to how a teaching activity is pre-
sented and mediated by the teacher (Leach and Scott 2000).

Classroom interactions and research-based materials

“Classroom interactions” mean employing collaborative pair discussions and
teacher talk in making meaning (Scott 1998). Peer Instruction, as developed
by Mazur at Harvard University, is used to actively engage the students in the
learning process. Mazur (1997) describes the method thus:

"The basic goals of Peer Instruction are to exploit student interaction during
lectures and focus students’ attention on underlying concepts. Instead of pre-
senting the level of detail covered in the textbook or lecture notes, lectures
consist of a number of short presentations on key points; each followed by a
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ConcepTest—short conceptual questions on the subject being discussed. The
students are first given time to formulate answers and then asked to discuss
their answers with each other. This process (a) forces the students to think
through the arguments being developed, and (b) provides them (as well as the
teacher) with a way to assess their understanding of the concept.”

[ have modified Mazur’s Peer Instruction to some extent (Savinainen 1999,
2000a, 2000b and 2001). The students discuss conceptual exercises in pairs in
the way described by Mazur. It is very important that after pair discussion
students compare their explanations with the explanation provided by the
teacher. Demonstrations and laboratory experiments serve as an excellent
source of conceptual questions, and points arising from them are used as a
basis for oral conceptual exercises. This has advantages and disadvantages.
The advantage is that conceptual questions can be flexibly tailored to match
the teaching situation at hand. The disadvantage is that these exercises are
not so carefully crafted as research-based materials.

In addition to oral questions I use research-based materials to promote
understanding and address any difficulties that students may have. Appropri-
ate multiple choice questions (e.g. ConcepTests, Mazur 1997) and conceptual
exercises developed through physics education research are used. The Rank-
ing Task Exercises (O’Kuma et al. 2000), for instance, are very useful. These
exercises involve multiple representations: conceptual, diagrammatic, graph-
ical, and mathematical. Both school physics and everyday contexts are used
in the conceptual exercises. For example a rollerblade video (Etkina 1998 and
2000) offers very good examples of an everyday context. [ have used the video
to illustrate Newton’s laws in a virtually frictionless setting, using conceptual
questions, which the students discuss in pairs.

Use of texts

[ use texts in various ways to promote learning. The students do not take
ordinary notes: instead, they make additions, remarks and underlinings in the
textbook. They do not have to waste time and attention in writing something
that is in the book. This approach is strongly advocated by Mazur (1996) also.
[ often ask the students to read the textbook beforehand: this releases time for
active discussion. Conceptual change takes much more time than teachers
usually realize (Harrison et al. 1999). However, giving up time-consuming
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notetaking makes it possible to teach almost as many topics as before. Tradi-
tional notes are replaced by concept maps, which I have constructed. Concept
maps allow the students to see "the big picture” and relations of key ideas in a
concise form (Novak & Gowin 1984). Explicit references are made to the
concept maps throughout the teaching. Many students have found the con-
cept maps an efficient tool for revision (Savinainen 2000a and 2000b). In
addition, the students are encouraged to write their own summaries.

Problem solving can be used to clarify concepts as well. Problems that have
multiple steps and make use of many physical principles are especially useful
for Strategy Whiting (Leonard, Dufresen & Mestre 1996). In this approach
physical principles and assumptions are carefully written down before calcula-
tions are worked out. It helps the students to connect conceptual and mathe-
matical representations in a meaningful way. However, Strategy Writing has
only a supplemental nature in the teaching approach taken here: few exercis-
es are treated in the course using Strategy Writing. This is because it takes
quite a lot of time.

Students’ opinions on the teaching approach have been sought via a ques-
tionnaire, and the responses have been very positive in general. Most stu-
dents have stated that peer discussions and emphasis on concepts have made
learning physics easier, and some students have voluntarily added that the
method has made studying even enjoyable!

Example lesson

An example lesson is presented in Table 1. The lesson introduces the concept
of acceleration to students aged 16, and lasts 45 minutes.
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TABLE 1. An example lesson on mechanics, introducing acceleration. The students
read the chapter on acceleration in the textbook before the lesson.

Activity Time Comments

Checking homework on velocity 10 min | Some problems are presented on a

(problem solving and conceptual white board. Conceptual homework

exercises from the book) exercises are first discussed in pairs.

Teacher explains the idea of change 5 min It is explained that magnitude or

in volocity. direction (or both) of velocity can
change.

Short demonstrations in which the 10 min | Demonstrations are used as a source

teacher moves in different ways. of peer discussion questions. The

Students discuss in pairs if the teacher questions are posed orally.

is accelerating or not.

Teacher explains uniform acceleration. | 3 min A falling marker is used as an
example.

Students are asked to present uniform | 7 min Uniform motion and the graphical

motion and uniform acceleration using determination of average velocity

velocity against time graphs. The were introduced using data measured

graphs are constructed and discussed by the students.

in pairs.

Velocity against time graphs are 10 min | Graphical exercises will be continued

presented on the whiteboard. Students in the next lesson in which students

explain and execute the motion in empirically determine acceleration

pairs. of a falling object using ticker timer
tapes.

Conceptual and graphical homework No calculadons are carried out in the

exercises and/or reading tasks are set introduction lesson. Calculations

for the next lesson. will follow the qualitative treatment.

The Force Concept Inventory

The FCI is a multiple choice test designed to measure students’ understand-
ing of force and related kinematics concepts (Hestenes et al. 1992a). It is used
as an assessment tool at every level of introductory physics instruction from
high schools to universities, especially in the USA. It is often given as a pre-
test at the beginning of a course and then as a post-test at the end.
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The FCI has a precursor: the Mechanics Diagnostic Test (MDT; Halloun
& Hestenes 1985). The MDT questions were designed around common mis-
conceptions of the force concept. The test was initially given in open-answer
form to introductory level college students. Then a multiple-choice version
was created, which contained the most common open-ended answers as choic-
es. Various versions of the test were administered to more than 1000 college
students. The reliability and validity of the MDT were established using inter-
views and statistical analysis. Kuder-Richardson reliability coefficients were
determined to be 0.86 for pre-test use and 0.89 for post-test use. These high
values are indicative of a highly reliable test.

About half of the FCI questions are essentially the same as those in the
MDT. The authors of the FCI did not, however, repeat the lengthy procedures
to establish test reliability and validity for the FCI. They justified this by con-
ducting interviews and by pointing out that similar scores were found on both
tests in similar populations. A Revised Version of the FCI was developed and
placed on the web in 1995 (Halloun et al. 1995). It later appeared in Mazur’s
book (Mazur 1997). The 1995 version has 30 questions, whereas the original
FCI had 29 questions.

The main findings reported by Hestenes et al. (1992a) are listed below:

1) Math background is not a major factor in determining high school FCI

scores.

2) Pre-test scores are uniformly low for beginning students.

3) Post-test scores exhibited no relationship with students’ socio-econo-

mical level.

4) No large gains from pre- to post-test were seen with conventional

instruction.

5) There was no correlation between post-test scores and teacher compe-

tence. (There was one exception: one teacher had a very low score
(39%) from the MDT. His students had also the lowest post-test re-
sults from the FCI).

6) An ECI score of 60% is the entry threshold to Newtonian physics.

Below that limit, “students’ grasp of Newtonian concepts is insuffi-
cient for effective problem solving”.

Later, Halloun and Hestenes (1995) added one more finding:
7) An FClI score of 85% is the Newtonian mastery threshold.
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Additional important findings come from Hake’s (1998a) large survey study.
Hake collected data from 62 introductory level courses involving over 6500
students in the USA, with the aim of comparing MDT or FCI scores with type
of instruction. Even though the students were not randomly assigned from a
single large homogeneous population to the traditional and interactive-en-
gagement courses, the data are all drawn from the same institutions and the
same generic introductory program regimes (Hake 1998b).

Hake (1998a) introduced an average normalized gain as a way to analyze
the data. It is the ratio of the actual average gain to the maximum possible
average gain:

<S5 >—-<§5 >
(1) <g>= post pre

100%-< S, >

where < S post > and < S, > are the final (post) and initial (pre) class aver-
ages. The average gain provides a way to compare classes with very different
FClI scores because it normalizes scores based on how well the class performed
before the instruction. There was a very low correlation (+0.02) of <g> with
< 8., > for the 62 survey courses. This means that <g> is practically inde-
pendent of the students’ initial scores.

The average normalized gain (<<g>>) of fourteen traditional survey
courses (2048 students) was 0.23 + 0.04sd (Hake 1998a). The traditional
courses relied primarily on passive-student lectures, recipe labs and algorith-
mic-problem exams. Forty-eight interactive-engagement (IE) survey courses
yielded < <g>> = 0.48 * 0.14sd. Hake defined IE methods “as those de-
signed in part to promote conceptual understanding through interactive en-
gagement of students in heads-on (always) and hands-on (usually) activities
which yield immediate feedback through discussion with peers and/or instruc-
tors”.

Hake (2001a) concluded that the results strongly suggest that

e traditional courses fail to convey much basic conceptual understan-

ding of Newtonian mechanics to the average student.

e |E courses can be much more effective than traditional courses in en-

hancing conceptual understanding.
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On the basis of the data Hake (1998a) classified introductory mechanics
courses into the following regions:

1) “High-g” courses: (<g>) > 0.7;

2) “Medium-g” courses: 0.7 > (<g>) > 0.3;

3) “Low-g” courses: (<g>) < 0.3.

No course reached the High-g region (the best <g> was 0.69). All the
traditional courses fell into the Low-g region. It implies that gains in traditional
high school, college and university physics courses were largely independent
of the teachers’ experience and academic background. This result supports
the finding of the authors of the original FCI that no large FCI gains were seen
with conventional instruction. The FCI therefore provides a useful instru-
ment to be used in evaluating students’ understanding of Newtonian mechan-
ics. Some justification for the use of the American findings in the case of
Finnish FCI results will be provided in the next section.

Using the FCl to evaluate student learning

Interactive Conceptual Instruction groups

Table 2 presents ECI results for the Interactive Conceptual Instruction (ICI)
groups. A Finnish translation of the 1995 version of the FCI was used (Kopo-
nen et al. 2000). The ICI group results are matched, i.e. given for students
who took both the pre and post FCI. The correlation between individual stu-
dents’ gains and pre-test results was very close to zero (+0.055). The Kuder-
son-Richardson reliability coefficient KR20 was 0.86 for the pre-test and 0.84
for the post-test (calculated using the combined ICI group, n = 75). These
are in very good agreement with the coefficients reported by the authors of
the MDT (precursor of the FCI).

All the ICI groups fall into the Medium-g region defined by Hake. In addi-
tion, the ICI1 post-test average was near the Newtonian mastery threshold
defined by Halloun and Hestenes (1995). Both Finnish National Curriculum
groups (ICI1 and ICI2) had followed two traditional high school courses deal-
ing with mechanics before the Interactive Conceptual Instruction course; this
explains a fairly high pre-test result in group ICI1. Interestingly the other
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TABLE 2. Pre and post FCI results of the Interactive Conceptual Instruction (ICI)
groups. The average normalized gains (<g>) have been calculated using more signi-
ficant figures than shown in the table. The presented effect size is Cohen’s d. Standard
deviations are shown in parentheses.

Group N Pre-test % Post-test % <g> Effect
(S.Dev.) (S.Dev.) size
Icn 32 60 (19) 81 (14) 0.52 1.2
ICI2! 21 44 (13) 70 (18) 0.46 1.6
ICI3? 22 28 (14) 69 (17) 0.57 2.6

! Finnish National Curriculum students (age 17-18).

2 Preparatory International Baccalaureate students (age 16).

Finnish group, ICI2, had followed the very same courses but their pre-test
result was significantly lower. Another teacher had taught the previous cours-
es and they did not go very deep into the concept of force.

The ICI3 group had received no high school instruction on the concept of
force before the interactive introductory course. This is reflected in the very
poor pre-FClI result (28%). The probability of guessing correct answers in the
FCI questions is 20%. The ICI3 group is quite similar to the preparatory Inter-
national Baccalaureate group I taught a few years earlier. That group was taught
using traditional methods with an emphasis on conceptual understanding.
The post-test result of a shortened old FCI (25 questions) was 58%. Even
though there is quite a clear difference between post-FCI results (58% vs.
69%), no conclusion can be drawn on this basis because the earlier group did
not take a pre-FCI. It must be noted, however, that the results do not exclude
the possibility that the change could be partially attributed to Interactive
Conceptual Instruction.

Average normalized gains suggest that the results are very promising. Fur-
ther support for the conclusion is gained from effect size, which is a family of

indices that measures the magnitude of a treatment. For this study, a relevant
measure of effect size is Cohen’s d (Cohen 1988; Becker 2001):
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(2) d= < Spost >—< Spre >
O-pooled
2 2
_ O-pre + O-post
(3) O-pooled - 9

where < §,,, > and < §,_ > are the final (post) and initial (pre) class aver-
ages; O o and O, are the final and initial standard deviations. Cohen (1988)
defined effect sizes as “small, d = 0.2; medium, d = 0.5; and large, d = 0.8.”
Effect sizes for the study groups were well above the high boundary.

Other Finnish groups

As mentioned in the introduction, very few Finnish data have been published
on the FCI. Some Finnish FCI results are presented in this section. Of course,
these other groups do not constitute control groups but the results provide
some information on FCI gains for students having more or less the same pre-
course curriculum history as the Interactive Conceptual Instruction groups.

Pre and post FCI results of a Finnish high school group and two university
groups are presented in Table 3 (Jauhiainen 2001). The high school group
(HS) had traditional teaching, which was complemented by few interactive-
engagement exercises. The university group UNII consisted of physics stu-
dents, who followed a traditional introductory course in mechanics, having
previously completed high school courses in the subject. The university group
UNI2 consisted of students, who studied to become physics, mathematics,
and chemistry teachers. These students followed interactive-engagement
teaching in didactical physics. The same translation of the 1995 version of the
FCI was used as in the Interactive Conceptual Instruction groups.
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TABLE 3. Pre and post FCI results of one Finnish high school group (HS) and two
groups (UNI1 and UNI2) in a Finnish University.

Group N (pre) N (post) Pre-test % Post-test % <g>

HS 25 31 54 65 0.23
UNI1 155 32 71 79 0.26
UNI2 27 24 79 87 0.37

The post-test results shown in Table 3 are respectable but the gains in the
traditional groups (HS and UNI1) are in the Low-g region. The results of the
UNII group are not very informative because the majority of the students did
not take a post-test. The UNI2 group (IE teaching) reached the Medium-g
region. These results are consistent with Hake’s (1998a) findings in Ameri-
can institutes.

Viiri (1995 and 1996) used a shortened version (14 questions) of the orig-
inal FCI in his thesis on a constructivist teaching experiment in engineering
education. Results from his study (denoted by Viiri) are presented in Table 4,
together with results from three high school groups (Pehkonen 1999). The
groups used the same shortened version of the original FCI as Viiri. Teachers
who had participated in special training in didactical physics taught two high
school groups (HS1 and HS2), whereas a teacher, who had not been involved
in special training, taught one group (HS3). Post teaching results of the ICI
groups in the same 14 questions from the 1995 version of the FCI are shown
as well.
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TABLE 4. Pre- and post-test results of the shortened FCI in various Finnish institu-
tions. The study groups are denoted by ICI, other high school groups by HS and the
engineering group by Viiri. Standard deviations are shown in parentheses.

Group N Post-test %
(S.Dev.)
Viiri 94 58 (22)
HS1 25 48 (21)
HS2 30 61 (21)
HS3 32 30 (18)
ICI1 32 83 (14)
IC12 21 72 (17)
ICI3 22 68 (17)

All the ICI groups had a greater average in the shortened post FCI than
had the other groups. Viiri’s post-test result (58%) was better than the result
of the comparison group in his study (Viiri 1995, 1996). He compared the FCI
responses in his study group with American results reported in Hestenes et al.
(1992), and Viiri concluded that the results were very similar. This suggests
that physics students have the same difficulties in the USA and Finland in
learning the concept of force. Viiri’s conclusion and the limited data in Tables
3 and 4 provide some justification for evaluating Finnish FCI results using the
findings of American physics education research.

I have used some other American research-based conceptual inventories
to evaluate the teaching approach:

e Mechanics Baseline Test (Hestenes et al. 1992b)

o Test of Understanding Graphs in Kinematics (Beichner 1994)

e  Force and Motion Conceptual Evaluation (Thornton & Sokoleff 1998)

¢ Conceptual Survey in Electricity and Magnetism (Maloney et al. 2000)

The results of these tests are consistent with the FCI results of the ICI
groups. It is interesting to note that two successive International Baccalaure-
ate groups in Kuopio Lyseo High School (age 17, combined n = 22) had a
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higher Mechanics Baseline post-test result (71%, s.d. 15%) than any high
school or college in Hake's (1998a) survey. The students had received Inter-
active Conceptual Instruction.

Discussion

The results of this study strongly suggest that Interactive Conceptual Instruc-
tion is useful in teaching high school mechanics. All the available comparison
data from Finnish high schools and other institutions indicate that the results
are very promising. This conclusion receives support from Hake’s large survey
in American institutions. The normalized gains of the Finnish ICI groups were
consistently better than gains achieved by American high schools, colleges or
universities which used traditional teaching methods. Additional support is
gained from effect sizes, which show that the magnitude of the treatment
(teaching) was high. The validity of using Hake’s findings as a basis for com-
parison raises the question: would the survey results be the same if the study
were repeated in Finland? There are not enough data at the moment to an-
swer this question but it would be very surprising if very different results were
achieved in Finland.

It cannot be concluded, however, that the very promising results are due
only to Interactive Conceptual Instruction. The teacher’s expertise has a cen-
tral influence on the effectiveness of any teaching approach. It is possible and
quite likely that the gains in learning in this study are partially due to im-
provements in the teacher’s effectiveness in engaging with students’ thinking
(Leach & Scott 2000). On the other hand, Hake (1998b) convincingly argues
that good teachers are necessary but not sufficient for high quality instruc-
tion.

There is also a question of possible biases in the results presented. One
such worry is teaching to the test. In a sense, there was teaching to the test:
the very aim of the teaching was to give students some understanding of the
force concept. Conceptual understanding was much more emphasized than
in the traditional approach, which focuses mainly on problem solving. There
was also a deliberate attempt to avoid exercises identical to the test items.
However, some overlap is bound to happen; for instance, it is hard to teach
projectile motion without discussing thrown objects, which are addressed in
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some FCI questions. Another possible worry is test-question leakage. This is
unlikely in this study because all the test material is always gathered from
students. Of course, the students are allowed to see their responses and the
correct answers. It is highly unlikely that Finnish students would find the
original publications. There is one exception though: the FCI has been avail-
able on the World Wide Web. To prevent students from searching the net for
it, it is advisable not to use the name “Force Concept Inventory” in test papers

(Hake 2001b).

One could question the use of multiple choice tests by claiming that they
do not provide detailed information on students’ thinking. It must kept in
mind that no matter how good an instrument is, it should be supplemented by
information from other sources to get a reliable profile of student understand-
ing (Halloun & Hestenes 1996; Steinberg & Sabella 1997). Nevertheless,
good multiple choice tests do give a quick and rough estimate of students’
progress in terms of conceptual understanding. In addition, the FCI can be
analyzed along different conceptual dimensions. The analysis can reveal spe-
cial difficulties that students may have and give guidance for future teaching.
Even examining research-based tests can give a teacher insights, which may
be helpful in teaching. The tests may reveal new aspects of the concepts or
even correct some misunderstandings held by the teacher. This at least is my
experience.
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