• Open Access

Consistency of students’ conceptions of wave propagation: Findings from a conceptual survey in mechanical waves

Apisit Tongchai, Manjula Devi Sharma, Ian D. Johnston, Kwan Arayathanitkul, and Chernchok Soankwan
Phys. Rev. ST Phys. Educ. Res. 7, 020101 – Published 22 July 2011

Abstract

We recently developed a multiple-choice conceptual survey in mechanical waves. The development, evaluation, and demonstration of the use of the survey were reported elsewhere [A. Tongchai et al., Developing, evaluating and demonstrating the use of a conceptual survey in mechanical waves, Int. J. Sci. Educ. 31, 2437 (2009)]. We administered the survey to 902 students from seven different groups ranging from high school to second year university. As an outcome of that analysis we were able to identify several conceptual models which the students seemed to be using when answering the questions in the survey. In this paper we attempt to investigate the strength with which the students were committed to these conceptual models, as evidenced by the consistency with which they answered the questions. For this purpose we focus on the patterns of student responses to questions in one particular subtopic, wave propagation. This study has three main purposes: (1) to investigate the consistency of student conceptions, (2) to explore the relative usefulness of different analysis techniques, and (3) to determine what extra information a study of consistency can give about student understanding of basic concepts. We used two techniques: first, categorizing and counting, which is widely used in the science education community, and second, model analysis, recently introduced into physics education research. The manner in which categorizing and counting is used is very diverse while model analysis has been employed only in prescriptive ways. Research studies have reported that students often use their conceptual models inconsistently when solving a series of questions that test the same idea. Our results support their conclusions. Moreover, our findings suggest that students who have had more experiences in physics learning seem to use the scientifically accepted models more consistently. Further, the two analysis techniques have different advantages and disadvantages. Our findings show that model analysis can be used in more diverse ways, provides flexibility in analyzing multiple-choice questions, and provides more information about consistency and inconsistency of student conceptions. An unexpected finding is that studying waves in other contexts (for example, quantum mechanics or electromagnetism) leads to more consistent answers about mechanical waves. The suggestion is that studying more abstract topics may solidify students’ understanding of more concrete waves. While this might be considered to be intuitive, we have not actually found direct empirical studies supporting this conjecture.

  • Figure
  • Figure
  • Figure
  • Received 24 November 2009

DOI:https://doi.org/10.1103/PhysRevSTPER.7.020101

This article is available under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

© 2011 American Physical Society

Authors & Affiliations

Apisit Tongchai1, Manjula Devi Sharma2, Ian D. Johnston2, Kwan Arayathanitkul3, and Chernchok Soankwan3

  • 1Institute for Innovative Learning, Mahidol University, Bangkok, Thailand
  • 2School of Physics, University of Sydney, Sydney, NSW, Australia
  • 3Department of Physics, Mahidol University, Bangkok, Thailand

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 7, Iss. 2 — July - December 2011

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Physics Education Research

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 3.0 License. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×