• Open Access

Rasch model based analysis of the Force Concept Inventory

Maja Planinic, Lana Ivanjek, and Ana Susac
Phys. Rev. ST Phys. Educ. Res. 6, 010103 – Published 10 March 2010

Abstract

The Force Concept Inventory (FCI) is an important diagnostic instrument which is widely used in the field of physics education research. It is therefore very important to evaluate and monitor its functioning using different tools for statistical analysis. One of such tools is the stochastic Rasch model, which enables construction of linear measures for persons and items from raw test scores and which can provide important insight in the structure and functioning of the test (how item difficulties are distributed within the test, how well the items fit the model, and how well the items work together to define the underlying construct). The data for the Rasch analysis come from the large-scale research conducted in 2006-07, which investigated Croatian high school students’ conceptual understanding of mechanics on a representative sample of 1676 students (age 17–18 years). The instrument used in research was the FCI. The average FCI score for the whole sample was found to be (27.7±0.4)%, indicating that most of the students were still non-Newtonians at the end of high school, despite the fact that physics is a compulsory subject in Croatian schools. The large set of obtained data was analyzed with the Rasch measurement computer software WINSTEPS 3.66. Since the FCI is routinely used as pretest and post-test on two very different types of population (non-Newtonian and predominantly Newtonian), an additional predominantly Newtonian sample (N=141, average FCI score of 64.5%) of first year students enrolled in introductory physics course at University of Zagreb was also analyzed. The Rasch model based analysis suggests that the FCI has succeeded in defining a sufficiently unidimensional construct for each population. The analysis of fit of data to the model found no grossly misfitting items which would degrade measurement. Some items with larger misfit and items with significantly different difficulties in the two samples of students do require further examination. The analysis revealed some problems with item distribution in the FCI and suggested that the FCI may function differently in non-Newtonian and predominantly Newtonian population. Some possible improvements of the test are suggested.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 20 May 2009

DOI:https://doi.org/10.1103/PhysRevSTPER.6.010103

This article is available under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

Authors & Affiliations

Maja Planinic*, Lana Ivanjek, and Ana Susac

  • Department of Physics, Faculty of Science, University of Zagreb, Bijenicka 32, HR-10000 Zagreb, Croatia

  • *Corresponding author; maja@phy.hr

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 6, Iss. 1 — January - June 2010

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Physics Education Research

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 3.0 License. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×