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Abstract:  Very little is known about how the nature of expertise in introductory and advanced courses compares in 

knowledge-rich domains such as physics. We develop a framework to compare the similarities and differences between 

learning and patterns of student difficulties in introductory physics and quantum mechanics. Based upon our framework, 

we argue that the qualitative patterns of student reasoning difficulties in introductory physics bear a striking resemblance 

to those found for upper-level quantum mechanics. The framework can guide the design of teaching and learning tools. 
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INTRODUCTION AND FRAMEWORK 

   It is widely assumed that a majority of upper-division 

physics students have learned not only a larger amount 

of physics content, but have also developed 

significantly better reasoning, problem solving and 

meta-cognitive skills than introductory physics 

students. However, expertise is domain-specific—it is 

unclear how readily skills transfer across domains [1-

3]. Classical mechanics (CM) and quantum mechanics 

(QM) are two significantly different paradigms.  

Learning QM can be challenging even for advanced 

students who have developed a good knowledge 

structure of CM [4,5]. Here, we develop a framework 

and argue that the level of challenge that advanced 

students face in learning the new paradigm of QM is 

comparable to what many students face in learning 

introductory physics.  

   Physics is a knowledge-rich domain, and the laws of 

physics are encapsulated in precise mathematical 

forms. While the level of pre-requisite mathematical 

knowledge is different (e.g., trigonometry, algebra or 

basic calculus for various introductory physics courses 

vs. linear algebra and advanced calculus including 

differential equations for QM), in both introductory 

physics and QM, students must learn to unpack the 

compact mathematical laws of physics and apply them 

in diverse situations to explain and predict physical 

phenomena. Taking into account the required prior 

knowledge of students learning introductory physics or 

QM, each group must learn to interpret and make sense 

of abstract physical principles and make a conscious 

effort to build a coherent knowledge structure in order 

to become an expert [1-3]. Once we correct for the pre-

requisite prior knowledge of students in each case, 

introductory physics content for a beginning student is 

no less abstract than QM content is for an advanced 

physics student. 

   Since students are not blank slates, the difficulty of 

introductory physics courses is increased. Students 

constantly try to make sense of the world around them. 

The mental models they build of how things work in 

everyday life using naïve reasoning based upon their 

limited expertise are often inconsistent with the laws of 

physics [6]. Moreover, everyday terms such as 

velocity, acceleration, momentum, energy, work etc. 

do not have the same precise meaning as in physics 

and students must learn to differentiate how those 

terms are used in physics vs. everyday life.  

   Students are unlikely to have unproductive mental 

models about QM concepts before formal instruction in 

physics because one does not encounter such situations 

and need to reason about quantum processes in 

everyday life. Therefore, one might assume that 

learning QM may be easier than CM in this regard. 

However, what students learn in earlier courses 

including CM can interfere with building a robust 

knowledge structure of QM. For example, in QM, the 

connection between quantum formalism and 

phenomena is made through measurement and 

inferences about physical observables, e.g., position, 

momentum, energy, angular momentum. But unlike 

CM, a particle does not in general have a definite 

position, momentum or energy in QM.  In QM, all 

information about the system is contained in the state 

vector or wave function which lies in an abstract vector 

space. The measurement of an observable collapses the 

wave function to an eigenstate of the operator 

corresponding to the observable measured, and the 

probability of measuring a particular value can be 

calculated from the knowledge of the wave function. In 

fact, this QM paradigm is so different from the 

classical paradigm that students must build a 

knowledge structure for QM from scratch, even if they 

have a good knowledge structure involving position, 

momentum, and angular momentum in CM. Moreover, 



similar to the possibility of naïve notions about 

velocity, momentum or work from everyday 

experience interfering with learning CM, concepts of 

position, momentum, angular momentum, etc. are 

embedded so differently in CM and QM formalisms 

that intuition about these concepts developed in CM 

may actually interfere with learning QM. 

  Within our framework, the significantly different CM 

and QM paradigms suggest that even students with a 

good knowledge of CM will start as a novice and 

gradually build their knowledge structure about QM. 

As these students start to build a knowledge structure 

about QM, their knowledge will initially be in 

disconnected pieces [6], and their reasoning about QM 

will only be locally consistent and lack global 

consistency. In fact, there is nothing unusual about 

students going through this stage. Those who begin 

their pursuit of developing expertise in any knowledge-

rich domain must go through a phase in which their 

knowledge is in small disconnected pieces which are 

only locally consistent, and this causes reasoning 

difficulties [1-3]. What our framework suggests, 

however, is that each student must go through this 

process of gradually building a knowledge structure 

and pass through the knowledge in pieces phase while 

learning CM and QM separately because the 

conceptual frameworks are sufficiently different in 

these sub-domains of physics (even though the same 

terminology is used, e.g., momentum, energy, etc). 

Thus, within our framework, students’ mastery of CM 

does not imply their mastery of QM without conscious 

effort on the part of the students to build a knowledge 

structure of QM (and make lateral connections between 

the CM and QM schema to explicitly understand the 

differences between these formalisms and when and 

how they come together, e.g., by taking the classical 

limit). Therefore, students learning CM and QM are 

likely to show similar patterns of reasoning difficulties 

as they move up along the expertise spectrum in each 

of these sub-domains of physics. In each case, if 

students continue their effort to repair, reorganize and 

extend their knowledge structure [1-3], they will reach 

a point when their knowledge structure becomes 

robust, and they are able to make predictions and 

inferences which are globally consistent with the 

respective formalisms and their reasoning difficulties 

are significantly reduced. 

PATTERNS OF DIFFICULTIES 

   Below, we discuss a few examples from upper-level 

QM and introductory CM to illustrate that the patterns 

of student difficulties are analogous in these cases. As 

discussed in the framework above, in each case, 

students are still learning to unpack the respective 

principles and formalism encapsulated in mathematical 

forms and developing schema.  

  We first discuss the performance of 39 physics 

graduate students on questions related to QM 

formalism given as part of a written test after at least 

one semester of graduate-level QM.  

   On question 1 which asked graduate students 

whether the statement “The position-space 

wavefunction is  xx )(  where x is a continuous 

index” is correct, 90% noted that it is correct.  

However, responses to other questions in the same test, 

e.g., question 2 below, suggest that many students do 

not recognize that  xx )(  in other contexts. 

2.  An operator Q̂  corresponding to a physical 

observable in the position representation is )(xQ . 

Choose all of the following statements that are correct. 

1.  xxQQx )(ˆ   2. )()(ˆ xxQQx    

3. xQQx ˆˆ    

A. 1 only   B. 2 only   C. 1 and 2 only   D. 1 and 3 only   

E. 2 and 3 only 

TABLE 1.  Percentages of graduate students who 

selected various answer choices for questions related to 

QM  (correct answers are italicized). Percentages do 

not add up to 100% since some students left it blank. 
 A B C D E 

Question 2 13 10 54 8 10 

Question 3 26 13 46 13 0 

Table 1 shows that for question 2, 41% of graduate 

students incorrectly claimed that either statement (1) or 

(2) is correct but not both, even though in the earlier 

question, 90% of them selected  xx )(  as 

correct as noted earlier (interpreting  xx )(  is 

the only difference between statements (1) and (2) in 

question 2). In fact, there were two more questions in 

the same test (which were placed back to back with the 

two questions discussed above) which show similar 

discrepancies. In one of those questions, 36% of the 

graduate students incorrectly claimed that 

 dxxxx )(  is correct and 39% incorrectly 

claimed that   xdxxxx )()(  is not correct. 

   These discrepancies indicate that graduate students 

are inconsistent in their reasoning and their ability to 

correctly identify  xx )(  is context-dependent. 

Interviews in which graduate students reasoned 

through these problems using a think aloud protocol 

suggest that they did not reflect back and check for 

consistency in their responses to the four consecutive 

questions. Assuming a graduate student has self-

monitoring skills, inconsistency across consecutive 

questions suggests that either the student did not feel 

the need to check for consistency or he experienced 

cognitive overload due to limited capacity of working 

memory. Thus, the student may be unable to do self-



monitoring while solving these problems in a domain 

in which he is still developing expertise [1-3]. 

Interviews suggest that in question 2, students were so 

focused on the operator and how it should be written in 

position representation, that they did not pay attention 

to the fact that the only difference between statements 

1 and 2 was  xx )( , which they had already 

identified as correct previously. A similar 

inconsistency was observed when Siegler [8] taught 

young children control of variables for a balance scale 

in a longitudinal study. He found that after a few 

rounds of instruction, children were in an intermediate 

state of expertise and used the control of variables 

correctly on some days on some tasks but not in others. 

      In the interview, a graduate student who noted that 

 xx )(  in question 1 but incorrectly claimed that 

  xdxxxx )()(   is incorrect reasoned as 

follows “… it just doesn’t seem correct, that  )(x  

should just pop out [of the integral].  It’s giving you 

just a wavefunction of x and I just don’t like that.  I 

think it [inner product] should just give you a number.” 

He correctly reasoned that the inner product is a 

number, but did not make the connection that )(x  is 

also a number for any particular value of x.  More 

importantly, he was so focused on his concern that the 

inner product is a number that he did not notice the 

inconsistency between the responses to this question 

and question 1 in which he appeared quite confident 

that  xx )( . We note that an integral involving a 

delta function of the type shown above is trivial for a 

graduate student if it is given as a math problem. 

However, in the context of QM, that integral involving 

a delta function was enough to make this student (and 

many others) concerned about whether the physical 

content of that statement made sense from the point of 

view of QM when it was nothing more than 

 xx )( , whose validity he appeared confident 

about in the previous question. 

   This type of lack of consistency is well-documented 

in introductory physics. For example, a student may 

correctly reason in a simple context that a larger net 

force on an object would imply a larger acceleration, 

but incorrectly claim that the net force is larger on a car 

moving at a constant velocity at 100 mph compared to 

one that is moving at 60 mph. 

   Another type of difficulty is illustrated by the 

following QM question given to the same 39 graduate 

students. 

3. Consider the following conversation between Andy and 

Caroline about the measurement of an observable   Q  for 

a system in a state   which is not an eigenstate of  Q̂ : 

Andy: When an operator  Q̂  corresponding to a  

physical observable  Q  acts on the state   , it  

corresponds to a measurement of that observable.  

Therefore,  nqQ ˆ where qn is the observed value. 

Caroline: No. The measurement collapses the state so  

nnqQ  ˆ  where  
n  on the right hand side of 

the equation is an eigenstate of Q̂  with eigenvalue qn.   

With whom do you agree? 

A. Agree with Caroline only, B. Agree with Andy only, 

C. Agree with neither,           D. Agree with both, 

E. The answer depends on the observable. 

   Table 1 shows that for question 3, 52% of the 

graduate students incorrectly agreed either with Andy 

or Caroline or both. Interviews suggest that students 

were so focused on thinking about how a single 

equation should describe the measurement process and 

the collapse of the wave function under the 

Copenhagen interpretation, that none of them felt the 

need to check and verify that equations such as  

nnqQ  ˆ  are meaningless from the point of 

view of linear algebra. Graduate students are unlikely 

to make such mistakes if a “pure” linear algebra 

question is asked regarding the validity of similar 

equations without the QM context. However, in this 

context involving quantum measurement, their 

misconception that an operator (corresponding to an 

observable) acting on a quantum state corresponds to 

the measurement of the observable was so strong that 

they did not pay attention to the violation of basic 

tenets of linear algebra. In fact, some of the 

interviewed students who claimed that both Andy and 

Caroline are correct (which again makes no sense from 

a mathematical point of view since the left hand sides 

are the same but the right hand sides are different in 

Andy’s and Caroline’s equations), when pressed for an 

explanation for how only the right hand side of an 

equation would change, noted that Andy is correct 

infinitesimally before the measurement process occurs 

and Caroline is correct infinitesimally after it. 

   Similar overlooking of mathematical or other types 

of consistency due to strong misconceptions is 

common in introductory physics. For example, we 

gave to introductory students two isomorphic problems 

[9] involving Newton’s second law in an equilibrium 

situation on an incline plane back-to-back (problems 

that can be mapped onto each other but the contexts 

were different). The second problem elicits a strong 

misconception about static friction always taking on its 

maximum value. We found that many introductory 

students ignored the similarity between the adjacent 

problems (including the fact that the free-body 

diagrams provided were identical except that the 

tension force in one problem was replaced by the 

frictional force in the other problem, which would 

logically imply that the desired quantities, tension and 



friction, had the same magnitudes). Only 28% of the 

students provided the correct response to the friction 

problem (72% correct for tension problem right before 

the friction problem). A majority did not recognize a 

similarity between the isomorphic problems—despite 

doing the tension problem correctly—and launched 

into a calculation of maximum static friction although 

it was not at the maximum value in the problem. 

   Another common difficulty with QM is manifested 

by the fact that 48% of the graduate students 

incorrectly claimed that  EH ˆ  is the most 

fundamental equation of QM and 39% claimed it is 

true for all wavefunctions [5]. In individual interviews, 

students were explicitly asked whether this equation is 

true for a linear superposition of the ground and first 

excited states of a one dimensional infinite square well. 

Many graduate students incorrectly claim that it is 

indeed true for that case primarily because they believe 

incorrectly that this time-independent Schrodinger 

equation is the most fundamental equation of QM. 

When these students are asked to explicitly show that 

this equation is true in this given context, most of them 

verbally argue without writing that 
111

ˆ  EH  and

222
ˆ  EH   imply that their addition will give 

 EH ˆ . In fact, even when graduate students are 

told that  EH ˆ  is not obtained, many have 

difficulty believing until they explicitly write these 

equations on paper (mostly after additional 

encouragement to do so) and note that since E1 and E2 

are not equal,  EH ˆ  in this case. 

   Introductory physics students show similar patterns 

of difficulty in that they use their “gut” feeling to 

answer physics questions instead of explicitly writing 

down a physics principle and checking its applicability 

in a particular situation. For example, we performed a 

study [9] in which 138 introductory students were 

asked to find a mathematical expression (Ft) for the 

magnitude of the momentum of a boat that started from 

rest and had a constant horizontal force of magnitude F 

acting on it for a time t (and in which the force was 

used to tow the boat a distance d). Another group of 

215 introductory students were asked a similar but 

conceptual question in which two boats started from 

rest and had the same constant net horizontal force 

acting on each for the same period of time. They were 

asked to compare the magnitudes of momentum of 

each boat. Both the quantitative and conceptual 

questions were in the multiple-choice format. Many 

introductory students used their gut feeling rather than 

physics principles to answer this question. The 

percentage of students providing the correct response 

for the conceptual question was roughly half of the 

percentage of students who correctly answered the 

quantitative problem. When a third group of 289 

students (different from the first two) was given both 

questions with the quantitative question followed by 

the conceptual question, they performed equally well 

on both. Interviews suggest that introductory students 

who solved the quantitative problem took advantage of 

their expression (Ft) to answer the conceptual question. 

However, during interviews, introductory students who 

were only given a conceptual question were very 

reluctant to convert it into a quantitative problem in 

order to answer it [7] (similar to the reluctance of the 

graduate students who preferred to use their gut feeling 

to argue that  EH ˆ  for the case involving a 

linear superposition of stationary states, even though it 

is not true).  

   In our framework, the reluctance of introductory 

students to use their cognitive resources for 

quantitative analysis of conceptual questions is similar 

to the reluctance of graduate students to verify the 

validity of  EH ˆ  explicitly by writing it down 

in the given situation until they were forced to do it. 

One possible explanation for such reluctance is that 

writing down each step explicitly and converting a 

conceptual question to a quantitative question in order 

to solve it are cognitively demanding tasks and may 

cause mental overload [7]. According to Simon’s 

theory of bounded rationality [2], an individual’s 

rationality in a particular context is constrained by his 

expertise and experience and an individual will choose 

amongst only a few options consistent with his 

expertise that does not cause a cognitive overload. 

SUMMARY  

   We develop a framework and argue that the patterns 

of student difficulties in introductory physics are 

analogous to the patterns in advanced QM. The novel 

paradigm in QM requires that even those who have 

mastered CM construct a new knowledge structure and 

gradually make their way up the expertise spectrum 

similar to the process that an introductory student must 

go through to learn introductory physics.  
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