

Assessing Student Learning in Middle-division Classical Mechanics / Math Methods Marcos D. Caballero • Steven J. Pollock • Department of Physics – University of Colorado Boulder

Introduction & Motivation

- Assessment tools helped drive the study of student learning in introductory physics¹⁻³ by: (1) identifying common and persistent student difficulties
- (2) providing evidence for the effectiveness of transformed pedagogies and curricula.
- Similar research into student learning in upper-level physics courses has begun.^{2,4-10}
- At CU Boulder, we are transforming the first half of our classical mechanics sequence. 11,12
- To assess the transformed course and to help further investigate student difficulties at this level, we have begun to develop the Colorado Classical Mechanics / Math Methods Instrument (CCMI).
- The CCMI is an 11-problem, open-ended instrument.

Designing the CCMI

Writing Questions:

- CU Faculty developed a set of consensus learning goals.
- Sixteen open-ended problems were initially written informed by observed difficulties.8

Expert Validation:

- Faculty (CU and elsewhere) reviewed the CCMI for content and clarity.
- (1) Does each problem address the concepts and skills my students should master?
- (2) Is each problem written in a clear and concise manner?
- Problems were improved iteratively leading to the 11-problem version (9 mandatory, 2 optional) that can be completed in 50 minutes.

Student Validation:

 Seventeen student interviews were conducted at CU to ensure the CCMI probed common difficulties and that students interpreted problems appropriately.

References

¹L.C. McDermott, et al., Am. J. Phys. 67, 755 (1999). ² D.E. Meltzer, et al., Am. J. Phys. 80, 478 (2012) ³ D. Hestenes, et al., *Phys. Teach.* **30**, 141 (1992). ⁴ B.S. Ambrose, *Am. J. Phys.* **72**, 453 (2004). ⁵ W.M. Christensen, et al., *Am. J. Phys.* **77**, 907 (2009) ⁶ M.D. Caballero, et al., *PERC Proc.* **1513**, 90 (2013). ⁷ B.R. Wilcox, et al., *PERC Proc.* **1513**, 418 (2013) ⁸ R.E. Pepper, et al., *PERC Proc.* **1289**, 245 (2010). ⁹ C. Singh, et al., *Phys. Today* **59**, 43 (2006).

¹⁰ T. Smith, et al., *PERC Proc.* **1289**, 305 (2010) ¹¹ S.J. Pollock, et al., *PERC Proc.* **1413**, 303 (2012). 12 http://per.colorado.edu/ClassicalMechanics/ ¹³ L. Ding, et al., *Phys. Rev. PER* **2**, 010105 (2006). ¹⁴ C.S. Wallace, et al., *Astro. Ed. Rev.* **9**, 010116 (2010) ¹⁶ H.B. Mann, et al., *Ann. Math. Stat.* **18**, 50 (1947).

¹⁷ C.W. Dunnet, et al., Am. Stat. Assoc. **50**, 1096 (1955).

Sample Problem: Energy Contour Map (Pre & Post-test)

Learning goals evaluated:

- Students should be able to predict direction and magnitude of the gradient given equipotential lines.
- Students should be able to determine the relative magnitude and direction of a force on a set of drawn equipotential lines.
- Students should be able to recognize equilibrium points on a plot of potential energy, U, and determine if these points are stable.

Problem Scoring Rubric (5 total points, ~15% of CCMI):

Part (a)	ing nubite	J total politis, 1370 of celvily.
Full credit (1)	Correct	Identifying Stable equilibrium only (B)
No credit (0)	Incorrect	No credit for any other responses
Part (b)		
Full credit (1)	Correct	Reasonable answer to correct response only, for example: • Lowest potential energy, Valley/well analogy, Stable against small pushes
No credit (0)	Incorrect	No credit for any other responses
art (c)		
Full credit (1)	Correct	Either E>C>D>A=B=F or E>C>D=A=B=F (unclear if there's a non-zero gradient at D)
Half credit (0.5)	Incomplete answer	Correct answer but 1 location is missing (e.g., E>C>A=B=F or E>C>D>A=B)
No credit (0)	Incorrect	No credit for any other responses
No credit (0) Part (d)	_	
full aradit (2)	Correct	Dorfoot akatab at all paints

		(9-,
No credit (0)	Incorrect	No credit for any other responses
art (d)		
Full credit (2)	Correct	Perfect sketch at all points
		All arrows in direction of decreasing potential
		Correct relative magnitudes
		Arrows perpendicular to contour lines
		Zero at equilibria (A, B, F, and, possibly D)
Partial credit	Magnitude	Magnitude of arrows are seriously sketchy
(1.75)	error	Not obviously longer for larger gradients
No credit (0)	Incorrect	No credit for any other responses

Statement of the Problem (Appears on pre- and post-test): Below is a plot of the potential energy, in Joules, of a particle free to move on a 2-d plane.

(d) Draw vectors that represent the force, \vec{F} , at points A--F on the

diagram above. Please make sure that the relative magnitude of your

vectors is consistent among the points. Indicate clearly if $ec{F}=0$ at any

Bin width is 5%

- (a) For which of these points (A--F) is the particle in stable equilibrium?
- (b) Please explain how you decided on the above answer:
- (c) Rank the magnitude of the gradient at the above points, from largest to smallest. (I some points have gradients with equal magnitude, please make it clear in your answer.

Results & Test Statistics (N=167)

Distribution of Scores • Q2: r = 0.31

Q2 covers Taylor expansions; challenging for CU students⁶ Internal Consistency (α) > 0.8 is sufficient¹⁴

 $\alpha = 0.77$ More data needed to better

estimate true α^{14}

Preliminary Comparison of Student Performance at CU

3 recent semesters of pre/post data from CU Boulder. Pedagogical codes: Clickers (CQ), in-class Tutorials (T), Group Problem sessions (GP), and Lecture (L)

1	l					
	Sem.	Faculty	Pedagogy	N	PRE	POST
	1	PER	CQ, T, GP, L	62	34.8 ± 3.4	59.7 ± 2.8
Ì	2	TRAD	CQ, T, GP, L	41	25.3 ± 2.9	46.1 ± 3.0
	3	TRAD	CQ, L	64	32.1 ± 2.7	51.0 ± 2.5

- A Kruskall-Wallis test detected a group difference¹⁵
- Pairwise Mann-Whitney tests^{16,17} demonstrated that Sem. 1 students outperformed Sem. 2 & 3
- Learning gains appear higher in Sem. 1 and 2

Sample Problem: Writing a Differential Equation (Post-test only)

Learning goal evaluated:

Students should be able to use Newton's laws to translate a given physical situation into a differential equation.

Problem Scoring Rubric (4 total points, ~12% of CCMI):

Full credit (4)	Correct	$m\ddot{x} = -c x^2 + k/(10 - x)$ or an equivalent form
Minus 0.5	Neglected	Mass does not appear in the differential equation
points	mass	
Minus 0.5	Neglected	Constants (c, k) do not appear in the differential equation
point each (1	coefficients	(1 point each)
max)		
Minus 1 point	Distance	Any errors in the distance dependence, e.g.,
each (2 max)	dependence	 x instead of x² in the first term
	error	• 1/x instead of 1/(10-x) in the second term
		1 point for each term
Minus 1 point	Sign error	Sign error in front of either term, e.g.,
each (2 max)		 negative sign instead of positive sign for the second
		term as written above
No credit (0)	Incorrect	No credit for any other responses
		First order equation in x
		Differential equation equal to a constant
		Not a differential equation

Statement of the Problem (Appears only on post-test):

A particle (mass, m) is confined to move on the x-axis between two objects that attract it. The particle does not leave the region between the two attractive objects.

- One object is located at x = 0 and the attractive force between the object and the particle is proportional to the square of the distance between them with proportionality constant c.
- The second object is located at x = 10 and the attractive force between the object and the particle is inversely proportional to the distance between them with proportionality constant k.

Write down a differential equation that describes the position of the particle as a function of time, x(t).

Student Performance:

of the points.

Student Performance:

Common & persistent difficulties:

(a) Identifying all equilibria (A,B,F)

(c) Ordering by energy "height" or

(d) Arrows at equilibria or arrows

parallel to contour lines

absolute value of energy "height"

(b) Including justification for A, F

Common & persistent difficulties:

- Sign mistake on either term
- Incorrect distance dependence on either term
- Neglecting coefficients or constants
- Answering with an equation that is not a differential equation

Remarks

- The CCMI is a valid and reliable instrument for investigating student learning at CU.
- The CCMI can detect differences in instruction at CU.
- Student performance on the CCMI has informed the research agenda.⁶
- More data is needed from a variety of institutions and instructional contexts.

How can I help?

Willing to give the instrument to your students? Interested in helping conduct interviews with physics students at your school?

Contact: caballero@pa.msu.edu if you are interested.