
Measurements of Students’ Performance on Computational Exercises in Introductory Mechanics
Marcos D. Caballero1, Michael F. Schatz1 and Matthew A. Kohlmyer2
1School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 2Department of Physics, North Carolina State University, Raleigh, NC 27695

Abstract
We evaluated student performance on computa-
tional modeling exercises in our large (N ∼ 500)
introductory mechanics course. The majority of
students (60.4%) successfully completed the eval-
uation. Analysis of erroneous student-submitted
programs indicated that a small set of student
errors explained why most programs failed.

Background
Students taking introductory calculus-based me-
chanics at Georgia Tech learn to solve complex
physics problems using computation in the lab
and on their homework.

We delivered a proctored laboratory assignment
during the last lab of three different semesters to
evaluate students’ computational skills basis. 1357
students were involved in the measurements. We
reviewed students’ erroneous code to uncover
common difficulties.

Proctored Assignment
At the end of three different semesters, students
were given a proctored assignment with random-
ized given values. The prompt for the assignment
is shown below:

You will complete a partially constructed program that
model the interaction of two particles.

One particle is much lighter than the other and both par-
ticles are far from all other objects. The force acting on
the lighter particle is directed along the line connecting the
two particles and is attractive. The magnitude is given by
Fmys = k/rn , where r is the separation between the parti-
cles, k is a positive constant, and n is an integer.

Overall Performance
Roughly 60% of students made no errors (syntactic
or physics) and were able to solve this problem.

Sem. Correct Incorrect % Correct
1 303 168 64.3
2 201 193 51.0
3 316 176 64.2

Overall 820 537 60.4

Systematically Unfolding Errors
We developed a rubric to systematically categorize
errors in the programs submitted for Semester 2
and 3, N = 369.

Two raters reviewed the programs independently
after coding a small sample section; they agreed
92% of the time.

Detailed Decomposition of Errors in Students’ Programs
Within individual categories of the rubric, we counted the frequency of unique student errors. Only
unique errors that affected more than 3% of students have been shown here.

Initial Conditions Students made a number of different errors (or typos) with their initial conditions
(ICs). One interesting error involved students who mistakenly applied the exponent on the units of k to
the value of k (the “k” error).

Force Calculation Most errors in calculating the force stemmed from a weak grasp of vectors or an
inappropriate contextualization of the problem. Many of these errors could have been caught by sketching
the problem.

Newton’s Second Law Errors students made when updating with Newton’s Second tended to occur
because of the use of a scalar force or an inappropriate form of the update formula. Errors in this category
involved a single line of the program.

Correct Initial Conditions

Test Case
 OK

27.6%

Mixed ICs
 Time OK

16.0%

Grading
 Case OK

14.4%

"k" Error

13.8%

 Mixed ICs
 Wrong Time

7.9%

Wrong ICs

5.2%

Wrong Time

3.8% Potpourri
11.3%

Net Force Calculation

Direction
 Reversed

23.9%

Calculation
 OK

22.2%

|F|
 Only

15.7%

Vector Raised
 to Power

14.6%

Calculation
 Outside Loop

14.0%

Invented
 Direction

8.4%

Other
 Error

1.2%

Second Law Update

Second Law
 Update OK

69.7%

Updated with
 Scalar Force

13.2%
Non-iterative
 Form

7.9% Incorrect
 Iterative Form

4.9%
Other Error4.3%

Only Six Error Clusters Needed to Capture Most Student Mistakes
Our coding rubric allowed for ∼4300 possible unique error patterns, however, we discovered only 111 in
our data. Commonalities between these error patterns was explored using cluster analysis. The common
clusters that we found suggested only a few dominant error clusters. In fact, over 80% of the erroneous programs
appeared in just 6 clusters (table below).

Dominant Error %
Stuck on Test Case; Error in Force Calculation 23.8
Constructed Working Code; Error in Initial Conditions 19.8
Used Net Force Magnitude of Update 13.3
Stuck on Grading Case; Error in Force Calculation 10.8
Raised Separation Vector to Power 7.6
Force Calculation Outside Integration Loop 7.1

Students who appeared in most of these dominant clusters have made errors when calculating on the net
force. Such errors might be avoided by using qualitative analysis before writing the program.

A number of students only made mistakes with their initial conditions. They did not use some of the
initial conditions they were given.

Lessons Learned & Future Work
After solving a suite of computational homework
problems, a majority of students can successfully
model a novel situation without outside assistance.
Success on this assignment did not depend on
students’ prior experience in computation.

Error that students made were typically similar to
those they make on analytic problems, but some
are unique to computational problems. These
errors could have stemmed from a weak grasp of
vectors, poor contextualization of the problem or an
inability to parse programming errors.

Errors might be corrected by addressing each
error in turn with additional practice. Our work
suggests that instructional efforts should focus
on developing teaching students how to debug
programs. Debugging includes identifying syntax
errors, but, more importantly, learning the type
of qualitative analysis used for solving analytic
problems.

Funding
Supported by the National Science Foundation
DUE-0618519 & DUE-0942076

1

