Student Views of Similarity between Math and Physics Problems

Dyan L. McBride

Mercyhurst College, Erie PA

Introduction and Methodology

- Part of a larger project studying the intersection of math and physics learning
 - Investigate how students view physics problems in terms of the required mathematical processes
- Students were given a set of physics problems and an analogous set of 'pure' math problems (shown in table below, along with correct answers)
- Data collected over two terms at a small, private, 4-year college.
 - Fall 2010: 18 students Winter 2011: 17 students
- First semester, calculus-based, introductory physics students
- Grounded theory approach no existing theory to impose on the data

	MATH PROBLEMS		PHYSICS PROBLEMS
	A. A certain function is given by the equation $f(x) = 3x^2 - 4x^3 = 6$	a.	A time-varying force of $F(t) = 3(t^5 - 5t + 1)N$ pushes a block along a horizontal surface. How
	At what points are there relative extrema?		much work does the force do on the block in the first 8m of the motion?
	B. What is the value of x as given	b.	If the acceleration of a jet ski is given by
	by: $H(x, y, z) = xy + \sin(z) + 4z^2$		$\vec{a} = (4t^2 - 8) \frac{m}{\hat{i}} \hat{i} + (6 - 7t^2) \frac{m}{\hat{j}}$, find an expression for
	if $H = 5.4$, $y = 2.3$, and $z = 0.80$?		the jet ski's velocity at any point in time.
	C. If the short side of a 30-60-90	c.	A projectile is launched upward and covers a distance
	triangle has a length of 3, what		of 89m in 6.5s. At what initial velocity was the
	is the hypotenuse?		projectile launched?
	D. Add the following two vectors:	d.	Two airplanes are flying in the sky – the displacement
	$\vec{s} = 6.6\hat{i} - 5.6\hat{j}$ and $\vec{q} = -9.2\hat{i} - 1.5\hat{j}$		of plane A is $d = \sqrt{(5.8t^2 - 2)^2 + (6 - t^3)^2}$ relative to plane
	E. Calculate the area under the		B. What is the closest distance that the two planes
	curve given by $y(x) = x\sqrt{9-x^2}$		come to each other?
	between $x=0s$ and $x=8s$.	e.	If the vertical component of a car's momentum is 5N
-	F. What is the integral of the		and its total momentum is directed at 25° north of
	following function:		east, what is the magnitude of the total momentum?
	$g(t) = t^4 + 3t^2 \sin(t) - 8t + 2$?	f.	Two forces are acting on a block. They are given by
			$\vec{F}_1 = 3\hat{i} + 2\hat{j}$ and $\vec{F}_2 = -1\hat{i}$. What is the net force acting
	Answers: A-d, B-c, C-e, D-f, E-a, F-b		on the block?

Results and Conclusions

- Some pairs easily recognizable and explained appropriately:
 - Trigonometry pair (C-e): 'asked to solve for hypotenuse' (13 of 35) 'requires trig functions' (13 of 35)
 - Vector addition pair (*D-f*): directly stated as such (31 of 35)
 - Algebra pair (*B-c*): 'asked to solve for the missing variable' (23 of 35)
 - Extrema pair (A-d): 'determining how close is minimization' (18 of 35) 'set derivative equal to zero' (6 of 35)

		Math							
		A	В	C	D	E	F		
Physics	a	0	1	1	0	22	11		
	b	3	1	0	0	11	19		
	С	4	27	1	0	0	4		
	d	27	3	3	0	2	0		
	e	1	3	30	1	0	0		
	f	0	0	0	33	0	1		

- Integral pairs more difficult for students to distinguish
 - Only 3 students mentioned the limits of integration
 - 'integral is area under curve' (18 of 35) not all chose correctly
- In terms of physics interpretations:
 - 11 students correctly cited the relationship between acceleration and velocity, not all chose the correct pairing
 - No student included the relationship between work and force
- Future work: semi-structured interviews to further probe student understanding, using more problem-pairs covering a wider range of topics and with more detail

References

1. Charmaz, K., Constructing Grounded Theory: A practical guide through qualitative analysis. Sage: Thousand Oaks, 2006.