

Partial derivatives as a new representation in thermodynamics

John R. Thompson, David A. Roundy, Corinne A. Manogue, Donald B. Mountcastle

2011 Physics Education Research Conference

August 3, 2011

Role of partial derivatives in thermodynamics

Thermodynamics utilizes

- Multivariable functions, *e.g.*,
- U = U(S, V, N...)
- Equations of state (functions), e.g.,

v = V/N = kT/P; f(P, V, N, T) = 0

Thermodynamic processes require changes in state functions \Rightarrow exact differentials and partial derivatives, *e.g.:*

 $dU = TdS - PdV + \mu dN$ $P = - (\partial U / \partial V)_{S,N}$

Issues regarding student understanding of partial derivatives

- Understand the distinction between total derivative (i.e., of one-variable function) and partial derivatives
- Recognize empirical implications of (first-order) partial derivative
- Understand total differentials (of multivariable functions)
- Apply chain rule and product rule when appropriate
- Recognize significance of second-order partial derivatives – especially mixed second partials

Thompson, Bucy, Mountcastle, *2005 PERC Proc.*, AIP Conf Proc **818**, 77-80 (2006). Bucy, Thompson, Mountcastle, *2006 PERC Proc.*, AIP Conf. Proc. **883**, 157-160 (2007).

Student understanding of partial derivatives

- Students can recognize what a first partial derivative is and does, for the most part *
 - understand the distinction between total and partial derivatives
 - -state empirical meaning of partial derivative
- What about second-order partial derivatives especially mixed second partials?
 - -derivatives of material properties
 - -the Maxwell relations

J.R. Thompson, B.R. Bucy, D.B. Mountcastle, *2005 PERC Proc.*, AIP Conf Proc **818**, 77-80 (2006). B.R. Bucy, J.R. Thompson, D.B. Mountcastle, *2006 PERC Proc.*, AIP Conf. Proc. **883**, 157-160 (2007)

Paradigms in Physics: Energy and Entropy

- Student-centered
 - Small WhiteBoard Questions
 - Large WhiteBoard Questions
 - Kinesthetic Activities
- Lab activities
 - rubber band lab
- Interlude: "Just-in-Time Math"
 - week before OR day before physics instruction

- Bridging math and physics

Paradigms in Physics: Energy and Entropy

- Activities in E&E
 - New Interlude activities
 - Partial derivatives: piece of UMaine tutorial*
 - Differentials
 - physics formula vs. math expression
 - derivative tree
 - Legendre Transforms
 - "Name the experiment!"
 - Model system: rubber band (vs. ideal gas)

*B.R. Bucy, J.R. Thompson, D.B. Mountcastle, *2006 PERC Proc.,* AIP Conf. Proc. **883**, 157-160 (2007). B.R. Bucy, Ph.D. dissertation, U.Maine, 2007.

Representations used Partial derivatives

symbolic

- graphical
- Notime A state of the state of
- "derivative tree"
 R(B,C) ; C(B,E)
- R /\ B C /\ B E
- as experiment

Hook Tem, held constan foxed @ Room Temp in POINT rubber land Churoustally Controlled room 2 hol 15 10-10 dito

MAIN

symbolic: math

Differentials

$$dU = \left(\frac{\partial U}{\partial S}\right)_{T} dS + \left(\frac{\partial U}{\partial L}\right)_{S} dL$$

symbolic: physics

$$dU = TdS + \tau dL$$

Questions: total differentials and partial derivatives

Math version

R is a function of the independent variables *C* and *F*, that is R = R(C,F). The total differential of *R* can be written as

dR = BdC + EdF.

a. Interpret the above equation in order to determine an expression for B.

Physics version

The Gibbs Free Energy, *G*, is a function of the independent variables *T* and *P*, i.e., it can be written as G(T,P). The total differential of *G* can be written as dG = -SdT + VdP. *Interpret* the above equation in order to determine an expression for the entropy, *S*.

Mixed second partial derivatives questions

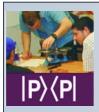
$$\kappa = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_T \ \beta = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_P$$

$$\alpha = -\frac{1}{Z}\frac{\partial Z}{\partial x} \qquad \beta = \frac{1}{Z}\frac{\partial Z}{\partial y}$$

Show that in general $\left(\frac{\partial\beta}{\partial P}\right)_{T} + \left(\frac{\partial\kappa}{\partial T}\right)_{T} = 0.$ Show that in general $\frac{\partial \alpha}{\partial y} + \frac{\partial \beta}{\partial x} = 0.$

Bucy, Thompson, Mountcastle, 2006 PERC Proc., AIP Conf. Proc. 883, 157-160 (2007).

Christensen and Thompson, in *Proc. 13th Ann. Conf. on Research in Undergraduate Mathematics Education* (2010).



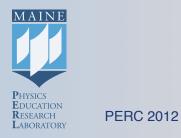
"Name the experiment!" question

Question 1 Describe an experiment that would measure

$$\left(\frac{\partial \tau}{\partial L}\right)_T$$

where τ is the tension in a rubber band, L is its length, and T is its temperature. Be explicit about how you would perform the measurement, and draw a sketch of your apparatus.

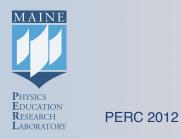
- Early in class: just physical description of experiment
- By end of term: partial that needs Maxwell relation to get experiment



Differentials in physics: previous research on student ideas

M. Artigue, J. Menigaux, & L. Viennot, *Eur. J. Phys.* **11**, 262-267 (1990)

- Parallel conceptions among introductory students in both disciplines:
 - a mathematical object or function (linear approximation)
 - a small part of a physical quantity
- Students see the idea of "differential as a linear approximation" as an excuse for loose reasoning



Partial derivatives and exact differentials

At Maine: Asked immediately before instruction on the Maxwell relations

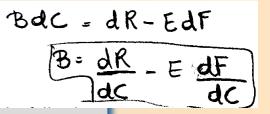
R is a function of the independent variables *C* and *F*, that is R = R(C,F). The total differential of *R* can be written as

dR = BdC + EdF.

a. Interpret the above equation in order to determine an expression for B.

desired response: $B = (\partial R / \partial C)_F$

- Omission of requirement of constant F
- Found algebraic solution for B



PER

Some students treated differential expressions algebraically

Students do not recognize the physical significance of the differentials and the relevance of the context

Total differentials questions: math version

R is a function of the independent variables *C* and *F*, that is R = R(C,F). The total differential of *R* can be written as

dR = BdC + EdF.

a. Interpret the above equation in order to determine an expression for B.

PRETEST	Energy and Entropy	Thermo (Ithaca)	Physical Thermo.
	N=15	<i>N</i> =4	<i>N</i> =7
	$(N_{\text{class}}=1)$	$(N_{\text{class}}=1)$	$(N_{\text{class}}=1)$
Correct (differential soln)	1 (7%)	0 (0%)	5 (72%)
Algebraic soln	4 (27%)	2 (50%)	2 (28%)
BdC = dR-EdF			
$\frac{B = dR}{dc} - E \frac{dF}{dc}$			

Total differentials questions: physics version

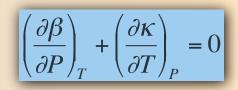
The Gibbs Free Energy, G, is a function of the independent variables T and P, i.e., it can be written as G(T,P).

The total differential of G can be written as dG = -SdT + VdP.

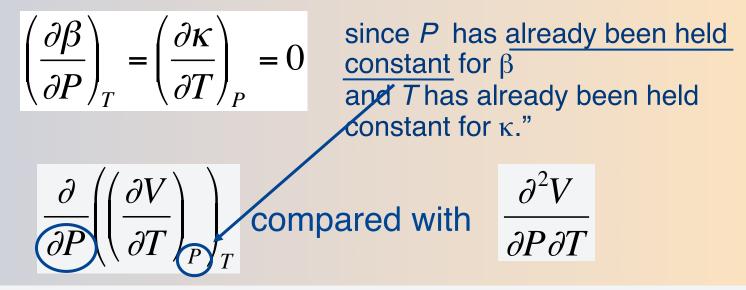
Interpret the above equation in order to determine an expression for the entropy, S.

Energy and Entropy	Pretest	Post-test
	N=37 ($N_{class}=2$)	N=40 ($N_{class}=2$)
Correct (differential soln)	0 (0%)	33 (83%)
Algebraic soln (only or with diff)	29 (78%)	5 (13%)
$S = -\frac{dG - Vdp}{dT}$		

β-κ question: *Calculus III* issues

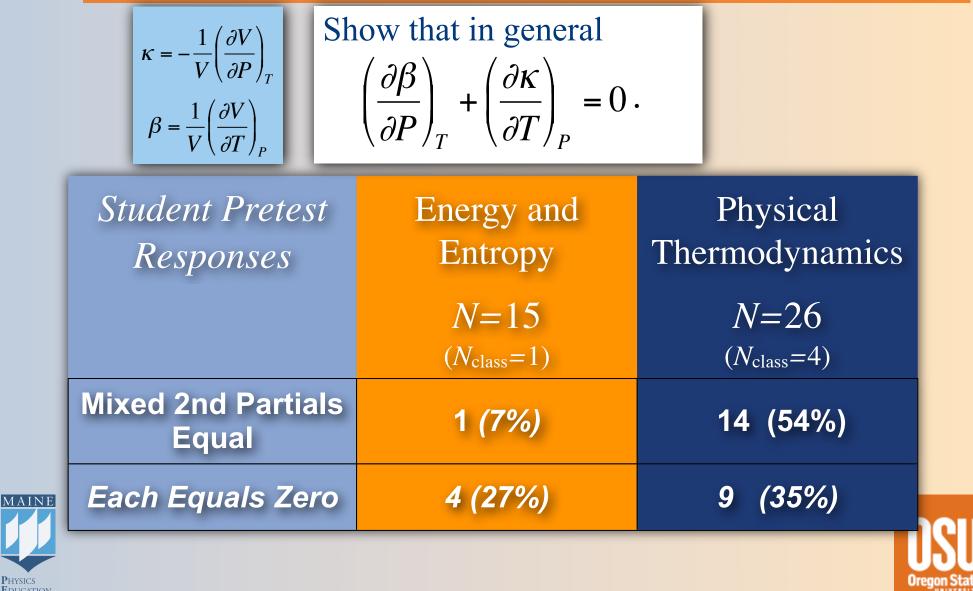


"If β and κ are defined as such, then



"hold variable constant" = "make the variable a constant" constant ≠ fixed

Mixed second partials question: Results



|P⟩⟨P|

PXP Mixed second partials question: Results

$\alpha = -\frac{1}{Z} \frac{\partial Z}{\partial x}$ $\beta = \frac{1}{Z} \frac{\partial Z}{\partial y}$	Show that in generative $\frac{\partial \alpha}{\partial y} + \frac{\partial \beta}{\partial x} = 0.$	al
Student Responses	Energy and Entropy	Calculus III (UMaine)
	N=52 (N _{class} =3)	<i>N</i> =64
Mixed 2nd Partials Equal	19 (37%)	14 (22%)
Each Equals Zero	9 (17%)	25 (39%)
Calculus 1 issues (product/chain)	33 (63%)	OSU Oregon State

PHYSICS EDUCATION RESEARCH LABORATORY

MAINE

name the experiment results

Question 1 Describe an experiment that would measure

$$\left(\frac{\partial \tau}{\partial L}\right)_T$$

where τ is the tension in a rubber band, L is its length, and T is its temperature. Be explicit about how you would perform the measurement, and draw a sketch of your apparatus.

- Early in class: just physical description of experiment
- By end of term: partial that needs Maxwell relation to get experiment (i.e., would need to measure S otherwise)

