The Specificity Effect: Implications for Transfer in Physics Learning

David Brookes, Brian Ross, & José Mestre University of Illinois at Urbana-Champaign

What is the Specificity Effect?

- When we learn principled knowledge, it becomes bound to the content in which it is instantiated (Ross; 1984, 1987).
- This is NOT an expert/novice difference (Blessing & Ross, 1996).
- In other words...(Chi et al., 1981) didn't get the whole picture.

Design of Study 1.

Subjects

- 31 Physics 101 students at UIUC
- Algebra-based physics course for lifescience majors and pre-meds.
- 15 trained with triangle-prism example, 16 trained with rectangle-prism example.

Data Overview

Training example	Triangle	Rectangle
Number of subjects	15	16
Number who could instantiate principle (Q4)	7	11
Number who were (basically) clueless	8	5

Summary

Out of those subjects who demonstrated at least some reliable ability to instantiate the refraction principle (n=18)

Example biased subjects	12/18	67%
Unbiased subjects	4/18	22%
Subjects who didn't fit the pattern	2/18	11%

003: Triangle-Trained Subject

Design of Study 2.

Subjects

- 48 Physics 211 students at UIUC
- Calculus-based physics course for engineering majors.
- UIUC's engineering school is the most selective in the US.
- 25 trained with triangle-prism example,
 23 trained with rectangle-prism example.

Data Overview

Training example	Triangle	Rectangle
Number of subjects	25	23
Number who could instantiate principle (Q5)	22	22
Number who were (basically) clueless	3	1

Summary

- If we set a stringent criterion (unequivocal evidence of principled reasoning) for specificity, 8/22 triangletrained & 8/22 rectangle-trained subjects show clear example bias (36%).
- If we relax the "unequivocal evidence" criterion, 8/22 triangle-trained & 16/22 rectangle-trained subjects show clear example bias (total, 55%).

We Think This is Ubiquitous

Experts Experience it too...

(Eugene Torigoe): A block of mass *m* on a frictionless horizontal surface is initially at rest. A constant horizontal force is applied to the block for *t* seconds, and the block reaches a final momentum *P*. How far did the block travel during this time period?

(a) (b) (c) (d) (e) $d = \frac{P^* t}{4m} \quad d = \frac{P^* t}{2m} \quad d = \frac{P^* t}{m} \quad d = \frac{2P^* t}{m} \quad d = \frac{4P^* t}{m}$

What Does it All Mean?

- Should we use multiple examples?
- Yes, but may result in multiple contentspecific instantiations.
- Should we use contrasting cases?
- Yes, but won't work without active & deep reflection.
- How does this affect assessment?
- How does this affect what we want students to learn?

Adaptive vs. Routine Expertise

Schwartz, Bransford & Sears (2005)

Two Views of Transfer

- Transfer of knowledge from one situation to a new/novel situation.
- Transfer is hard, generally characterized by failures to transfer.
- The ability to use what your experiences and abilities to learn about a new situation. (- "Preparation for Future Learning" -Bransford & Schwartz, 1999).
- Transfer is ubiquitous.

My Ultimate Teaching Goal

- Prepare students for future learning.
- How do physicists learn about the world?
 We would like to engage students in a similar process.
- Students should be learning how to learn like a physicist.