home - login - register

Thesis Detail Page

written by Shawn Weatherford
Computational activities in Matter & Interactions, an introductory calculus-based physics course, provide students with  experience applying a small set of fundamental principles to model a wide range of physical systems.

This study explores how students complete interpretation and prediction tasks when presented with functional but incomplete VPython programs. Rather than asking students to modify programs, students interpret programs missing key lines of code corresponding to the algebraic form of physics principles, and draw predictions of how the simulation would evolve. They then run the program to evaluate the prediction. This study specifically examines how participants: 1. use physics while interpreting the program code and creating a prediction; 2. evaluate their understanding of the program and goals at the beginning of a modification task.

Study participants working in groups were recorded completing three activities. Video data analysis showed participants had little difficulty interpreting physics quantities, generating predictions, or determining how to modify incomplete programs. When trying to predict the motion of the objects in the simulation, many turned to their knowledge of how the system would evolve if it represented a real-world physical system. Participants rarely interpreted lines of code in the computational loop during the first activity, but most used their physics knowledge to interpret computational loops during latter activities.

Computational activities in the Matter & Interactions curriculum were revised based on these findings. The modified activities ask students to create an additional whiteboard prediction for the time-evolution of the real-world phenomena which example programs will eventually model. This thesis shows how comprehension tasks effective in improving reading comprehension (Palinscar and Brown 1984) also help students apply their physics knowledge in interpreting and understanding computational models.
University: North Carolina State University
Academic Department:  Physics
Pages 311
View the supplemental document attached to this resource
Subjects Levels Resource Types
Education - Applied Research
- Instructional Material Design
= Activity
- Technology
= Computers
General Physics
- Computational Physics
Other Sciences
- Computer Science
- Lower Undergraduate
- Reference Material
= Thesis/Dissertation
PER-Central Types Intended Users Ratings
- PER Literature
- Thesis/Dissertation
- Researchers
- Educators
  • Currently 0.0/5

Want to rate this material?
Login here!


Format:
application/pdf
Mirror:
http://repository.lib.ncsu.edu/ir…
Access Rights:
Free access
Restriction:
© 2011 Shawn Weatherford
Type:
Ph.D.
Keywords:
computation, computer modeling, program comprehension, sensemaking
Record Creator:
Metadata instance created May 4, 2011 by Shawn Weatherford
Record Updated:
August 1, 2012 by Lyle Barbato
Last Update
when Cataloged:
March 23, 2011
ComPADRE is beta testing Citation Styles!

Record Link
AIP Format
S. Weatherford, Ph.D., North Carolina State University, 2011, WWW Document, (http://www.compadre.org/Repository/document/ServeFile.cfm?ID=11184&DocID=3062).
AJP/PRST-PER
S. Weatherford, Student Use of Physics to Make Sense of Incomplete but Functional VPython Programs in a Lab Setting Ph.D., North Carolina State University, 2011, <http://www.compadre.org/Repository/document/ServeFile.cfm?ID=11184&DocID=3062>.
APA Format
Weatherford, S. (2011, March 23). Student Use of Physics to Make Sense of Incomplete but Functional VPython Programs in a Lab Setting (Ph.D., North Carolina State University, 2011). Retrieved April 16, 2014, from http://www.compadre.org/Repository/document/ServeFile.cfm?ID=11184&DocID=3062
Chicago Format
Weatherford, Shawn. "Student Use of Physics to Make Sense of Incomplete but Functional VPython Programs in a Lab Setting." Ph.D., North Carolina State University, 2011. http://www.compadre.org/Repository/document/ServeFile.cfm?ID=11184&DocID=3062 (accessed 16 April 2014).
MLA Format
Weatherford, Shawn. "Student Use of Physics to Make Sense of Incomplete but Functional VPython Programs in a Lab Setting." Ph.D.. 23 Mar. 2011. North Carolina State University, 2011. 16 Apr. 2014 <http://www.compadre.org/Repository/document/ServeFile.cfm?ID=11184&DocID=3062>.
BibTeX Export Format
@phdthesis{ Author = "Shawn Weatherford", Title = {Student Use of Physics to Make Sense of Incomplete but Functional VPython Programs in a Lab Setting}, School = {North Carolina State University}, Type = {Ph.D.}, Month = {March}, Year = {2011} }
Refer Export Format

%A Shawn Weatherford
%T Student Use of Physics to Make Sense of Incomplete but Functional VPython Programs in a Lab Setting
%R Ph.D.
%D March 23, 2011
%P 311
%I North Carolina State University
%U http://www.compadre.org/Repository/document/ServeFile.cfm?ID=11184&DocID=3062
%O Physics
%O application/pdf
%O Ph.D.

EndNote Export Format

%0 Thesis
%A Weatherford, Shawn
%D March 23, 2011
%T Student Use of Physics to Make Sense of Incomplete but Functional VPython Programs in a Lab Setting
%B Physics
%I North Carolina State University
%P 311
%8 March 23, 2011
%9 Ph.D.
%U http://www.compadre.org/Repository/document/ServeFile.cfm?ID=11184&DocID=3062


Disclaimer: ComPADRE offers citation styles as a guide only. We cannot offer interpretations about citations as this is an automated procedure. Please refer to the style manuals in the Citation Source Information area for clarifications.

Citation Source Information

The AIP Style presented is based on information from the AIP Style Manual.

The AJP/PRST-PER presented is based on the AIP Style with the addition of journal article titles and conference proceeding article titles.

The APA Style presented is based on information from APA Style.org: Electronic References.

The Chicago Style presented is based on information from Examples of Chicago-Style Documentation.

The MLA Style presented is based on information from the MLA FAQ.

Save to my folders

Contribute

Similar Materials