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Abstract. Helping students learn why Gauss’s law can or cannot be easily applied to determine the strength of the electric
field at various points for a particular charge distribution, and then helping them learn to determine the shape of the Gaussian
surfaces if sufficient symmetry exists can develop their reasoning and problem solving skills. We investigate the difficulties
that students in calculus-based introductory physics courses have with the concepts of symmetry, electric field and electric
flux that are pivotal to Gauss’s law of electricity. Determination of the electric field using Gauss’s law requires discerning
the symmetry of a particular charge distribution and being able to predict the direction of the electric field everywhere if a
high symmetry exists. It requires a good grasp of how to add the electric field vectors using the principle of superposition,
and the concepts of area vector and electric flux. We administered free response and multiple-choice questions and conducted
interviews with individual students using a think-aloud protocol to elucidate the difficulties students have with the concepts
of symmetry, electric field and electric flux. Here we discuss student responses to some questions on a multiple-choice test
administered to them. The test can be used both as a teaching and assessment tool.

INTRODUCTION
A major goal of most calculus-based introductory
physics courses is to help students develop the thinking
skills of a physicist [1]. Physicists comfortably exploit
symmetries to turn complicated problems into simpler
ones. Gauss’s law of electricity is an important topic
in the second semester of most calculus-based intro-
ductory physics courses. Learning to reason whether
Gauss’s law can be exploited in a particular situation to
calculate the electric field without complicated integrals
can provide an excellent context for helping students
develop a good grasp of symmetry considerations.
Unfortunately, students often memorize a collection of
formulas for the magnitude of the electric field obtained
using Gauss’s law for spherical, cylindrical, and pla-
nar geometries without paying attention to symmetry
considerations involved in obtaining those results or
even understanding the difference between the electric
field and electric flux. Therefore, a majority of students
have difficulty identifying situations where Gauss’s law
may be useful and overgeneralize results obtained for a
highly symmetric charge distribution to situations where
they are not applicable. Courses often do not sufficiently
emphasize symmetry considerations or the chain of
reasoning required to determine if Gauss’s law is useful
for calculating the electric field.

We administered free response and multiple-choice
questions and conducted interviews with individual stu-
dents using a think-aloud protocol [2] to understand the
difficulties students have with the concepts of symme-
try, electric field and electric flux. We subsequently de-

veloped a conceptual multiple-choice test that addresses
these issues and administered it to 253 students in four
different sections. The tests and interviews assess the
extent to which students have become proficient in ex-
ploiting symmetry and in making conceptual predictions
about the magnitude and direction of the electric field for
a given charge distribution using Coulomb’s or Gauss’s
laws. They also assess whether students can distinguish
between electric field and electric flux, identify situa-
tions in which Gauss’s law can easily be used to calculate
the electric field strength from the information about the
electric flux and the shapes of the Gaussian surfaces that
would be appropriate in those cases.

DISCUSSION
Investigation of student difficulties related to a particular
physics concept is important for designing instructional
strategies to reduce them [3]. We investigated student dif-
ficulties with discerning symmetry and applying Gauss’s
law using two different methods: (1) design and admin-
istration of free-response and multiple-choice questions
to elicit difficulties in a particular context, and (2) in-
depth audio-taped interviews with individual students us-
ing a think-aloud protocol [2] while they solved those
problems. The major advantage of written tests is that
they can be administered to large student populations.
When administered in conjunction with in-depth inter-
views with a subset of students, written tests can be very
helpful in pinpointing student difficulties.

While a student can always calculate the electric field
using Coulomb’s law and their knowledge of the princi-



ple of superposition without regard to symmetry, deter-
mining electric field using Gauss’s law requires an ex-
plicit focus on the symmetry of the charge distribution.
Although there are only three types of symmetry (spher-
ical, cylindrical, and planar) for which Gauss’s law can
easily be exploited to determine the electric field at var-
ious points from the information about the electric flux,
students need help in identifying when these symmetries
are present. The principle of superposition is also a pre-
requisite for employing Gauss’s law successfully to de-
termine the electric field and helps determine if sufficient
charge symmetry exists in a particular situation.

In addition to the consideration of symmetry, the area
vector and the electric flux are often new concepts that
are introduced in the context of Gauss’s law. Students
must be able to distinguish the electric flux from the elec-
tric field, a task that turns out to be extremely difficult.
Students must learn that the electric flux, a measure of
the total number of electric field lines passing through an
area, is a scalar (which can have either a positive or a
negative sign depending upon the relative directions of
the electric field and area vector) while the electric field
at a point is a vector. They must understand that the elec-
tric flux and the field even have different dimensions.

Students must also understand that Gauss’s law only
applies to closed surfaces and that for any closed surface,
information about the net charge enclosed is sufficient to
determine the net electric flux through it. On the other
hand, determination of the electric field at various points
due to a charge distribution is not simple and depends
on the exact manner in which charges are distributed and
may depend upon both the charges inside and outside the
closed surface. For example, the electric field at various
points on a Gaussian surface may be non-zero and vary
from point to point even though the net electric flux
through it is zero if the net charge enclosed is zero.

During the design of the multiple-choice test on sym-
metry and Gauss’s law, we paid particular attention to the
important issues of reliability and validity [4]. Reliabil-
ity refers to the relative degree of consistency between
testing if the test procedures were repeated for an indi-
vidual or group. Validity refers to the appropriateness of
test score interpretation. The test design began with the
development of a test blueprint which provided a com-
prehensive framework for planning decisions about the
desired test attributes. The degree of specificity in the test
plan was useful for creating questions. We tabulated the
scope and extent of content covered and the level of cog-
nitive complexity desired. Using previous free-response
and multiple-choice questions administered to students
as a guide, we identified the desired performance and a
description of conditions/contexts under which the per-
formance was expected to occur. The rest of the test de-
sign proceeded in a manner similar to that described for
the Energy and Momentum Conceptual Survey [5], and

will be described in detail elsewhere.
The final version of the test contains 25 items. It was

administered to a total of 253 students in four different
introductory calculus-based physics courses at Pitt. One
of these was an honors course, and the students in the
other three courses had used some preliminary tutorials
on symmetry and Gauss’s law. The average score on
the test is approximately 56%. The reliability coefficient
α [4], which is a measure of the internal consistency
of the test, is 0 8, which is considered good by the
standards of test design. The point biserial discimination
is related to the ability of a question to discriminate
between students who overall did well on the test vs.
those whose overall performance on the test was poor.
This discrimination index for 16 questions on the test was
more than 0 4. Only 4 questions had discrimination index
less than 0 3 (only one question with less than 0.2) which
is also very good by the standards of test design [4].
Below, we discuss some of the questions on the test:

� Setup for the next two questions
You perform two experiments (see figure) in which you
distribute charge

�
6Q differently on the surface of an

isolated hollow insulating (non-conducting) sphere:
Exp(I): You put identical charges,

�
Q each, on the spher-

ical surface in six localized blobs (you can consider them
point charges) such that the adjacent blobs are equidis-
tant from each other.
Exp(II): You distribute charge

�
6Q uniformly on the sur-

face of the sphere.

In both Exp (I) and (II), points A, B, and C are
equidistant from the center and lie in the same equatorial
plane of the sphere. In Exp (I), points A and C are
straight out from two of the charges and point B is in
between points A and C as shown.

1. Which one of the following statements is true about
the electric field magnitudes at points A, B, and C
due to the

�
6Q surface charge?

(A) In each experiment, the field magnitude is the
same at points A, B, and C, but the magnitudes
differ in the two experiments.
(B) In each experiment, the field magnitude is the
same at points A, B, and C, and the magnitudes are
equal in the two experiments.
(C) In experiment (I), the field magnitude is the



same at points A, B, and C, but not in experiment
(II).
(D) In experiment (II), the field magnitude is the
same at points A, B, and C, but not in experiment
(I).
(E) None of the above.

2. Which one of the following is a true statement
about the electric field magnitude inside the hollow
insulating sphere due to the

�
6Q surface charge

(see figure above)?

(A) It is zero everywhere inside the sphere in both
experiments.
(B) It is non-zero everywhere inside the sphere in
both experiments.
(C) In experiment (I), it has a magnitude that varies
from point to point inside the sphere, but it is zero
everywhere inside the sphere in experiment (II).
(D) In experiment (I), it has the same non-zero
magnitude everywhere inside the sphere, but it is
zero everywhere inside the sphere in experiment
(II).
(E) None of the above.

� Setup for the next two questions
A cubic Gaussian surface with 1 meter on a side is
oriented with two horizontal and four vertical faces,
as shown. It is in a uniform electric field of 20 N/C
which is directed vertically upward. Point A is on
the top surface and point B on a side surface of the
cubic Gaussian surface.

3. Which one of the following statements is true about
the electric field at points A and B?
(A) The field is zero at both points A and B.
(B) The field is zero at point A but not at point B.
(C) The field is zero at point B but not at point A.
(D) The field is non-zero at both points A and B
and its direction is the same at the two points.
(E) The field is non-zero at both points A and B but
its direction is different at the two points.

4. Choose all of the following statements that are true
about the electric flux.

(I) The net flux through the whole cubic
surface is zero.

(II) The magnitude of the flux through

the top face of the cubic surface is
20Nm2 � C.

(III) The magnitude of the net flux
through the whole cubic surface is
20Nm2 � C.

(A) (I) only
(B) (II) only
(C) (III) only
(D) (I) and (II) only
(E) (II) and (III) only

� Setup for the next two questions

Shown below are four imaginary surfaces coaxial
with an isolated infinitely long line of charge (with
uniform linear charge density λ C � m):

(I) a closed cylinder of length L.
(II) a sphere of diameter L.
(III) a closed cubic box with side L.
(IV) a two dimensional square sheet with

side L. The plane of the sheet is
perpendicular to the line of charge.

5. Choose all of the above surfaces through which the
net electric flux is ΦS � λL � ε0:

(A) (I) only
(B) (I) and (II) only
(C) (I) and (III) only
(D) (I), (II), and (III) only
(E) (I), (II), (III), and (IV)

6. Choose all of the above surfaces which can be used
as Gaussian surfaces to easily find the electric field
magnitude (due to the infinite line of charge) at a
point P shown on the surface using Gauss’s law:

(A) (I) only
(B) (I) and (II) only
(C) (I) and (III) only
(D) (I), (II), and (III) only
(E) (I), (II), (III), and (IV)

The most common difficulty with question (1) was as-
suming that the magnitude of the electric field in exper-
iment (I) will also be the same at all of the three points
shown. In interviews and free response questions, some
students explained this by claiming that since the six
point charges and the three points are symmetrically situ-
ated, the field magnitude must work out to be the same at



TABLE 1. Percentage of students (out of a
total of 253) who selected choices (A)-(E) on
items (1)-(6). The correct response for each
question has been italicized.

ItemNumber A B C D E

1 18 13 0 67 2

2 32 4 55 4 5

3 2 0 35 58 5

4 25 12 7 51 5

5 28 3 15 37 17

6 43 15 15 15 12

all the three points shown while others explained their re-
sponse by claiming that for a point outside, the six point
charges on the sphere can be thought to be point charges
at the center of the sphere. The most common difficulty
with question (2) was assuming that the electric field
inside the sphere in experiment (I) is also zero every-
where. In interviews and free response questions, some
students explained their response by claiming that the
electric field inside a sphere (or inside an object of any
shape with charges on its surface) is always zero. When
probed further, some students mentioned that this had
to do with electrical shielding which guaranteed that the
electric field will be zero inside. Even when interviewers
drew students’ attention to the fact that the sphere was
made of insulating material, students adhered to the idea
that the field inside must be zero everywhere.

The most common difficulty with question (3) was
assuming that the electric field is zero at point B on the
side surface of the cube although the problem statement
explicitly mentioned that the cubic Gaussian surface is in
a uniform electric field of 20N � C. In interviews and free
response questions, some students reasoned that since
the area vector of the side surface is perpendicular to the
direction of the electric field lines, the electric field must
be zero at point B. This kind of confusion between the
electric field at a point and the contribution to the electric
flux from a certain area was found in other questions
as well. The most common difficulty with question (4)
was that students did not realize that both statements (I)
and (II) are correct. The table above shows that many
students only chose option (I) or (II) but not both.

Questions (5) and (6) were extremely difficult for stu-
dents. Students were not comfortable with the statement
of Gauss’s law that relates the net flux through a closed
surface to the net charge enclosed. They also could not
differentiate between electric flux through a closed sur-
face and electric field at a point on the surface. For exam-
ple, in question (5), many students chose (I) (or (I) and
(III)) and claimed in interviews and free response ques-

tions that only those surfaces can be used to determine
the net electric flux through them because the other sur-
faces did not have the correct symmetry. Some students
were also unsure about the distinction between open and
closed surfaces and the fact that Gauss’s law only ap-
plies to closed surfaces. For example, in interviews and
free response questions, many students claimed that the
net flux should be the same through all surfaces (includ-
ing the square sheet) using Gauss’s law. In Question (6),
students had to choose the Gaussian surfaces that would
help them determine the electric field at point P easily
due to the infinite line of charge. All of the alternative
choices were selected with an almost even frequency.
Students were often unsure about the symmetry concepts
relevant for making appropriate decisions and those who
chose option (C) were often quite confident that the mag-
nitude of the electric field due to the infinite line must be
the same at every point on the cubic box as well.

WORK IN PROGRESS
Gauss’s law provides an excellent opportunity to help
students learn symmetry ideas and to develop their rea-
soning and problem solving skills. We are currently im-
plementing and refining several tutorials that we have de-
veloped to help students learn to discern the symmetry of
a charge distribution, determine whether Gauss’s law can
easily be applied to calculate the electric field strength at
various points due to a given charge distribution, and pre-
dict the shape of the corresponding Gaussian surface if
a high symmetry exists. The tutorials also help students
learn to distinguish between the electric field and the
electric flux, learn the superposition principle and deter-
mine if the electric field at two points is the same in mag-
nitude and/or direction due to a given charge distribution.
The tutorials in this series also help students calculate
the electric field at various points due to highly symmet-
ric charge distributions and revisit superposition princi-
ple after learning Gauss’s law, for example, to determine
the net electric field due to two spheres of charge. All tu-
torials have separate pre/post-tests that students take be-
fore and after working on the tutorials. The preliminary
results are encouraging.
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