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Abstract. Equilibrium properties of macroscopic systems are highly predictable as n, the number of particles approaches 
and exceeds Avogadro’s number; theories of statistical physics depend on these results. Typical pedagogical devices 
used in statistical physics textbooks to introduce entropy (S) and multiplicity (ω) (where S = k ln(ω)) include flipping 
coins and/or other equivalent binary events, repeated n times. Prior to instruction, our statistical mechanics students 
usually gave reasonable answers about the probabilities, but not the relative uncertainties, of the predicted outcomes of 
such events. However, they reliably predicted that the uncertainty in a measured continuous quantity (e.g., the amount of 
rainfall) does decrease as the number of measurements increases. Typical textbook presentations assume that students 
understand that the relative uncertainty of binary outcomes will similarly decrease as the number of events increases. 
This is at odds with our findings, even though most of our students had previously completed mathematics courses in 
statistics, as well as an advanced electronics laboratory course that included statistical analysis of distributions of dart 
scores as n increased.  
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INTRODUCTION 

At the University of Maine (UMaine), we are 
actively involved in a research study of the teaching 
and learning of thermal physics at the advanced 
undergraduate level [1,2]. One theme of our research 
is the extent to which student mathematical conceptual 
difficulties may affect understanding of physics 
concepts. Our department offers both a one-semester 
classical thermodynamics course (text: Carter [3]) and 
a separate one-semester course in statistical mechanics 
(text: Baierlein [4]). Here we report research on 
student understanding of probability and statistics in 
three successive semesters of Statistical Mechanics 
(Spring 2005-07), along with a statistics project in a 
junior level Physical Electronics Laboratory.  

Previous work in PER has explored introductory 
student understanding of measurement error analysis 
and measurement uncertainty [5-7]. We are 
investigating the extent to which advanced students 
connect measurement uncertainty in a laboratory 
context to probability and uncertainty in statistical 
physics. 

Twenty-seven Statistical Mechanics students are 
included in this data; most were senior physics majors, 

two were mathematics majors and four were physics 
graduate students. Seventeen of the twenty-three 
undergraduates in Statistical Mechanics included in 
this study had previously participated in the Physical 
Electronics Laboratory course, either the previous 
semester or a full year earlier; sixteen had previously 
taken a mathematics course in statistics. 

The theoretical foundation of the learning 
objectives reported here is the fundamental postulate 
in statistical mechanics: All accessible microstates are 
equally probable in an isolated equilibrium system. 
Mathematical foundations are the Central Limit 
Theorem, and the Strong Law of Large Numbers.  

Boltzmann gave us the extraordinary insight that 
the world is highly predictable due entirely to 
probability, expressed in multiplicity (ω), entropy (S) 
(where S = k ln(ω)), and the Second Law of 
Thermodynamics. Statistical mechanics textbooks 
[3,4,8] typically introduce the definitions and 
meanings of multiplicity and entropy by exploring the 
binomial coefficient describing independent binary 
outcomes of n events (such as coin flipping) as n 
increases. The advantage of this approach is that it 
offers concrete countable events that can be easily 
visualized, measured, calculated and displayed as 



histograms of probability, shown to converge, with 
overwhelming probability, to a single predictable 
system macrostate; i.e., the inevitable equilibrium 
state. Convergence is seen as a transition from a 
discrete, broad histogram (small n) into a continuous, 
smooth, sharply-peaked function (large n), 
accompanied by a decreasing relative uncertainty 
(∆n/n) (Figure 1). Full understanding of that transition 
requires the conceptual ability to move seamlessly 
from a summation to an integral, from obvious to 
hidden degeneracy, and from discrete states to a 
(continuous) density of states. This conceptual ability 
is fundamentally important in learning statistical 
mechanics [9], yet at the same time can be 
exceptionally challenging for students.  

Often textbooks thus use independent binary 
outcome events, but rather quickly extrapolate from 
small n to large n, emphasizing the narrowing 
sharpness of the macrostate (probability peak; Figure 
1) as n increases toward the thermodynamic limit, all 
based on simple rules of combinations, and 
probability. The (vanishing) uncertainty associated 
with the most-probable macrostate is usually 
acknowledged only indirectly by phrases such as 
overwhelming probability, or narrowing peak-width. 

An exercise during the first week of our Physical 
Electronics Laboratory is a class group project, 
labeled the “darts project,” adapted from Squires (2nd 
edition) [10]. Each student throws a specified number 
of darts at the center of a one-dimensional target, 
reports their scores (based on horizontal location) to 
the class electronic conference, analyzes and graphs 
the entire data set (n > 200), and compares this result 
to a Gaussian distribution.  

One of the learning objectives of the laboratory 
course is facility with measurement error analysis and 
propagation of errors. Thus, the primary reason for the 
statistics of the darts project is to familiarize the 
students with an easily visualized, actual numerical 
distribution that can be seen to grow into a near 
Gaussian distribution as n, the number of reported 
scores, increases from ~ 20 to > 200. Students’ 
observations of how the standard deviation (σ) and 
standard deviation of the mean (σm) of the dart score 
distribution change (or not) with increasing n are 
relevant to our questions about uncertainty reported 
here.  

QUESTIONS, RESULTS,  
AND ITERATIONS 

We were interested in whether or not our Statistical 
Mechanics students had the inclination to follow and 
to adopt the typical textbook arguments, using binary 
event outcomes, that a single equilibrium macrostate, 

with vanishing uncertainty, will emerge as n increases 
towards the thermodynamic limit. These arguments 
articulate the microscopic basis for maximum 
multiplicity, entropy and the Second Law. We 
designed the diagnostic question Q1 (Figure 2) to 
probe our students’ reasoning in this context both pre- 
and post-instruction. 
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FIGURE 1. Typical textbook introduction to multiplicity, 
showing the convergence toward n/2 of the distribution of n 
independent binary events from a discrete histogram to a 
continuous smooth function for large n.  

 

 

FIGURE 2. Question Q1, given in Statistical Mechanics 
both pre- and post-instruction about multiplicity and 
probability (pretest version shown).  

 
It is important to point out that we are looking for 

the qualitative trend of relative uncertainties (∆n/n), as 
n increases, rather than precise numerical answers. 
Qualitatively, a prediction of n/2 ± n/2 is not 
unreasonable for n = 4 coin flips, but is dubious for 
n = 10, extremely unreasonable for n = 100, and totally 
unreasonable for n = 1000 and n = NA. On the pretest, 
essentially all students as expected correctly gave n/2 
as their predicted cumulative number of heads. 
However, their responses for the “realistic uncertainty” 
were surprising. Fewer than half of the students 
seemed to believe with confidence in a decreasing 
trend in relative uncertainty (∆n/n). A substantial 
number (~ 20%) specifically stated uncertainties of 
± n/2, for parts (a) – (d), as if all n (or zero) heads is a 



realistic possibility (Table 1). Although not as severely 
unreasonable, another 13% predicted the same relative 
uncertainty (e.g., ∆n/n of 15%) in outcome for n=100 
and n=1000. (Often they gave smaller relative 
uncertainties for part (d).) Another 17% refused to 
commit to any model for the n-dependence of 
uncertainty by omitting it in their responses to Q1. 
Even those students who did exemplary work 
previously on the darts project did not always estimate 
a decreasing uncertainty with increasing n, which was 
one of the intended learning outcomes of that exercise. 
On similar post-test questions about coin flips as 
functions of n (2006-07, N=12), essentially all students 
gave realistic estimates for both the values and 
uncertainties for the number of heads, although 
generally with superficial explanations of their 
reasoning (Table 1).  

 
TABLE 1. Results from Q1 for relative uncertainties. 

Response Pre- 
instruction 

(N=24) 

Post- 
instruction 

(N=12) 
Decreases with n (correct) 11 11 
Covers entire range 5 -- 
Same for n=100, n=1000 3 -- 
No uncertainty 4 -- 
Other -- 1 

 
From the laboratory class and elsewhere, we know 

that students quite often accept, even take for granted, 
that taking multiple readings and averaging those 
values reduces uncertainties in measured quantities. 
So, in class the next two years we again gave students 
Q1, collected their written answers, and then 
immediately gave them Q2 (Figure 3). That collection 
sequence was followed in order to prevent students 
from changing their Q1 answers after reading Q2.  

 

 

FIGURE 3. Question Q2, given in Statistical Mechanics 
(2006, -07) as a pretest only. 

 

All students (N = 13) answered both parts of Q2 as 
expected, indicating that the relative uncertainty in the 
measurement of rainfall should decrease with 
increasing n.  

We have noted the richness of statistical 
information available in the darts project tracking dart 
scores with increasing n, and yet the poor learning 
outcomes evident in the later Statistical Mechanics 
pretest. Consequently, we changed the darts exercise 
protocol in Fall 2006 (Figure 4) to add explicit 
individual predictions (based on their own scores only) 
for several features of the dart score distribution, 
emphasizing what should change (e.g., smoother 
histograms and σm decreasing) and what should not 
change (e.g., the distribution σ ) as n (the number or 
reported scores) increases.  

 
For each of the following, provide your predictions,

and a brief explanation of how you made them, for:

(i) n = 24 (your own data); (ii) n = 220;  (iii) n = 500.

a) the average (mean; < X >) of the n scores

b) the standard deviation (! ) of the n scores

c) the standard deviation of the mean (!m ) of the n

scores
 

FIGURE 4. Question Q3, given in Physical Electronics 
Laboratory (2006); these three questions are a subset of a 
considerably longer pretest. 

 
TABLE 2. Results from Q3 for predicted standard 
deviations (σ) of dart scores for Physical Electronics 
Laboratory students (Fall 2006; N = 13) 

Response N 
No change in σ as n increases (correct) 5 

σ increases as n increases 4 
σ decreases as n increases 4 

 
The Fall 2006 results contain evidence of student 

confusion with statistics in their predictions from the 
darts project (Table 2). Of 13 students, over 60% 
predicted (incorrectly) that the standard deviation (σ) 
of the distribution should change with increasing n. Of 
those, half predicted σ would increase with n, while 
the other half predicted a decrease in σ . Both groups 
gave written explanations that they found satisfying; 
e.g., σ will increase with n, since “with more throws, 
there will be a greater spread in values…”; or σ will 
decrease with n “since outliers will have less and less 
impact…” Some of the students who predicted a 
decrease in σ with increasing n may be confusing σ of 
the distribution with σm, the standard deviation of the 
mean of the distribution (related to the relative 
uncertainty in Q1). However, regardless of what 



students indicated as a trend for σ (increasing, 
decreasing, or staying the same) in part (b) of Q3, they 
typically determined values for σm for part (c) by 
dividing their answers to part (b) by √n.  

DISCUSSION AND CONCLUSIONS 

Our findings so far include several that were 
expected, as well as some surprises on both ends of the 
performance spectrum. We point out some of each 
here, and briefly outline future plans.  

Prior to instruction in statistical mechanics, 
essentially all of our students exhibited attributes of 
concepts that are consistent with appropriate models 
for various applications of statistics, probability and 
uncertainty. For example, (1) all students predicted the 
cumulative outcome for the number of ‘heads’ 
recorded for n coin flips to most likely be the expected 
value of n/2 [Q1], and (2) in a qualitative ranking, 
students agreed that the uncertainties in measurement 
of a continuous macroscopic quantity will decrease 
with n, the number of measurements made [Q2(b)].  

The most serious conceptual deficiency identified 
here is that most of our students do not predict the 
convergence towards the n/2 (binary) macrostate with 
increasing probability as n increases. As seen in Q1, 
approximately 20% of our students start with a 
reasonable model for n = 4 coin flips (# of heads = 
n/2 ± n/2) but remain stuck there, regardless of the 
magnitude of n; another 13% give smaller, but still 
constant, percentages of n as the uncertainty for 
intermediate values of n. 

However, results from Q2 indicate that all our 
students share the widespread qualitative belief that 
macroscopic measurement uncertainty is indeed 
reduced with increasing n. Apparently, something is 
quite different in student understanding of the statistics 
describing discrete binary events [Q1] and 
uncertainties of measurements of continuous variables 
[Q2]. Even though they all have at least qualitatively 
appropriate models for uncertainties in a continuum 
context (rainfall), most fail to make a transition from 
discrete to continuous models as an increasing n 
should indicate.  

Finally, the results from parts (b) and (c) of Q3 
indicate that many students know the formula 
σm=σ/√n, yet lack the conceptual understanding of 
distinctions between σ and σm. 

As noted earlier, the typical textbook presentation 
of the microscopic basis for predictable macroscopic 
equilibrium states via entropy and the Second Law is 
the dramatic convergence with increasing n to a single, 
well-defined, most probable macrostate of n/2, as seen 
in Figure 1. We have not yet offered curricular content 
that differs from such a textbook presentation in any 

significant way, and appropriate post-instruction 
student predictions for both outcomes (n/2) and 
associated uncertainties indicate that the traditional 
approach may be somewhat successful (Table 1). 
However, based on the quality and depth of the 
reasoning accompanying the post-instruction 
responses, we do not believe the conceptual 
difficulties with uncertainties of discrete outcomes 
seen with the pretests have been resolved by current 
instruction. Many students give correct answers 
supported only by terse descriptions of reasoning that 
are less than convincing. Since fluency with concepts 
of a smooth transition from the discrete to the 
continuous with increasing n is such a widespread and 
fundamental need throughout the physics curriculum, 
we plan to develop curricular materials to address this 
need, although specific instructional strategies have 
not yet been developed. Individual student interviews 
based on the written questions shown here will help us 
confirm common models, as well as find if students 
are even aware of the need for such concept 
development. 

Informal conversations with individual students 
indicate one reason for incompatible rather than 
complementary models (discrete vs. continuous) may 
be that each binary coin flip event has zero associated 
uncertainty, while each and every measurement of a 
continuous variable always has inherent associated 
uncertainties. Interviews may explore further this line 
of reasoning. 
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