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Abstract. Cognitive Science has focused on general principles of problem solving and learning that might be relevant 
for physics education research.  This paper examines three selected issues that have relevance for the difficulty of 
transfer in problem solving domains:  specialized systems of memory and reasoning, the importance of content in 
thinking, and a characterization of memory retrieval in problem solving.  In addition, references to these issues are 
provided to allow the interested researcher entries to the literatures. 
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INTRODUCTION 

To better conduct research on how people learn 
physics, we need a systematic approach to the 
principles of learning and a wide range of methods for 
examining this learning.  Over the last thirty plus 
years, much research in cognitive science has 
examined these issues.  The goal of this paper is to 
very selectively present a small portion of this work 
that may be of particular relevance to transfer in 
physics education and to provide entry references for 
both general approaches and specific issues.  To begin 
the last aim, there are a large number of introductory 
textbooks that examine cognitive psychology and 
cognitive science [1,2], including from a more 
cognitive neuroscience perspective [3]. 
 Although many cognitive science topics might be 
of interest to this community, I chose three that I 
thought might be less obvious and have implications 
for transfer: specialized systems, the importance of 
content in thinking, and the way in which memory 
retrieval during problem solving may lead to 
analogies, categories, and other problem-solving 
behaviors. 

SPECIALIZED SYSTEMS 

It is common in education to mark out different 
types of knowledge and reasoning skills one wants the 
students to learn.  The work in cognitive science has 
also considered a variety of knowledge and thinking 
types, so I present here some distinctions and how they 

might relate to transfer in physics learning.  I focus on 
one distinction each in memory and reasoning that has 
important implications for this community.  Different 
ways of representing and manipulating knowledge 
(i.e., memory and thinking) may have different 
operating principles that influence how people 
problem solve and learn. 

Memory and Reasoning Systems 

 Much research in cognitive science, neuroscience, 
and psychology has found that memory is not a 
monolithic entity but instead consists of a number (we 
do not know how many) of specialized systems that 
have different purposes and at least somewhat 
different means of representing and retrieving 
knowledge.  A critical distinction for education is 
between procedural and declarative memory [4]. 
 Declarative memory consists of factual 
information, “knowing that” information that relates 
single concepts.  Examples include the memory of a 
worked-out problem, a formula, or a definition.  These 
are quickly (although sometimes imperfectly) learned, 
can be flexibly accessed by different elements of the 
memory, and flexibly applied.  For example, one can 
learn f = ma, access it given the word “acceleration” in 
a simple problem, and solve for f or m or a given the 
other variables.  
 Procedural memory is “knowing how” to do 
something, a procedure.  However, it is not the factual 
information of how the procedure is done (that would 
be declarative), but the actual processes to accomplish 



the procedure.  For example, although we can tie a 
shoelace, most of us could not tell someone how we do 
it without watching (or imagining) ourselves tying the 
lace (parents who have taught this recently are the 
exception).  The declarative knowledge we began with 
has been turned into a representation that can guide the 
tying but is no longer accessible in a verbalizable 
format. 
 The evidence for this distinction includes a large 
number of behavioral studies showing these lead to 
very different patterns of performance, of neuroscience 
studies showing differences in brain regions and 
amnesias, and computational models that are able to 
account for many different findings by using both 
types of representations [5-8]. 
 Although reasoning theorists argue about whether 
the differences in reasoning require positing different 
systems, I think the evidence tends to favor those who 
see at least two different systems [9,10].  According to 
these views, System 1 is a heuristic processing system 
that works unconsciously in an associative manner, 
pulling to mind some use of knowledge that relates to 
the current information being processed.  This 
processing is similar to some of the claims about how 
experts process situations, but also captures more 
simple associative reasoning in everyday thinking and 
in novices.  System 2 is a more analytical, deliberative 
processing, such as one might see in a novice figuring 
out how to fill numbers of a problem into an equation.  
System 1 is usually thought of as a faster initial 
processing that provides an answer or passes 
information to System 2. 

Implications for Physics Learning 

Why do these distinctions matter to you?  As a 
simple motivation, I remind you of two observations 
that I am sure you have made.  First, people often have 
the relevant knowledge but do not retrieve it at the 
time that it is needed [11].  Second, people who seem 
to be able to do one thing often cannot do something 
else for which the same knowledge is relevant.  
Although both of these observations can have multiple 
causes (e.g., age, intoxication, sleepiness), a common 
problem has to do with a mismatch of knowledge or 
reasoning processes.  Thirty years ago, a principle of 
transfer-appropriate processing [12] proposed that 
performance depends not just on what you know and 
how you learned it, but on the similarity between the 
original processing and the way in which you are 
processing the information now.  Because of the 
different memory and reasoning systems, the 
processing may differ enough from prior learning to 
lead to lack of transfer.  Experimental studies show the 
importance of procedural overlap in predicting transfer 

[13,14] and the lack of full transfer when the same 
knowledge is learned and tested in different ways [15].  
A common situation I had when teaching statistics to 
Psychology majors is that a failing student would 
express dismay since s/he had understood the way to 
solve the problem perfectly when I explained it in 
class.  I had to point out that the exam did not test their 
understanding of my solution, but their ability to 
generate their own solution.  This mismatch in 
processing is a common and underappreciated 
influence on transfer. 

CONTENT IN THINKING 

Abstract thinking is hard.  People usually think 
about specific people, things, situations, problems, etc.  
As educators we want them to learn the underlying 
abstract principles, but we underestimate the difficulty 
of abstract thinking probably because of our expertise 
in the domain and our interest in abstract principles.  
However, the extent and influence of specific (content-
based) thinking may be much greater than we 
appreciate [16], both in novices and experts. 

Novice physics students rely upon objects in 
problems when asked to sort problems by types [17].  
However, the influence of superficial content 
information goes much further.  A common practice in 
textbooks and classrooms is to present an abstract 
principle and then an example to illustrate the 
principle.  We assume students use this example to 
refine exactly how the principle works, to clear up any 
ambiguities in what the words mean or how the 
formula might be applied.  A more common result, 
unfortunately, is that students’ understanding of the 
principle becomes intimately intertwined with the 
example used to illustrate it, so that details of that 
example are encoded as aspects of the principle [18-
20].  In addition, although we might give multiple 
examples to avoid this overspecification of content and 
to allow the students to learn the intersection among 
the examples (i.e., the principle), they often still end 
up with knowledge that includes content [21,22].  
Generalizations are often very conservative, partly 
because the novices do not know exactly which 
aspects are relevant and which are not.  However, even 
when they do know that an aspect is irrelevant (such as 
the particular object), their declarative representation 
includes this information as they reason about the 
problem.   

Why do they do this? One might argue that 
evolution has prepared us for dealing with the physical 
world and that very formal abstract principles are a 
much newer useful type of knowledge.  Although I 
think this is true, it is also important to realize that 
even in formal domains, content is often correlated 



with the underlying structure, the principles.  Given a 
problem is about an inclined plane, it is more likely to 
involve some principles than others. 

Experts are also influenced by the content, 
although they may sort problems by underlying 
principles [23].  Given the correlation of content and 
structure in most domains and the relative ease of 
encoding content mentioned in the problem, the 
experts can at least use this predictive content to get a 
head start in accessing knowledge that is likely to be 
relevant.  In algebra, the content and structure are so 
correlated that the names of many of the problem types 
are in terms of the content.  For example, a usual “age 
problem” might be: 

 
Michelle is 4 times older than her niece.  In 5 
years, Michelle will be 3 times older than her 
niece.  How old will they each be in 5 years? 
 

However, one could also write the same underlying 
problem very differently: 
 

A mason mixed 4 times as much cement in one 
mixer as another.  He added 5 liters of cement to 
each mixer.  The first mixer now has 3 times as 
much cement.  How much does each mixer have? 
 

Although the problems have the same underlying 
solution, the content of the second is that typically 
found with “mixture” problems, so is unusual for this 
type of problem.  Highly experienced algebra problem 
solvers were often misled by this unusual content 
when categorizing the problems and even had reduced 
solution accuracy for difficult problems.  In addition, 
one algebra teacher showed the extent to which 
content is involved even with highly-learned problem 
schemas.  When solving a problem from the river-
current category (e.g., a boat goes downriver in t1 time 
and back upriver in t2 time, how fast is the current?) 
that substituted going back up a down escalator in a 
mall, she referred to the current of the escalator and 
going upstream.  The schema variables include content 
because it makes it faster to map the problem variables 
to the schema variables.  For domains in which content 
and structure are correlated (which is most domains), 
even experts will (and should) make use of it. 

CONSIDERING MEMORY RETRIEVAL  

What people know and retrieve has a huge 
influence on their problem solving. I give a 
perspective on this issue that I hope will be helpful to 
this community in understanding the role of memory 
in problem solving and its relation to different problem 

solving such as equation-based, analogy, and the use 
of problem categories.  A very simple view is that: 
 
    Cues   Memory   Retrieved    Problem 
                                        Information     Solving 
 
 
That is, cues are used to probe memory, and the 
retrieved Information may either be used for problem 
solving or to reformulate the cues (for further memory 
retrievals). Even this simple view, supplemented with 
the principle that memory retrieval includes some 
similarity matching between the Cues and Memory, 
provides enough to understand some of the observed 
problem solving for novices and experts. 
 Novices begin with cues that consist of easily 
available aspects of the problem, such as objects and 
variables (e.g., if acceleration is mentioned they might 
use “variable a” as a cue) [17].  Their memory is likely 
to consist of some problems, such as worked-out 
examples, and many formulae.  Given these cues and 
that memory, two results are most likely.  One, they 
might retrieve an earlier example that matches the 
current problem in the objects involved.  Two, they 
might retrieve a formula (or formulae) that contain one 
or more of the variables.  The problem solving is thus 
likely to be by analogy to an earlier example or more 
equation-based, as they keep probing with known and 
goal variables for formula that might allow them to 
make progress towards the solution.   
 Experts’ cues from reading the problem also 
include the objects, but some structure of the problem 
as well.  Their memory consists of a much larger range 
of earlier problems, many formula, but also a variety 
of problem categories, with means for identifying the 
problem type and associated procedures for solving 
them (i.e., problem schemas) [17].  Given these cues 
and memory, they might retrieve analogies and 
formulae too, but the most probable outcome is to 
retrieve a problem category (both because the cue 
containing structure provides a strong match to the 
category in memory, plus the category has become a 
very available memory from much earlier use, as 
compared to any of the examples).  Given this 
retrieval, one is likely to see a category-based (or 
principle-based) problem solution, perhaps falling 
back to analogies or equations for difficult or unusual 
problems. 
 I am not trying to present a full theory of how 
memory is used in problem solving, but just enough to 
point out what I hope will be some useful points.  
First,  the type of problem solving observed can often 
be understood in terms of the memory and cues.  
Second, analogy and category-based problem solving 
are similar in many ways.  Early abstractions often 
arise from using analogies [18,24,25] and problem 



categories may arise with much more practice with 
these generalizations [26].   
 This is a very simplified picture, but I do want to 
mention two important other influences.  First, the 
cues are not the problem elements, but the problem as 
interpreted by the problem solver [27].  This 
representation of the problem is critical and has huge 
influences on problem solving [28] at least partly due 
to what knowledge is retrieved.  Second, novices 
might be able to improve their problem solving by 
learning to do some more structural analysis and 
storing the results in memory (to be accessed by cues 
for later problems), such as with self-explanations 
[29,30] and strategy-writing [31]. 

CONCLUSIONS 

 Cognitive science may have some useful principles 
and methods for researchers interested in physics 
education. In this paper, three issues are discussed 
(specialized systems, content in thinking, and memory 
retrieval in problem solving) and references are 
provided to permit entry to the relevant literatures.  
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