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Abstract. We have investigated student difficulties in understanding and interpreting probability and its relevant technical terms 

as it relates to quantum measurement.  These terms include expectation value, probability density, and uncertainty.  From this 

research, it is evident that students have difficulties in understanding these terms and often fail to differentiate among similar but 

different concepts.  In addition, students' difficulties with the concepts of probability often interfere with their understanding and 
application of the Uncertainty Principle. 
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INTRODUCTION 

Since the beginning of history, in a world of 

uncertainty, man has pursued certainty.  The mission 

of the philosophies of Plato and Aristotle was to 

discover true and certain knowledge.  Later, with the 

development of Newtonian mechanics the 

deterministic worldview remained entrenched.  It was 

only with the advance of thermodynamics that 

Boltzmann introduced the idea of probability into 

physical law.  In the same way for most students, a 

quantum mechanics course is the first time a physical 

concept has been explained in terms of probability.  It 

is often difficult for them to replace the basic 

convictions of a deterministic worldview with the 

probabilistic view of quantum mechanics. 

In line with physics education research in 

Newtonian mechanics 
1
[1], there has been some work 

on student difficulties in learning the concept of 

probability in quantum mechanics.  For example, Bao 

and Redish suggest that probabilistic interpretations of 

physical systems are a prerequisite to learning 

quantum physics [2]. Other studies investigated 

students’ difficulties with probability in the context of 

quantum measurement.  For instance, Styer [3] 

reported fifteen common misconceptions in quantum 

mechanics regarding quantal states, quantum 

measurement, and identical particles.  Singh [4] has 

constructed a list of student misconceptions
 

in the 

domain of quantum measurement and time evolution. 

In addition, Domert, et al. presented students’ beliefs 

about probability in the context of quantum scattering 

and tunneling [5]. 

The understanding of probability is not limited to 

the topics of quantum mechanics.  For example, many 

studies in mathematics education and cognitive 

psychology report student difficulties in this topic [6]. 

Recent developments in nanotechnology, 

photonics, and superconductivity bring to our 

everyday life advanced engineering and business 

devices that can be explained only through principles 

of quantum mechanics.  The framework of quantum 

mechanics introduces the ideas of probabilities, wave-

particle duality, and non-locality into the foundation of 

physics.  These new ideas are abstract and usually 

difficult for introductory college students.  

Nevertheless, the overall research focused on student 

understanding of quantum probability is very limited. 

MOTIVATION 

During informal observations of quantum 

mechanics classes, in the study of students' written 

homework, and in one-on-one interactions, we 

observed that students often have trouble with the 

concepts of probability, probability density, and 

expectation value.  For example, in many cases 

students described the “expectation value” and 

“probability density” in very vague terms and even 

used these two terms interchangeably.  In addition, 

they had difficulties in constructing a physical 

meaning for quantitative values of these terms.  For 

example, in a homework question [7], students needed 

to show that: 

61



For a localized wavefunction at x=x0 (a delta 

function) all values of momentum are equally 

probable. 

A correct solution requires two steps.  First, the 

momentum space representation of  (x-x0) results in 

(k)=(1/2 )
1/2

e
-ikx0

, and the probability density of the 

momentum will be a constant value: | (k)| = 1/2 .  

Second, one should conclude that a constant value for 

the probability density of momentum gives an equal 

probability for finding any value of momentum. 

Students had difficulties with both parts of the 

solution.  Many students were not able to calculate the 

probability density of the momentum correctly.  In 

addition, their interpretation of their incorrect 

calculations revealed conceptual difficulties.  

Examples of the students’ incorrect reasoning after 

calculating incorrect values for the probability density 

of momentum are discussed below: 

S1: “Since | (k)| dk is the probability of finding the 

measurement between k and (k+dk), and here, 

(k)= (k) with x=x , this gives us <p>= constant.” 

This student has difficulty distinguishing that the delta 

function in this problem represents the wavefunction 

in position space and not in momentum space.  More 

importantly, the student went on to say that a “constant 

value for the expectation value of momentum” was the 

reason for having “equal probability” of measuring 

any value of momentum. 

S2: “The expectation value of x is the Fourier 

transform of your delta function, which produces a 

constant <p>, so you have the same probability of any 

value.” 

First, this student confuses the Fourier transform of the 

wavefunction with the expectation value of x.  Second, 

he also interprets a “constant value for the expectation 

value of momentum” as the reason for “equal 

probability” in measuring any value of momentum. 

Some students incorrectly calculated that | (k)| = , 

and concluded that: 

S3: “...this means that any value of momentum is 

probable.” 

In addition to calculating the incorrect value for the 

probability density, this student interprets the “infinite 

value for the probability density” as the reason for 

“equal probability” in measuring any value of 

momentum. 

Another student calculated <p>=  incorrectly and 

stated that: 

S4: "...therefore, the measurement of momentum 

can have any value." 

In this case the student presents an “infinite value for 

the expectation value of the momentum” to be the 

reason for “equal probability” in measuring any value 

of momentum. 

These initial observations motivated us to 

systematically investigate students' understanding of 

probability and related concepts. 

OVERVIEW 

This study is part of a systematic investigation of 

student learning of quantum mechanics that aims to 

determine the most common mathematical and 

conceptual difficulties students encounter in upper-

division undergraduate quantum mechanics courses 

[8]. In this paper, we focus only on one specific 

physical situation in which students should be able to 

make appropriate interpretation of probability density, 

expectation value and uncertainty.  This specific 

situation, when the probability density in position 

space is essentially a delta function and in momentum 

space is a constant, is an idealized situation that may 

present unusual difficulties in and of itself.  In 

addition, we study students’ ability to interpret 

different quantitative values for these terms to their 

respective meaning in physics. 

We used a variety of methods in order to enhance 

our understanding of the nature of student difficulties 

in quantum mechanics.  In addition to formal methods, 

such as individual interviews, written questions, and 

multiple-choice questionnaires, we have also collected 

data from informal methods such as class observation 

and studying students' exam and homework 

assignments.  Of 21 weekly questionnaires in this 

study, five pertained to topics of probability.  These 

were a series of related multiple-choice questions on a 

particular topic in which students' incorrect ideas from 

interviews and homework were the alternative 

responses. 

Three lecture format classes were involved in this 

study.  (1) The first quarter of upper-level 

undergraduate quantum mechanics (P631-03) in the 

fall of 2003, with 35 students and “Introduction to 

Quantum Mechanics” by Griffiths as their text.  (2) 

The first quarter of upper-level undergraduate quantum 

mechanics (P631-04) in the fall of 2004, with 60 

students and “Introductory Quantum Mechanics,” by 
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 Liboff as the text.  (3) Sophomore Introductory 

quantum mechanics (P263-04) in the spring of 2004, 

with 61 students and “Six Ideas that Shaped Physics” 

Unit Q by Moore as the text.  Questions on probability 

densities, expectation values, and uncertainties in 

measurement were given to students in all three classes 

[9]. Questions Q1 and Q2 are examples of such. 

DATA 

The correct answer for Q1 is choice (c).  Although 

this question followed instruction on related topics, 

approximately 70% of the students in P263-04 and 

P631-03 and more than 50% of the students in P631-

04 answered Q1 incorrectly [See Table 1].  In 

addition, in all three classes over half of the incorrect 

choices were choice (f).  This suggests some students 

may have confused “expectation value” with 

“probability density.” 

Question Q2 is a multiple-choice, multiple 

response question concerning related terminologies in 

probability.  Due to the higher-level content of this 

question [10], we gave this question only to the 

students enrolled in the P631 courses.  Students were 

also asked to explain their reasoning. 

Q1 P263-04 P631-03 P631-04 

Correct 30% (n=11) 31% (n=11) 45% (n=25) 

Incorrect 70% (n=26) 69% (n=24) 55% (n=29) 

Choice (f) 43% (n=16) 34% (n=13) 33% (n=18) 

Total 37 35 55 

TABLE.1. The Summary of students’ responses to Q1 

 

 

 

 

 

 

 

 

 

 

 

 

 

The correct answers to Q2 are choices (b), (d), and 

(e); nevertheless, none of the students picked the 

analytical answer, choice (b), and none of the students 

who picked choice (d), gave correct reasoning for this 

choice.  Of the students who gave at least one correct 

response, only students who picked choice (e) (~10%) 

had also a correct reasoning [See Table 2].  An 

example of incorrect reasoning given by a student who 

chose (d) as his answer follows: 

“Since a position measurement is precise enough 

to have a function f(x) then to measure <p> with any 

amount of accuracy is almost null according to the 

Uncertainty Principle.” 

This student reasoning shows a tendency to treat <p> 

as a measure of the “accuracy” or “certainty” in a 

momentum measurement rather than an average value 

that befits an expectation value. This reasoning fails to 

correctly apply the Uncertainty Principle. 

Q2 P631-03 P631-04 

At Least One 
Correct Choice 

With Correct 
Reasoning 

27% (n=6) 

 

9% (n=2) 

37% (n=20) 

 

11% (n=6) 

Incorrect 73% (n=16) 64% (n=34) 

Total 22 54 

TABLE 2. The Summary of students' responses to Q2 

Q1.  Emma is solving a quantum problem.  She is 

asked to show that for a particular system, any 

value of the momentum is equally probable.  

She needs to show that: (pick the best that 

applies) 
 

a) The probability density of the momentum is 

infinity. 

b)  The probability density of the momentum is 

zero. 

c)  The probability density of the momentum is a 

nonzero constant. 

d)  The expectation value of the momentum is 

infinity. 

e)  The expectation value of the momentum is zero

f)  The expectation value of the momentum is the 

same everywhere. 

Q2.  Suppose that at time t = 0, a position 

measurement is made on a particle and x = x0 is 

found.  Assume that measurement was precise 

enough and the wavefunction immediately 

following it is well approximated by a -function 

(or a very narrow Gaussian) 

dkexf
xxik

=
)( 0

2

1
)(  

 

Which statements are correct about this system?  

Choose all that apply. Explain your reasoning. 
 

a)  (k) =   

b) |  (k)|
2
 = 1/2  

c)  (k) = 0  

d) < p > =0 

e) |  (k)|
2
 = nonzero constant 

f) < p > =  

g) |  (k)|
2
 = 0 

h) < p > = nonzero constant 
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Many students picked choice (a) and (f)  

simultaneously.  The first inference that could be made 

from students choosing these two choices together is 

that students view <p> and (k) the same.  The second 

implication, considering some of the students' 

reasoning, is that these students fail to apply the 

Uncertainty Principle correctly.  For instance, consider 

the following reasoning given by a student who chose 

(a) and (f) as his answers to Q2: 

“a and f, because if you know the exact position, 

nothing can be known about the momentum because of 

the Uncertainty Principle.” 

Here, this student interprets the “infinite value for 

expectation value” of momentum as “maximum 

uncertainty” in momentum measurement. 

About one third of the students in both classes 

picked choice (h): <p>=nonzero constant, with 

reasoning similar to the following: 

“….because any value is possible.” 

As discussed above, the expectation value of the 

momentum in this case is zero.  It is possible that this 

student confused the “expectation value” with the 

“probability density” in momentum measurement that 

is indeed a nonzero constant in this problem (1/2 ).  In 

addition, some of the other students' reasons for 

choosing this answer show that they interpret a 

“constant expectation value” of the momentum as the 

“equal probability” for any momentum measurement.  

This problem is similar to our findings from Q1, where 

students confuse “expectation value” with “probability 

density” in measurement. 

SUMMARY 

Our study indicates that a large fraction of students 

have difficulties in understanding probability concepts 

and related terminologies.  Students lack the ability to 

distinguish among similar but different concepts.  For 

example, some students tend to confuse terms such as 

“expectation value”, “probability density”, and 

“uncertainty” in measurement and often interpret a 

“constant value for expectation value of momentum” 

as “equal probability in measuring different 

momenta.”  There is evidence reported in this paper 

showing some students have serious difficulties in 

interpreting the quantitative outcomes for these terms 

into physical meaning.  For example, some students 

tend to interpret <p>=0 or <p>=  as maximum 

uncertainty in momentum measurement.  In addition, 

when students apply the Uncertainty Principle to a 

system they often confuse <p> with p. 

The results of this study have implications not only for 

instructors but also for reform efforts towards 

improving the physics curriculum.  First, there is a 

need for explicit instruction to address the conceptual 

and mathematical difficulties that students have with 

expectation values, probability densities and the 

Uncertainty Principle.  These concepts are abstract and 

new for most students starting quantum courses.  

Explicit and clear definitions, applications and 

instructions are needed to help students understand and 

distinguish these terms. Research has shown that, 

unless there is explicit instruction, difficulties with 

fundamental concepts are likely to persist and prevent 

advanced learning [11]. Second, identifying student 

difficulties, in turn can guide the development of 

research-based instructional materials for addressing 

these difficulties.  However, further investigation of 

these difficulties is necessary for finding effective 

ways to addressing them. 
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