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Abstract.  We develop a theoretical model for understanding one way, “nesting,” that space is used in graphics from 
within and outside physics. Nesting can be used to increase a graphic’s capacity for displaying several dimensions of 
information, beyond the two dimensions afforded by a flat page. We use the model of nesting to analyze previously 
observed student difficulties with electromagnetic waves, to predict how physics students would interact with certain 
graphics, and to generate new multivariate graphics in physics for instruction and for research on student thinking.  
Finally we apply the nesting model to explain the multidimensionality of certain kinds of gestures in physics education. 
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INTRODUCTION 

Spatial cognition is abundant in physics, in two 
senses: space and literal movement of objects in and 
through it are explicit subjects of physics; and the 
space of our bodies, papers, and imaginations is used 
to describe spatially that which is not literally spatial. 
For instance, an electric field exists at many points in 
space, but the electric field at any one point is not itself 
extended in space, though it is often depicted with a 
drawn arrow, with longer used to mean more, as 
though it were. Yet, we have so many things that we 
want to use space to describe that it is quite easy to 
“run out of space.” So, how can we use limited space 
to communicate such a wide variety of ideas, often in 
complex relation to each other? We develop the 
theoretical structure of nesting to explain one way in 
which people manage many ideas in limited space. 

Example Of Nesting In Physics: Energy 
Level Diagrams In Quantum Mechanics 

The diagram in Figure 1 shows the energy 
eigenvalues and eigenfunctions for a particle in an 
infinite one-dimensional square well potential. The 
eigenvalues and eigenfunctions are presented together 
in a hybrid graphic, in which the vertical dimension is 
doubly-occupied with meaning. That is, two abstract 
physical quantities are represented with the vertical 
dimension of the graphic, but in different ways. One 
vertical coordinate is the quantum wave-function 
amplitude (which, for this system, has dimensions of 
1/ !"#$%ℎ ) and is repeated five times. The other 
vertical coordinate is the energy eigenvalue of each 
function. Though the meaning of the diagram is not 
obvious, we claim that it is also inherently not 
pedagogically problematic, despite the apparent 

possibility of confusion about the interpretation of the 
vertical coordinate. We describe the relationship 
between these two vertical coordinates as one of 
nesting. In a nested diagram, space has one meaning 
within the nested region and another meaning outside 
it. If these different meanings are quantified 
coordinates, we call coordinates “inner” and “outer” 
coordinates. In the diagram in Fig. 1, the wave 
function amplitude is the inner vertical coordinate, and 
the energy is the outer vertical coordinate. 

 
FIGURE 1.  A diagram 
depicting the five lowest 
energy eigenvalues and 
their eigenfunctions for a 
particle in a one-
dimensional infinite square 
well. The diagram involves 
nested coordinates, with 
energy as the outer vertical 
coordinate, and the 
amplitude of the quantum 
wave function as the inner 
vertical coordinate. Figure 
reproduced from Ref. 2 
with permission.  

 

 
FIGURE 2.  (a) Generic nesting diagram. The meaning 
attributed to location within the bounded space is of a 
different character from that attributed to location outside the 
bounded space. (b) “Small multiples,” in which the meaning 
of location on the inside of several bounded spaces is 
analogous. 
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In Fig. 1, the inner coordinate is repeated five 
times; this repetition of graphical meaning is called 
using “small multiples,” as explained in Ref. 1.  When 
a diagram uses small multiples, the effort the viewer 
puts in to interpreting the small graphics is spent only 
once, since they all follow the same rules of 
interpretation. The ideas of nesting and small multiples 
are depicted in the abstract in Figure 2. 

Examples Of Nesting In Everyday Life 

There are many examples of nesting in the 
everyday use of space. A road atlas will often have on 
one page both a zoomed-out representation of a state, 
with insets that show a zoomed-in view of the major 
cities in that state. These insets are placed with no 
regular coordination between the inner and outer 
spaces. An analog speedometer is an example that is 
more abstract than a map, since it represents speed 
(which is not location) with an angular location. The 
meaning in that space, where “more clockwise” means 
more speed, is limited to the speedometer space. 
Though the varying meaning of space within a field of 
view may seem like it would cause cognitive trouble, 
its common use suggests otherwise.  

PRINCIPLES OF GRAPHICAL 
EXCELLENCE 

We build our ideas about nesting in graphics on a 
model for graphical excellence as articulated by E. 
Tufte [1]. Tufte’s model for graphical excellence 
emphasizes a quality of efficiency, which “gives to the 
viewer the greatest number of ideas in the shortest 
time with the least ink in the smallest space.”  

Advantages of Multivariate Graphics 

Communicating the “greatest number of ideas” 
means telling as much as possible about the co-
variation and causal relationships between variables. 
According to Tufte, (Ref. 1, p. 129) graphics tell a 
story of reality that is itself inevitably multivariate. In 
order to be faithful to the richly detailed relationships 
among data and models, Tufte explains, graphics 
should be multivariate because a multivariate graphic 
promotes multivariate reasoning. Inversely, we 
understand Tufte’s model to predict that a two-
dimensional graphic of a more complex multivariate 
network of relationships would mislead the user to 
reason mostly with only two variables. Such 
phenomena may be observable, for example, in 
situations with students reasoning about PV diagrams 
in thermodynamics, which often leave much of the 

complex relationships among thermodynamic 
quantities graphically unrepresented. 

Nesting is one strategic way to increase the 
dimensionality of information presented graphically. 

NESTING IN VECTOR FIELD 
DIAGRAMS 

Vector fields (e.g., electric field, magnetic field, 
velocity field of a fluid) are commonly represented 
with an “array-of-arrows” graphic format. This format 
involves graphic space that is occupied with multiple 
meanings; each point on the graphic represents a 
physical location, but arrows drawn on the diagram do 
not point from one location to another – they point 
from a local origin in electric-field space, e.g., to a 
point in that space that represents a particular vector 
value of E-field. Because of this “double occupancy,” 
the diagram presents the possibility of confusion for a 
beginner: Does the arrow point from one location to 
another, or not? And if not, to what does it point? 
However, the presence of many examples of nested 
spaces in life outside of school suggests that the 
nesting itself is not problematic, though a student’s 
understanding of electric field may be. 

The nesting model suggests that learners will have 
significantly less trouble interpreting the inner 
meaning as distinct from the outer meaning, as long as 
the nesting schema is cued, i.e., the representation cues 
the learner to expect transition boundary (or region, 
more likely) of meaning, to estimate where that 
transition is, and to guess what the meanings are. The 
model also suggests that nested diagrams can become 
problematic if the partition of meaning is violated. For 
example, in an electric field vector diagram, how close 
does the arrow representing the electric field at one 
location come to another location? A gradual change 
in the diagram towards “intersecting ink” should cause 
viewers difficulty in interpreting the diagram. How 
close is too close? And when it is too close, what goes 
wrong? 

EXPLAINING STUDENT PROBLEMS 
WITH REPRESENTATIONS 

The nesting model can help us understand certain 
previously observed phenomena of student thinking. 
For example, as reported in Ambrose et al. (1999) [3], 
students had major difficulty interpreting a particular 
graphic depiction of an electromagnetic (EM) plane 
wave (see Fig. 1 of Ref. 3). The graphic emphasizes 
the sinusoidal dependence of the fields on the 
coordinate !, along which the wave propagates, but 
hides other aspects of the wave, viz., the uniformity of 
the field in each plane perpendicular to the direction of 



propagation, and thus the physical in-significance of 
the placement of the !-axis itself. The graph also fails 
to alert the viewer to its own double occupancy, in 
which spatial extent represents both field quantity and 
location. By extending the field vector arrows through 
various field locations (i.e., not restricting the field 
meaning to “inside the nest”), the graphic “anti-cues” 
the nesting schema and leads the viewer to interpret a 
single meaning for spatial extent within the graphic. 
The visual salience of point P (in Ref. 3), as being the 
one point “outside the wave,” seems to communicate 
something, though when it is correctly interpreted, it 
represents nothing. 

We understand the following statement by 
Ambrose et al. to be consistent with our explanation of 
the diagram in terms of nesting: “The most common 
error has been to ascribe to the plane EM wave a finite 
spatial extent in the plane perpendicular to the 
direction of propagation.” (p. 892 of Ref. 3). The 
authors also claim that some difficulties with EM 
waves transcend the diagram. This claim could be 
tested by repeating the interviews performed in that 
study with a different diagram of an EM plane wave, 
such as that found on p. 991 of Ref. 4. The diagram 
shows a series of parallel planes in perspective. Each 
plane, which is perpendicular to the axis of 
propagation, contains a regular, sampled array of 
marked field locations. Both ! and ! field vectors are 
shown at each location in the plane. The diagram 
shows that the fields are uniform within each plane, 
and vary (perhaps sinusoidally) from one plane to the 
next. The diagram uses nesting (though not explicitly, 
since it predates the present theoretical development) 
because the field vectors have spatial extent in the 
graphic, but their extent is less than the spacing 
between the marked field locations. We predict that 
interviews based on this “shish kebab” diagram would 
reveal much less difficulty of interpretation for 
students. 

EXPLICITLY USING NESTING TO 
CREATE NEW GRAPHICS 

Example 1: Complex Scalar Plane Wave 

The complex scalar function ! ! = !!!"# is 
usually graphed by separating the function into real 
(!cos !") and imaginary (!sin !") parts, and plotting 
those on a single set of axes, as functions of the 
position !. The vertical axis is thus doubly-occupied 
with meaning; the two meanings are usually 
distinguished by graphing the real and imaginary parts 
with different colors or textures. Various features of 
this representation can be understood as problematic: 
the constant magnitude of the function is obscured; the 

relationship between the real and imaginary parts 
appears to be one primarily of translation symmetry 
rather than of interdependent mutually orthogonal 
projections; and the graph bears little resemblance to 
the most familiar depiction of complex numbers as 
located in the complex plane.  

In contrast, consider a graph using nesting, as 
shown in Figure 3. In this graph, the magnitude !  is 
plotted as the outer vertical coordinate, as a function of 
the outer horizontal coordinate !.  

FIGURE 3.  Graphic 
showing a complex 
scalar plane wave, using 
the idea of nesting. 

 
 

The inner coordinates are small multiples of a 
miniature complex plane that depicts !" as a phase 
angle. The “mini complex planes” are circled to 
emphasize their nested meaning. 

This nested graphic has the advantages of showing 
that the function has a constant magnitude, hinting at a 
mechanism (rotation) for the similar sinusoidal 
projections, and relating visually in some way to the 
complex plane. We do not claim yet that the nested 
graphic is better overall for students; we claim only 
that nesting as a design strategy can provide access to 
some fundamental insight into the function that is 
different from that afforded by the traditional graph. 

One Relationship Of Nesting To Use Of Color 

A dynamic animation similar to the static graphic 
in Fig. 3 can be seen in the PhET simulation 
“Quantum Tunneling and Wave Packets.” [5] In the 
simulation, the complex phase of an incident plane 
wave can be shown in color. Since color itself is not 
spatial information, the phase is not presented 
explicitly as an inside coordinate in a nested use of 
space. However, the colors cycle through red, yellow, 
green, cyan, blue, and magenta, so they can be 
arranged in an angular cycle around the origin of the 
complex plane. Further play with the simulation 
reveals how specific colors correspond to specific 
phase angles. In this sense, the colors “hyperlink” 
spatial structure of the complex plane to the graph of 
the wave function. Fig. 3, in which the nesting is 
explicit, can be understood as communicating the 
same information, but without the mediating color 
field. Thus, the explicitly nested diagram can be used 
as a way to imitate the simulation in writing when 
color is not available. This convenience is in addition 
to whatever direct cognitive value it may afford. 

!

!!

!!



Example 2: Spin ½ Quantum States 

 Representing quantum states of spin-1/2 systems 
graphically presents a unique challenge, since they 
appear to require more dimensions of space than we 
have available, especially if we restrict our 
representation to the page. The general state can be 
written as ! = !! +! + !!|−! , if we use spin-up 
and spin-down in the z-direction as basis kets for 
constructing the state. The coefficients !! and !! are 
complex numbers, so the general state lives in a 
Hilbert space of dimensionality !!, in which a point is 
specified by four real numbers.  

 

FIGURE 4.  Two examples of a new graphic for quantum 
states for spin-1/2 systems in the +z/-z basis, using the idea 
of nesting. The large circular arc indicates that the states are 
normalized. The outer coordinates are the magnitudes of the 
coefficients for the +z and –z components of the state, while 
the inner coordinates are the complex phases of those 
coefficients. (a) |! = !!∙!

!
|!! + !!"

!
|!! = !

!
|!! !|!! = |−!  

(b) An exercise for the reader to check understanding of the 
graphic. 
 

The graphic in figure 4 uses the idea of nested 
coordinates, with an inner coordinate (depicted with an 
arrow inside a circle) representing the phase of each 
complex coefficient !!, and an outer coordinate 
representing the magnitudes !! . The dashed quarter-
circle expresses the normalization of the state and thus 
the relationship between !!  and !! . The diagram 
captures all the information contained in a 
mathematical description of a general state, so any 
spin-1/2 state could be depicted with it. The diagram 
can also be extended to spin-1 systems if a third axis is 
introduced, and the quarter-circle is replaced with an 
eighth of a sphere. 

APPLICATION OF NESTING TO 
GESTURE RESEARCH 

Previous work in gesture research shows that 
learners sometimes use gesture not in isolated 
instances but in coordination in space and time. Yoon 
et al. [6] showed learners gesturing in the context of a 
“mathematical gesture space,” where gestures derive 

part of their meaning through coordination with other 
gestures. The nesting idea suggests that two gestures, 
or two parts of a gesture, may function together in a 
nested relationship, with one gesture acting with an 
inner meaning and another one with an outer meaning. 
The “smaller” inner meaning may be expressed with 
the fingers while the “larger” outer meaning is 
expressed with the arm, or alternatively, scaling up, 
with the arms and the whole body, respectively. The 
fingers/arm case is perfectly illustrated by Chase and 
Wittmann [7] in the analysis of a video of an 
interview, in which a student uses the position of his 
hand to indicate the location of a projectile, while the 
span between his thumb and forefinger represent the 
projectile’s velocity. The authors argue that the 
apparent conflict of meaning in the two gestures is 
complementary rather than inconsistent, and that the 
student uses different aspects of his body to convey 
multiple dimensions of information. Thus the nesting 
framework provides interpretive structure for 
analyzing simultaneous or sequential gestures of 
different size and with different meaning. 

CONCLUSION 

We have introduced nesting as a theoretical model 
for analyzing how space is used to manage meaning in 
thinking and communication in a particular way that 
increases the space’s effective dimensionality. A 
variety of examples of nesting suggest that the 
strategic use of nesting in the design of new physics 
graphics and in the impromptu use of the human body 
during instruction could improve student learning and 
reveal through empirical studies a new kind of student 
cognitive competence. 
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