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Abstract.  Upper-division students must learn to apply sophisticated mathematics from algebra, limits, calculus, multi-
variable and vector calculus, linear algebra, complex variables, and ordinary and partial differential equations. The 
presenters in this session will discuss how the representations that we choose may affect whether students are able to use 
this mathematics spontaneously and correctly, whether they can move smoothly between representations, and the extent 
to which their understanding of the mathematics enhances their understanding of the physics. The discussant will 
incorporate the perspective of research in undergraduate mathematics education as it applies to the representations that 
have been presented.  
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INTRODUCTION 

Mathematics is ubiquitous in physics.  It is a 
primary representation that can be used to articulate 
and demonstrate relationships among physical 
quantities. Mathematical facility allows a fuller 
understanding of empirical results, while more robust 
mathematical ability allows for the extension of 
physical concepts beyond a basic qualitative 
comprehension.  Physics uses multiple mathematical 
representations within a given topical area, and 
specific mathematical concepts – and representations – 
are necessary for a complete understanding of the 
physics.  

Beyond the introductory course sequence, students 
are expected to understand and apply increasingly 
sophisticated mathematics, including algebra, single- 
and multi-variable differential and integral calculus, 
vector calculus, linear algebra, differential equations, 
and complex variables.  Perceptive instructors and 
curricular materials developers have noticed that it is 
not trivial for students to connect the mathematics they 
have been taught in pre- or co-requisite mathematics 
courses to the physics that they are learning [1,2].  

Similarly, researchers in physics education at the 
upper division, in the course of their work, have 
gravitated towards investigations involving student 
understanding and application of the relevant 
mathematics [3].  In some cases they find that student 
difficulties with physics concepts may be related to 
issues with the mathematics, either an understanding 
of the math concepts, the application of the concepts to 

the physics, or in understanding some of the math 
representations used in physics.  

In this session, we brought together colleagues who 
conduct research and develop curricula and curricular 
materials that focus on the role of representations in 
the use of mathematics in upper-division physics.  The 
four presentations (please see the invited papers, also 
in this proceedings, as indicated) were Wittmann and 
Black [4] discussing integrals and limits in the context 
of classical mechanics; Price et al. [5] discussing 
vectors and vector fields in the context of electrostatics 
and magnetostatics; Thompson et al. [6] discussing 
partial derivatives in the context of thermodynamics; 
and Manogue et al. [7] discussing linear algebra in the 
context of quantum mechanics.  After presentations 
and discussions of individual topics, we had a response 
from a member of the research in undergraduate 
mathematics education (RUME) community (JFW), to 
present his perspective on the research findings as well 
as his ideas about the relationship between these 
studies and what insight the RUME community could 
provide, and the extent to which these findings are of 
interest to the RUME community. 

OBSERVATIONS ABOUT THE 
POSTERS IN THIS SESSION 

Researchers in mathematics education have long 
recognized the role and significance of the use of 
multiple representations in revealing and supporting 
students’ reasoning in mathematics, particularly as 



technology has dramatically increased the variety of 
representational forms available to support 
mathematical reasoning [8]. Indeed, the ability of 
representational forms to limit or distort student 
reasoning has also been well observed [9].  

Representations Reveal Student Thinking 

The papers in the present session all fit well within 
the continuing tradition of research on representations 
in mathematics learning, particularly as different 
representational forms reveal different aspects of 
students’ thinking.  Wittmann and Black found 
evidence of “more mathematical” and “more physical” 
thinking as two students handled even the simplest 
integral quite differently.  Price, Gire, and Manogue 
showed how particular representational forms 
(including kinesthetic representations) could 
demonstrate limitations and flaws in student reasoning 
not readily accessible through standard textbook 
representations.  Thompson et al. observed that 
processes of connecting mathematical and physical 
reasoning are not necessarily reversible.  And 
Manogue et al. argued that introducing new 
representational forms to students can support student 
learning.  All of these studies represent questions of 
interest within current mathematics education 
research.  

Why Is This So Hard For Students? 

Although few studies say so explicitly, a great deal 
of current work in mathematics education research 
explores the reasons behind students’ difficulties with 
particular mathematical concepts. Between knowledge 
that “students find X difficult” and the temptation to 
create “instructional interventions to teach X,” is a 
need to investigate the many good (but not at all 
obvious) reasons why some ideas so obvious to 
experts can be very challenging for students.  
Consider, for example, several questions related to 
Price, Gire, and Manogue’s consideration of students’ 
reasoning about the gradient [5,10]: 
 Imagine an ant is crawling on the surface of a 

frying pan, and think of the gradient of the function 
that gives the temperature at any point on the frying 
pan. Show me a vector at the ant’s location 
pointing in the direction of the gradient. 

 Imagine the room is empty except for a burning 
candle placed at its center. Suppose your right arm 
is a vector pointing in the direction of the gradient 
of the function that describes the temperature at 
any point in the room. Which way does it point? 

 Imagine an elliptical hill in the center of the room. 
Suppose your right shoulder is a point on the hill 

and your right arm is a vector pointing in the 
direction of the gradient of the function that 
describes the height of the hill. Which way does it 
point? 

During the session at which these papers were first 
presented, several people in attendance opined that all 
three questions were essentially “the same.”  Further 
reflection reveals rather complex differences across 
them, however.  In the first two questions, for 
example, the proposed location of the gradient vector 
(the surface of the pan and a point in space, 
respectively) correspond to the domain of the function 
generating the gradient.  In the third question, 
however, the placement of the shoulder on the slope of 
the hill distracts from the fact that the gradient actually 
“lives” in the floor.  Additional complexity arises from 
the limitation of the third question to entirely spatial 
dimensions.  It can be quite natural to “point toward 
the direction in which temperature [a non-spatial 
variable] is increasing,” but not at all obvious what it 
means to “point in the direction in which height is 
increasing.” 

Price, Gire, and Manogue also observed that 
“students often struggle to untangle the coordinates 
from the components [of vectors in vector fields].”  
Curiously, however, it seems that ambiguous 
representational practices within mathematics itself 
may encourage this struggle.  A widely used calculus 
text (Stewart, 2012), for example, introduces a vector 
like this: “The term vector is used by scientists to 
indicate a quantity that has both magnitude and 
direction” [11] (NB: Location of the vector is not 
determined.)  A few paragraphs later, it is observed 
that when the vector a is placed at the origin, “the 
terminal point of a  has coordinates of the form 

 1 2,a a …These coordinates are called the 

components of a [12].”  In the sections that follow, 

students learn that    x t y t r i j  represents 

infinitely many vectors whose tails are all located at 
the origin of the Cartesian plane, while 

   , ,P x y Q x y F i j  represents infinitely many 

vectors, whose tails are located at all points in the 
Cartesian plane.  Educators in mathematics and 
physics cannot be too surprised that students grow 
confused in their attempts to distinguish between 
vector coordinates and components. 

At times, representational conventions within the 
physics community can place teachers at cross-
purposes with each other.  Thompson et al. observed 
that “some students treated differential expressions 
algebraically” rather than interpret them as total 
differentials.  For example, when asked to find an 
expression for B  given the total 



differential dR B dC E dF  , students might begin by 

inappropriately treating dC  as a variable and dividing: 
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Curiously, during the same session, Wittmann and 
Black demonstrated a “correct” solution to a 
differential equation by casually treating a differential 
in precisely the same casual way: 
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The use (and abuse) of representational forms 

throughout the physics and mathematics communities 
may appear to cynical students to be fiendishly 
designed to mislead them!  At the very least, teachers 
and researchers might observe that practices such as 
these are often taken for granted but rarely discussed 
explicitly with students in a manner that addresses not 
simply notational convention but their underlying 
mathematical and physical implications and principles. 

COMPARISON OF THE CURRENT 
STATE OF MATHEMATICS 

EDUCATION RESEARCH TO THE 
IDEAS OF THIS SESSION 

As noted above, many of the research interests 
expressed by the participants in this session speak well 
to contemporary concerns of mathematics education 
research.  From the perspective of a mathematics 
education researcher immersed in a conference of 
physics educators, however, a few points of 
comparison stood out as well. 

Transfer Across Mathematics And Physics 

Research on learning transfer has recently re-
emerged as a fertile area of research in mathematics 
education. Surprisingly, however, very little research 
has been done concerning the transfer of mathematical 
ideas to other specifically academic disciplines.  
Although considerable work has been done with 
regard to the use of mathematics in everyday activities 
or within certain professions, most transfer research in 
mathematics education has focused on matters of 
transfer within mathematics itself. Wagner’s [13] 
perspective on transfer would suggest that reasoning 

about the same mathematical ideas across multiple 
representations is a matter of transfer.  In this light, 
studies suggesting that, under certain conditions, 
students may perform better on experientially 
grounded, real-world “story problems” than on 
corresponding algebra representations of the same 
problems [14] may be of particular interest to physics 
educators. 

The work being done by physics education 
researchers on the use of mathematics in learning 
physics does not appear to be well known in the 
mathematics education community.  The respondent at 
the current session is of the opinion that cross-
disciplinary research on mathematics transfer deserves 
increasing attention in the mathematics education 
community, especially when one considers just how 
much mathematics is learned while students are 
learning physics and other mathematically rich 
academic disciplines. 

Theoretical Commitments 

One dimension of educational research that may be 
getting a bit more attention in the mathematics 
education research community is the contribution of 
discipline-specific educational research to learning 
theory.  The theoretical commitments of researchers 
directly influence the questions they pose, the ways 
their data are gathered, and the interpretations that they 
permit of their findings.  Consider several questions 
raised in this session: 
 When a student sees 2/mdv dt bv  , what does 

the student “see”? 
 “Making connections between physics and 

mathematics is apparently not a reversible 
process?” Does this surprise us or not? 

 After the students engage in the kinesthetic 
activities with vectors and they adjust their 
answers, what do we believe has happened to 
them? 

Different epistemological commitments permit 
different answers to these questions.  The reader’s 
awareness (or not) of the researchers’ epistemological 
commitments permits different interpretations of their 
conclusions.  It is increasingly expected within 
mathematics education research that researchers and 
authors highlight their own theoretical commitments in 
their writing and extend their research, as possible, to 
highlight its implications for broader theory 
development.   

The community of mathematics education 
researchers is far too broad to capture in just a few 
bullet points, but among the major areas of 
investigation in mathematics education these days are 
these: 



 What can we reveal about student thinking that 
helps us understand why students struggle so much 
with particular issues? 

 What do answers to that question suggest about 
potential instructional interventions? In other 
words, how best do we ground our intervention 
strategies in sound research? 

 What do our empirical data tell us about 
current/competing theories of cognition, learning, 
and instruction? 

 What is the interplay between individual cognitive 
aspects of learning and social/participatory aspects 
of learning? 

The extent to which questions such as these are 
significant to the physics education community, as 
well, may be one measure of the degree to which 
increasingly collaborative research might prove 
beneficial to both disciplines. 
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