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IMPROVING STUDENTS 6UNDERSTANDING OF QUANTUM MECH ANICS
Guangtian ZhuPhD

University of Pittsburgh2011

Learning physics is challenging at all levels. Studedificulties in the introductory level
physics courses have been widely studied and many instructional strategies have been developed
to help students learn introductory physics. Howevegparch shows that there is a large
diversity instudenté6 pr e p ar a tin theruppealevdl physics dodrseandit is necessary

to provide scaffolding support to help students learn advanced physics. This thesis explores
issues related to studedtsommon difficulties in learning uppéevel undergraduate quantum
mechanics and how these difficulties can be reduced by redemsel learning tutorialand

peer instruction toolsWe investigated studeidtdifficulties in learningquantum mechanics by
administering written tests and surveys to many classes and conducting individual interviews
with a subset of students. Based on these investigations, we developed Quantum Interactive
Learning Tutorials (QuILTs) and peer instruction tools to help studemtd b hierarchical
knowledge structure of quantum mechanics through a guided approach. Prelessesyments
indicate that studenisinderstanding of quantum mechanics is improved after using the research
based learning tools in the junisenior levelqguantum mechanics cours&¥e alsodesigned a
standardized conceptual survey that can help instructors better probe $tuddetstanding of
guantum mechanicsoncepts in one spatial dimensiofhe validity and reliability of this

guantum mechanics supves discussed
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1.0 INTRODUCTION

Helping students to think like physics experts is an important goal of most physics courses. But
learning physics is difficult for students at all levels from the intotory to the advanced. Even
in the introductory physics courses, students must draw meaningful inferences from the abstract
principles, which are in highly compact mathematical form, and apply the few fundamental
principles in diverse situations. Suchksisnay be routine for the experts in physics but can be
very challenging for the students. A lot of prior research has d@nducted on investigating the
differences between introductory physics students and physics experts in problem solving,
reasoning ad metacognitive skills(Maloney 1994,Chi et al. 1981, Touger et al. 1995 In
general, experts start solving problems at a more abstract level and later turn to the specifics,
while the novices may immediately focus on the surface features and gattdbtiExperts can
apply their knowledge in novel and complex problems depending on the level of their expertise,
while novices may only be able to solve familiar problems requiring routine procedures. Experts
have knowledge structure which is organizeel hiar chi cal |y, whil e novice
lacks hierarchical organization.

Novicesd difficulties I n introductory phy
instructional strategies have been developed to help introductory physics students hequire t
content knowledge as well as the ability to solve problems in novel situatiensafd et al

1996 Heller and Reif 1984Van Heuvelen 1991Mestre et al 1993, Dufresne et al1992.



However, it is often assumed that the students in the deyer physics courses have
significantly higher expertise in learning and galbnitoring than those who have only studied
introductory physics. Instructors usually take for granted that advanced physics students are
independent learners with necessary cognitime anetacognitive skills and enough prior
knowledge in introductory and intermediate physics. However, advanced students face additional
challengs because they must build the upi®rel physics knowledge on all of the prior
knowledge acquired at the inttuctory and intermediate levels. Research also suggests that there
is a wide diversity in advanced students?o
problems based upon similarity of solution or their tendency to exploit their mistakes as an
opportunity for repairing and organizing their knowledge structure (Lin & Singh 2009, Lin &
Singh 2010, Mason & Singh 20089lason & Singh 200). Therefore, while teaching upplevel

physics courses, treating all the advanced students as a group of exoeleamoers will not

lead to designing of effective instructional strategies and scaffolding support to help them
become physics experts.

Indeed, once we are familiar with the prior knowledge of wperl students, we can
consider effective strategie® thelp them build on their prior knowledge and construct a
hierarchical knowledge structure and develop skills in applying relevant knowledge in various
situations An important question is the following: Wthe educational methods and techniques
that have been effective in introductory physiosursede effectivein the uppeievel coursesis
well? In this thesis, | will discussny researchos t udent sd6 di f fupperlevelt i e s
undergraduatguantum mechanicnd the impact of incorporatingtorialbased instruction and

peerinstruction tools in helping students learn better



In particular, | will discuss how the findings of cognitive research and Physics Education
Research (PER) in introductory physics can guide the investigation ofstsdén di f f i cul t i
strategies to help students learn quantum mechanics better. In the remaining paragraphs of
chapter 1, | willfirst provide some motivation faxhy quantum mechanigs so difficult for the
advanced students to learn and thr#roducethe cognitive issues and educational strategies that
take into account the findings of learning theories that can help students learn quantum
mechanics bettetn chapter2 to chapter 71,  wi | | summari ze and categor
and misconcepins about quantum mechanics related topics such asfiPossible
Wavefunctions, fiBound and Scattering State iDrawing Wavefunctiony fQuantum
Measurememntt fiSternGerlach Experiment fAddition of Angular Momentum, etc. Based
upon the findings of invési gati on of studentsd di f f-based!| ti es,
learning tutorials calledthe Quantum Interactive Learning Tutorials (Quél.Tand peer
instruction tools e.g.,concepttests,to scaffold student learning of quantum mechanics af he
them construct a hierarchical knowledge structure. The details of the development,
implementation and findings of these resedraked QuILTs and peérstruction tools will be
elaborated in chapters 28&oIn theninth chapter, | will discuss the ddepment and preliminary
assessmenta@dst andardi zed survey that can help inst
understanding of quantum mechanics in their classes. Then, conclusions and future directions

will be outlined in the final chapter.



1.1 QUANTUM MECHANICS VS. CLASSICAL MECHANICS

Quantum mechanics (QM) is amportant topic in thephysics curriculum and it is also
important for students majog in othersciencs, e.g., chemistrgr engineeringe.g., electrical
engineering Students who aranterested in the basic rules governing the univédrsgond
Newtonianphysics are often fascinated by quantum mechakiosvever, quantum mechanics
formalism is abstract and does not conformthe everyday world we are used to in which
position and momenm are deterministic variables and their time evolution is governed by
Ne wt o n 6Quantura phenomencannot be explained in classical wayalented students
have great difficult in mastering thefundamental concepts and principle$ quantum
mechanicsRichard Feynmasaidifinobody understands quantum mecham{€&ynman, 1965).
Feynmai@s statement was referring to the difficulty in interpreting the foundational issues in
guantum mechanics rather than the difficulty in performing a calculation basedqupatum
mechanics formalismHowever it is importantto research effectivetrategesto help students
learn the standard formalism of quantum mechanics.

As noted earlier, unlike classical mechanics, we do not have direct experience with the
microscopt quantum world. Also, quantum mechanics has an abstract theoretical framework in
which the most fundamental equation, the TiDependent Schrodinger Equation (TDSE),
describes the time evolution of the wave function or the state of a quantum systenngdcord
the Hamiltonian of the system. This wave function is in general complex and does not directly
represent a physical entity. However, the wave function at a given time can be exploited to make
inferences about the probability of measuring differernyispfal observables associated with the
system. For example, the absolute square of the wave function in peg#oa is the

probability density for position measurement. Since the TDSE does not describe the evolution or
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motion of a physical entity, uni&kNewton's second law, the modeling of the microscopic world
in quantum mechanics is generally more abstract than the modeling of the macroscopic world in
classical mechanics.

Quantum theory provides a coherent framework for reasoning about microscopic
phenomena and has never failed to explain observations if the Hamiltonian of the system is
modeled appropriately to account for the essential interactions. However, the conceptual
framework of quantum mechanics is often couintéritive to our everyday expences. For
example, according to the quantum theory, the position, momentum, energy and other
observables for a quantum mechanical entity are in general notefeled. We can only
predict the probability of measuring different values based upon the fuagtion when a
measurement is performed. This probabilistic interpretation of quantum mechanics, which even
Einstein found disconcerting, is challenging for students. Moreover, according to the
Copenhagen interpretation of quantum mechanics, which delwitaught to students, the
measurement of a physical observable changes the wave function if the initial wave function is
not an eigenfunction of the operator corresponding to the observable measured. Thus, the usual
time evolution of the system accordito the TDSE is separated from what happens during the
measurement of an observable. Students often have difficulty with this notion of an
instantaneous change or "collapse” of the wave function during the measurement.

In quantum theory, position and montiem are not independent variables that evolve in a
deterministic manner but are operators in the Hilbert space in which the state of the system is a
vector. For a given state of the system, the probabilities of measuring position or momentum in a
narrow ange depend on each other. In particular, specifying the pespare wave function

that can help us determine the probability of measuring the position in a narrow range specifies



(via a Fourier transform) the momentigpace wave function that tells tle probability of
measuring the momentum in a narrow range. The eigenstates of the position or momentum
operators span the Hilbert space so that any state of the system can be written as a linear
combination of a complete set of position eigenstates omentum eigenstates. The
measurement of position (or momentum) yields a position (or momentum) eigenvalue with a
certain probability depending upon the state of the system. These concepts are indeed
challenging for students since they do not conform toetkgeriences in the classical world
(Singh 2007).

In addition to the lack of direct exposure to microscopic phenomena described by
guantum theory and the countatuitive nature of the theory, the mathematical facility required
in quantum mechanics can mease studentsd6 <cognitive | oad
mechanics even more challenging. The framework of quantum mechanics is based on linear
algebra. In addition, a good grasp of differential equations, special functions, complex variables
etc, is highly desired. If students are not facile in relevant mathematics, they may become
overwhelmed by the mathematical details and may not have the opportunity to focus on the
conceptual framework of quantum mechanics and build a coherent knowledge structiee. Ea
research (Singh 2007) shows that a lack of mathematical facility can hinder conceptual learning.
Similarly, alternative conceptions about conceptual aspects of quantum mechanics can lead to
students making mathematical errors that they would othermas make in a linear algebra
course (Singh 2007).

Many of the alternative conceptions in the classical world are-gemeralizations of
everyday experiences to contexts where they are not applicable. For example, the conception that

motion implies forceoften originates from the fact that one must initially apply a force to an



object at rest to get it moving. People naively egeneralize such experiences to conclude that
even an object moving at a constant velocity must laawet force acting on it. @ may argue

that quantum mechanics may have an advantage here because the microscopic world does not
directly deal with observable phenomena in every day experience so students are unlikely to
have alternative conceptions. Unfortunately, that is not @ngk research shows that students
have many alternative conceptions abguantum physics (in the level of modern physics) and
guantum mechanicdicKagan et al. 2008(a), McKagan et al. 2008WgKagan et al. 2008(c),
McKagan et al. 2009]olly et al. 1998Singh et al. 2006, Wittmann et al. 2002, Zollman et al.
2002 Styer 1996,Johnston et al. 1998, Ireson 2000, Bao and Redish 2002, Carr and McKagan
2009 Fischler et al. 1992, Redish et al. 2001, and the theme issue of American Journal of
Physics 200R Thesealternativeconceptions are often about the quantum mechanical model
itself and about exploiting this model to infer what should happen in a given situation. Students
often overgeneralize their intuitive notions from the classical world to the quantonid,

which can lead to incorrect inferences.

1.2 A SHORT REVIEW OF RE LEVANT PHYSICS EDUCA TION RESEARCH

(PER)

Physics education research is discipli@sed research conducted mostly by physicists with
knowledge of physics and access to students. It becanmestablished field of research in the

physics departments in the United States in the late twentieth century.1880e throughhe

199s the famous test to assess studentsd conc:¢

Force Concept InventoryFCI) (Hestenes et al. 1992; Hesten&sHalloun 1995) made
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physicists realize that despite their sincerest effort, solely teaching via lastncgffective in
helping students learn physics. They found that their students lacked conceptual whdgrefan
physics even though they could solve complicapeantitativeproblems using a rote algorithmic
approach. The number of physicists doing PER and developing and assessing-bessatch
instructional strategies has grown steadily over the last fvades. In 1999, the American
Physics Society (APS) publ i shed the,whétat eme
announced the usefulness and the validity of PER in physics departments (Beichner, 2009). In
2005, the Physical Review series welcomecdew fournal, Physical Review Special Togics
Physics Education Research, indicating that PER formally became an essential part of scientific
research in physics.

Physics education research generally focosds/o areas, the basic PER and the applied
PER (Beichner, 2009) The basic PER conceritise assessment and determinatiosdf udent s 0
difficulties in understanding physicconceptsand the applied PER focuses on developing
effective teaching strategies or instructional materials to help students ovet@mmeommon
difficulties and build a robust knowledge structure of physMy research © improving
studenté understanding of quantum mechaniegolves both basic and applied PER. We have
conductedn-d e pt h r esear ch o andrevaednetronlystlie mécoricéptioosu | t 1 e
that students have but also unpacked how these misconceptions origasate.on our research
on studentd8 common difficultiesin learning quantum mechanics, we have designed the
Quantum Interactive Learning TutosalQuILTs) and peerinstruction tools such asoncept

tests to improve studedisnderstanding.



1.3 COGNITIVE ISSUES IN PER

PER has an active interaction with cognitive science. PER uses the theory of cognitive science as

an important source for interpreting studesdrhing of physics. Cognitivprinciplesare also

useful for the PER researchansdeveloping and assessing instructional strate@easthe other

hand, PER adds to the cognitive resedrebauseognition issues such as metacognition or the

nature of exprtise can be researched via PER since physics is a domain in which expertise can

be assessed more readily than in the soci al S
difficulties in learning quantum mechanics and developing resém®bd leming tools we

took into account findings of cognitive reseastith aghose related tonemory, metacognition
andepistemologyin order tointerpretstudentéreasoning processand learning outcomester
interventions with QuILTs and peerstructiontools Our research is informed by the research of

many cognitive and social scientists. In developing resdaashd learning tools,esgeral

cognitive theoriesand modelsare carefully integrated, e.g., Piafgefioptimal mismatch,

Vygotskys fizone of poximal developmeid and thePreparation for Future Learnimgodel of
Bransford and Schwart z wh ieffickency vs. inbosatiod driithp on t |
1985, Piaget 1964, Raymond 2000, Bransford & Schwartz 1999, Schwartz et 3l.Bx6%, |

review some of the relevant concepts from cognitive science that have helped inform my

research.

1.3.1 Memory

Il n cognitive science, memory refers to the br

Human memory consists of two major components:tsgieom memory (or working memory)
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andlongt er m memory (Si mon, 1974) . I n his famous
or minus twoo, Mi lageahility of shartteme mdemonhislimited o 8to 9t o r
bits, where one bit of informatiois defined agthe amount of information that we need to make

a decision between two equally likely alternativ@dliller, 1956). Due to the limitation of short

term memorypeople cannot process many disparate bits of information at the same time. The
shortterm memory processes the information for a period of around 18 seconds without
repetitive practice and rehearsal (Peterson and Peterson, 1959). Thertomgemory is where

the information is stored and this information can last from a few daygeto @ lifetime. The
capacity of longgerm memory can be considered as unlimited unlike the short term memory
which is used to process the informatibrformation processing and problem solving happens in
short term memory or working memory which receiu@®rmation from the sensory buffers
(e.g., ears, eyes, hands) and also from the long term memory.

Later research shows that the capacity of the ghort memory can be increased by
chunking the information into meaningful groups. For example,-d@itgghnumber is difficult to
remember . But people can often memorize a pho
digitsi 3digitsi4 di gi t s0 chunks so that each chunk of
area code). Research has alsonshthat expertise in a particular domain involves having large
chunks of knowledge in the domain in which the person has expertise. In a study involving
positions of chess pieces in a good game of cf@sase & Simon, 1973Yhe chess masters
could reprodce the setup of a chess game faster and more accurately than novices begause the
could chunk the relative positions of the pieces into offensive and defensive patterns when
observing a good game board. However, these same experts in chess showedauvantage

over the novice if the setup was just a random positioning of the pieces on the chesEhasard.
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findings are relevant for my research becatise important tonvestigate the prior knowledge
of students and help them build on this prior kiemlge andassistthemin chunkingrelevant
knowledge during the learning process.

Information stored in the lontgrm memory can be retained longer and retrieved faster
by practicing and creating associatioeople forget what they learned at a rate olvhis
exponential (known as the Ebbinghaus forgetting curve). Research shows that spaced practice
and manipulation of repetition time are effective for retaining and retrieving knowledge
(Landuaer & Bjork 1978, Melton 1970Jherefore, in the researddasel learning toold have
developed foQM, the questions about key concepts occur not only in the settiarisch they
are introduced but also in theter sections to provide spaced practice

While solving a problem, after receiving information from semsory buffers, the shert
term memory searches for the relevant knowledge in the-teong memory. Developing
associations between different concepts and principles and building a robust knowledge structure
provide additional links and pathways to actevatlevant information during the problem
solving processEor example, the momentum operagerin one dimensiortan be represented
by the derivative- i>u/px in the position space, and the Hamiltonian operator of @sysan
be written as HF=- (>?12m)? /px® +V(X) . If a student know that the Hamiltoniaroperator
corresponds to the total energy of the system, which equals the kinetic enerthe ploiential
energy, therhe/sheonly need to remember the representatiohthe momentum operat@and
the definition of the HamiltonianThe mathematicalepresentatiorof the Hamiltonian can be
constructedvith this knowledgeAssociation of knowledgalsohelps people to better chunk the
information and often this chunking happenssubconsciously In introductory physics, the

symbolsv and m are often associated with the concepts of speed and mass, which are also
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associated with the concept of momentWthile a novice in physics may treat speed, mass,

velocity and momentum aeur different bits and they may take four slots in the short term
memory, for an expert physicist all these related concepts may be chunked and may only take
one slot in the short terms memomhus,an experc an use hi s/ her Acompi | e
only one bit to process information about momentwithout realizing that he/she rsalready

processed a lot of related conceptghile developing learning tools for Quantum Mechanics, we

always do a theoretical task analysis which amounts to making-gréimeed flow chart of all

the relevant concepts that need to be invoked to solve the problem. Then we analyze the

di fficulty of the concepts from studentsd per

depends on its inherent complexity but onfemailiarity and intuition one has developed about it.

1.3.2 Metacognition & Epistemology

Met acognition is the fcognition of cognition
Metcalfe & Shimamurads book (Metcal fegagegd Shi ma
in metacognition if they discern that they have more difficulties in learning one concept than
another or if they decide to-examine some information before they accept it as a fact (Flavell,

1976 p.232). Development of metacognitive skills suchefisction and selawareness in the

problem solving process must be addressed while students are learning physics content. Several
researchers have investigated the factors that can influence the development of reasoning and
metacognitive skills (Yerushai & Eylon 2003, Scott et al. 2007). Moving beyorah

algorithmic plug and chug approach and focusing on conceptual understanding can help students
develop metacognitive skills (Leonard et al. 1996)he researchased learning tools we have
developedor quantum mechanice.g.,to help students learn about quantomeasuremenand
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to help themsketcha possible bound or scattering state wave function for a given potential
energy we emphasize the development of conceptual reasoning and metacodaiisvens
help students focus on their knowledge structure

Epistemology is the theory of knowledge whiatiempts to make sense of the human
intellectual acrevement(Cruz2 0 0 6 ) . Research has shown that s
about physics casignificantly affect what students leardigmmer 2000; Schommer 1990
Redish et al1998 Adams et al2006 Gray et al 2008. If students believe that physics is a
collection of isolated formulas and facts, they will be reluctant to take the timergéochieally
organize their knowledge structure. Likewise, if students believe that their task in a physics class
is to take notes, memorize facts and do plug and chug in the exams, they wilittiea&tort to
synthesize the content, build connectiorsween new and prior knowledge, extend their
knowledge to new areas and contemplate how principles of physics explain physical phenomena.
It is indeed impossible for a student without a productive epistemology about the knowledge of
physics to become an gert in physicsThe researcivased instructional tools | have developed
for quantum mechanics keep studeaatsvely engaged in the learning procassl force them to
pay attention to the structure of knowledge in quantum mechahes learning tools hpl
students realize that despite the abstractness of the subject matter, quantum mechanics is not a
collection of incoherent facts and formulaStudents can also learn about how quantum
mechanics can be applied to accomplish novel tasks that cannot Imeplasied by classical

meanse.g.,to send a secret key for encoding and decodingsgatarely over a public channel.
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1.3.3 Optimal Mismatch.

Instructors can pose tasks to students in which common difficulties and misconceptions are
elicited and then studentsbserve something that contradicts their initial prediction (Smith,
1985) . Piaget emphasized dAopti mal mi smat cho b
instruction should be targeted in order for desired assimilation and accommodation of knowledge
tooccur. Piagetodos notion of Aopti mal mi smat cho
conflict since their predictions and observations do not match, they are in a state of
disequilibrium and they realize that there is some inconsistency in¢haswoningRiaget 1964, p.
29). In this state, students are generally eager to resolve the discrepancies between their
prediction and observation. Piaget suggested that at this point students should be provided with
appropriate guidance and support commeatsuwith their prior knowledge to resolve the
discrepancies and assimilate and accommodate appropriate concepts.

Not only should students be helped to understand why the relevant concepts are
applicable but also why their initial reasoning was not gmaie in that contexiVhen learning
guantum mechanics with the reseabased learning toglstudentsare often asked to predict
what should happen in different situations and then giseyvisualization tools such as computer
simulatiors or graphical dmonstratios to examinewhat actually happensf their predictiors
areinconsistent witltheir observationthey are ina state of disequilibrium. Thernhe learning
tools provide scaffoldingo help them resolve thdiscrepanciesand help them build aabust

knowledge structure
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1.3.4 Zone of Proximal Developmen{ZPD)

The concept of the zone of proximal developm@mD) was originally developed by Vygotsky
in the early twentieth century. e definition of ZPDis commonly accepted s @At he di st ¢
between wht children can do by themselves and the learning that they can be helped to achieve
with competent assistamhhcwes, (Wagarnosnkdy '2s0 0rdo tpi.oln
proxi mal devel opment o refers to whahtlpohanst uder
instructor who is familiar with his/her prior knowledge and skills. Scaffolding is at the heart of
ZPD and can be used to stretch a student's learning far beyond his/her initial knowledge by
carefully crafted instruction which is designed toweaghat the student makes desired progress
and gradually develops independence. With awareness of students' initial knowledge state, the
instructor can continuously target instruction a little bit above students' current knowledge state
to ensure that thetudents have the opportunity and ability to connect new knowledge with what
they already know and build a robust knowledge structure.

Similar to the optimal mismatch theory, tA®D theory emphasizes the importance of
buil di ng st ude niebadedkmheindrier kihngndedge.tTeaahers need to provide
scaffolding support to stretch students6é6 | ea
between their current knowledge and the new knowledge they are expected to acquire.

Sinceall students irthe advanced courses such as quantum mechanics magvedhe
samepreparation angbrior knowledge,it is important to align the learning tools to meet the
needs of a diverse group of studerite prepare everyorn@r the QuILTS we havedesigned
warmup materialsthat students can do at their own pace at hdarhe warmup helps students

review the necessary preliminary knowledge before they start using the @ualVing the
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guantum conceptsecently learnedFor example, in the QuiLTelated to theSten-Gerlach
experiment, the warmap material asks the students to consider the basic concepts such as the
Hamiltonian of a particle with a magnetic dipole moment in an external magnetic field, the
forces acting on thenagnetic dipole moment in a magnetieldi in a classical situationthe
matrix representation ahe angular momentum, etc. By working on the warm materials,
studentsare likely to have similar prior knowledge before working on the QUILTs

As stated in chaptet.3.], there are only 5 to 9 bits in aiseshort term memoryor
wor king memory) but the size of the Abito or
expertise in that domain. Therefore, it is important to be familiar with stu@engsr i or knowl
and have an understanding of what constitutes a bit for them so that they do not have a cognitive
overload. One strategy to reduce the cognitive load is having students work with each other
because according to the theory of distributegnition, the cognitive load it shared between
individuals working together. In other words, combined working memory is available for
problem solving and learnin@he instructional method involving peer learnihgt can scaffold

student learningyill be elaborated in the sectiom peerinstruction(chapterl.5).

1.3.5 Preparation for Future Learning

In the 1990s, Bransford and Schwartz carried out a series of research on transfer of learning from
one situation torother (Bransford & Schwartz 1999) and proposed a framework for scaffolding
student learning. They theorized that the preparation for future learning (PFL) and transfer of
knowledge from the situation in which it was acquired to new situaéicaptimalif instruction
includes both the elements of innovation and efficiency. In their model, efficiency and
innovation are two orthogonal coordinates. If instruction only focuses on efficiency, the
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cognitive engagement and processing by the students will bmishwed and they will not
develop the ability to transfer the acquired knowledge to new situations. Similarly, if the
instruction is solely focused on innovation, students may struggle to connect what they are
learning with their prior knowledge so thattaing and transfer will be inhibited. They propose
that the preparation for future learning and transfer will be enhanced if the instruction focuses on

moving along a diagonal trajectory in the two dimensional space of innovation and efficiency.

Out of he two essential parameters for the transfer of learning, one way to define

Aefficiencyo is the ability to Arapidly retri
skills to solve a problem with undeGendrallyndi ng
speaking, the best met hod f or increasing eff
perfecto. Andersonés research on the effect o

faster from the long term memory while solving desbs through more practice (Anderson
1999). More practice in applying the same knowledge to different contexts also enhances
peoplebs ability to break down a new task 1in
solved (Schwartz et al. 2005).

However, overemphasis on efficiency in the transfer of knowledge has the serious
di sadvant age of producing Afunctionally fixed
who can quickly and accurately solve the familiar problems but are not be able to gd beyo
routine procedures (Hatano & Inagaki 1986, Hatano & Oura 2003). People focusing on
efficiency can be confined in their own routine task without stepping out to analyze the problems
from a different angle. One interesting example is the story toldiabyes Adams in the book
AConceptual bl ockbusting: A guide to better i

mechanical engineers were struggling to design a machine which could pick up tomatoes without
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bruising them. Though these engineers tnedny ways to improve the tomato picker, no
inspiring outcome occurred. Then some botanists joined this project and provided a different
viewpoin® cultivate stronger tomatos with thicker skigimilarly, when we interviewd
studentgn traditionally taughguantum mechanics coursaisout how thevave function of the
system wouldevolve after a position measuremeat,majority ofstudentsincorrect responses
can be classified in two categories®me of them claimed th#te systenwill be stuckin the
position eigenstatevhile others claimed that will go back to the initial state. Even if we told
students thaneitherof thesechoices were correct, theycould not think of another option, e.g.,
the wavefunctiorwill evolve with time according to the TimeependentSchrédingerequation
(which is the correct answennstead, many students did not beli¢hat therecan beanother
choice. They wouldften arguewith statements such as the followifi§ the system neither
stays in theollapsedstate nor goesdek to the initial state, where could itafo

Therefore, for robust transfer of learning, instructional tools should include elements of
Ai nnovationo. l nnovation sometimes originates
find that their routine wagy of thinking does not work (Schwartz et al. 20@Eeating optimal
mismatch opportunities via innovative learning tools can be helpful in not only building a
knowl edge structure but also in enhancing stu
guantum mechanics often have a reasonable expertise in introductory physics and classical
mechanics but they are AnovicesoO in quantum r
students go beyond their routine reasoning processes in classicahiogema learn to think in
a quantum mechanical way.

In physics courses, straight lectures are often used as an efficient strategy for conveying

knowledge. However, if students are not given an opportunity to think, they may memorize the
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algorithms and ddtitions of concepts without developing a functional understanding of the
fundamental principles of physics. On the other hanstudientsaregiven innovativetasks that
force them to think about the physics principles involved beyond what they havolikdmey
may be able to interpret the concepts better and build a good knowledge stiBigtuir¢hese
innovative tasks are too challenging and be)
students can get frustrated, may not pursue the task asddasd hence may not learn. Thus, a
balance of efficiency and innovation is required for learning to be meaningful and for appropriate
transfer of knowledge to occur (Schwartz et al. 2005). The pace of efficient instruction and the
complexity of the innoative tasks should therefore be carefully controlled (Schwartz et al.
2005). By considering the issues related to innovation and efficiency together in an educational
process, | earners can become fNHadapti obeemexpert
but can also utilize their knowledge to solve novel problems in a new domain (Hatano & Inagaki
1986).

We note that one common element of all of these seemingly different frameworks
discussed in this anthe previous two sections is their focus omds#nts' prior knowledge in
order to scaffold learning. Indeed, instructional tools must be designed with students' prior
knowledge in mind in order for instruction to be in the zone of proximal development and to

provide optimal mismatch to ensure adequaeparation for future learning.
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1.4 GUIDED INQUIRY APPRO ACH

Traditionally, physics instruction iIis based o
and the instructorso anticipation of the stu
have expertise in physics (at least instrustat the college level). Unfortunately, without
guidance and support related to effective teaching, many instructors have difficulty
understanding the importance of knowing the prior knowledge of studentgdativef teaching.

They have difficulty putting themselves in st
subject matter from their perspective instead
not use a systematic approach to probleslving which includes performing a conceptual
analysis, planning and decision making before the implementation of the plan. Moreover, the
instructor may automatically use problem solving as an opportunity for repairing, extending and
organizing their knaledge, but reflection and metacognition must be taught explicitly to
students. They themselves reflect upon why a principle of physics was suitable in one situation

but not in another situation and how they will recognize the next time that principlevamt in

other situations. Without explicit guidance, students may not understand the importance of
reflection, metacognition and knowledge organization in mastering physics. For example, most
students in an introductory physics course know the statemént Newt onds t hird |
action and reaction forces of two bodies are equal in magnitude and opposite in direction.
However, many students still believe that a heavy truck exerts more force on a small car when
they crash While students may be givesome quantitative problem asking them to find the
accelerations of the truck and the car after collision, they may look at a solved example problem

and obtain an answer to the quantitative question asked without internalizing that the forces on

the truckand car are equal in magnitude. As long as they can get an answer to a quantitative
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problem, students often do not go through the deeper reasoning process to build the connections
between the new knowledge and their previous experiences, reconcile ¢nendils, and repair
and build a robust knowledge structure.

Research shows that students must be actively engaged in the learning process for
learning to be meaningfullo overcome the disadvantagef traditional instruction, inquiry
based teaching an@drning strategy has been introdudedscience education. In 1996, the
National Science Education Standaadserted thahe study ofscienceimust emphasize student
understanding through inquisyNational Research Council 199&@#2). In the National Sence
Education Standards, inquiry is defined@ws (National Research Council 19962p):

fiScientific inquiry refers to the diverse ways in which scientists study the natural world
and propose explanations based on evidence derived from theirlnguky also refers to the
activities of students in which they develop knowledge and understanding of scientific ideas, as
well as an understanding of how scientists study the natural world.

Guided inquiry is acommonly usedechniquein an inquiry-based instruction. In the
guided inquiry approach, the instructor provides the course materials and appropyiate d i n g 0
guestions for the students to investigate (Colburn 2000). The guided inquiry approach reflects
how people understand the world and htw scientific knowledge ideveloped Thus, itis a
more natural way for the students to construct their knowledge struathrguidance from the
guestions that students are asked to investigatdhe learning cycle of a guided inquiry
approach, studes first work on the questions in the learning materials using {brar
knowledge sothat they can develop their ownexplanations based upon their current
understanding of relevargcientific concepts and principles. Thetmey can discussheir

reasormg and explanationsvith their classmates to make sufet their interpretatios are
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consistent withothers The studentganalso be posed questions in other situations and asked to
evaluate whetheheir reasoning is consistent with what actually haggpenthose situations and
with the guidance angerspectiveprovided by the instructor. If the students find thiuweir
reasoning is inconsistent with the perspective providdtey can examine possible
misconceptioa and gaps in theikknowledge. After thestudentsreconcile the differences
between their initial reasoning and the correct perspeciinether questiocan be posed to
guide then to investigate a new aspect of the concepts they just leantetb help them build a
robust knowledge structure

Some havearguwed that inquirybasedearningprovidesfiminimal guidance so it cannot
be more effective than the traditional lecture or direct instruction (Kirschner et al. 2006).
However, further researchlarifies the difference betweemmquiry-based istruction and a
fiminimal guidance approach in which students have very little guidaama shows evidenas
the effectiveness of guidadquiry approach in the learning process (Hm®ilwer et al. 2007).
In fact, the guidedinquiry approach provides exsive scaffolding and rich guidance for
studens learning scientifigorinciples When the questions used in the guidegliry approach
are carefully designedt, can scaffold student learning and help them build a robust knowledge
structure. Moreoverhe role of the instructor ian inquiry-based class is nasimply that of a
person who supplies a set of questions that build on each Bigfte mustpay attention to the
student8reasoning process amdo ni t or st u.dleenristauciorcanelaorespond tp
student8questions and guide them appropriately

We note thatinquiry-based instruction does not exclude other teaching and learning
strategies. Asiotedin the National Science Education Standards, instrustayalduse different

approacksto develop studenbknowledge andscientific abilities (National Research Council,
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1996, p23). Traditional lecture still has its advantage in efficiently distributing the necessary
information, especially when the claBme is not long enougho cover &erything using an
inquiry-based approaciTherefore, when developing reseahased learning tool®r quantum
mechanics, we make the guideduiry approach compatibleith the traditional lecturs. For
example, the instructorsan prepare thie lecturesas they used to but adpulLTs and oncept

tess as inquirybased learning toolduring the lecture tbelp students develop a good grasp of
physics concepts.

For example, to help students develop a better understanding of quantum mechanics via
the SternGerlachexperiment orto help with their understanding of issues relatedjuantum
measuremenive have designed the corresponding Quiwh&h usea guidedinquiry approach
based on studer@isommon difficulties and prior knowledgEach QulLTtypically contains 20
to 30guidedquestions. In a QUILT, weayuse a group of 3 to 5 questions to address one aspect
of the new knowledge. At the end of each grofiguestionsnecessary feedback provided to
students vi@womputer simulationsllustrationsand a general class discussion of the isslighe
QUILT is implemented in class, the instructamnlead a discussion at the end of each group of
guestions taensure that everybody benefits from what others have leafeddifficulty level
of the quesbins as well as the connection betwelferent grougs of questionan a QUILT is
carefullymonitored A QUILT can also be used as a homework supplement or assigifftool

by students.
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1.5 PEERINSTRUCTION

Peer instruction was popularized by Mazur atvded University inthe 1990s. As stated in
Mazur 6s manual of peer l nstruction, the fund
strategy in class is fAto exploit student 1inte
under | yi ndMazurol®97 [0).sThis statement actually points out two commonly
existing problems in many physics classroor@ie problem is thastudents have little
interaction with the instructor and their classmates so they have inadequate opportunity to benefit
from such interactions and reflect on what they are taught. Most students just sit in the classroom
and copy everything on the blackboard or powerpoint sli@esn some cas students would

not bother to come to the class if they can download the slidegge @r copy the lecture notes

from their classmatesStudentsare often too busy in taking notes to ask a question or discuss

their confusions with the instructand classmates. Then after the class, they are very likely to

forget about their questionSome professors ask informal questions in the class to interact with

the students. However, usually only a small group of students in the class are willing to answer

the questions and the silent majority in the ctissot geinvolved.

The other commn problem in the traditional physics classes is ttatlents pay less
attention to the qualitative interpretation than the quantitative skills when learning physics.
Students only learn what they are tested on. Since most of the questions in the hoamelvork
exams in a traditional physics course ask the students to calculate a physical quantity or derive an
equation, things that can be done algorithmicaldythatstudents often have the epistemological
misunderstanding that physics is just a collectbformulas and algorithms. Without incentive,
students make little effort to interpret the concegotd principles and learn to organize their

knowledge hierarchicallyThey tend to use a plug and chug approach to solving physics
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problems by looking for auitable formula in which they could plug in all the variables given in
a problem statemenBut algorithmic quantitative exercises cannot automatically improve
students6 <conceptual under st aparbrming studeRe gne ar ¢ h
guanttative tests may fain the lowperforming group on conceptual teftdazur 1997 p.710).
Therefore, it is of great importance to help students develop conceptual understanding and build
arobustknowledgestructure of physics.

In the peetinstruction @proach, oncept tests are used as a guidance to lead peer
discussions in class. A concept test question is usually a midtiplee question related to a
core concept or principlthat is being discussad the courseMost of the timegthe options in
each multiplechoice question have been prepared beftire lecture(with alternative choices
often dealing with common difficultieshough in some cases the instructor can ask the students
to provide the possible answers and then let the class vote enidieas. For a class using the
peer instruction methodhé class hour can be divided into several pieces of presentations
focusing on each central point (Crouch & Mazur BO@t the end of each short presentation, the
corresponding concept test questi@ne given to the class. Studediscuss with a partner the
answers to theoncept test questisrand then they are polled either by electronic clickers
(Beatty et al. 2006)show of cards (with A through E written on each card) or by show of hands
for each choice in the multiplehoice question

Thereare tremendous advantages to implementing peer instruction in class. First of all,
students are actively engaged in the learning process instead of passively listening to the lecture
and taking notes. Iding the peerdiscussion, studentaustconvey their understanding about the
relevantconceps to their peersas well as examine thep e e intergretationand reasoning

Since this task is challenging, students must constantly be on their toes. They mmisnhfadat
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they just learned, discussing with their pearsd repair, extend and organize their knowledge in
theirlong term memory.

Secondly, in the peer instruction approach, students are encouraged to ask questions.
Moreover, when a student gives arsaer after a group discussion and the answer turns out to
be incorrect, the student would treat it as i
less shy or awkward to ask for clarification. In addition, students can often understand each
othebs difficulty much better than the instruc
material recently and have gone through similar pr@sesk reasoning and clarification of
confusion. Since there is a large gap between the novice and the expeedgeostructure,
some mistakes made by the students may seem puzzling to the instructor. On the other hand,
students in the class may have experienced and overcome similar difficulty in their reasoning
process so they can effectively guide their classntatéise right track. Research have shown
that studeonstrcwant fikkmowl edged when they are s
2005). Ceconstruction of knowledge occurs when neither of the two students in a discussion
group could solve the problemdividually, but they are able to solve the problegether

Thirdly, the instructor could have an instant feedback on how well the class understands
the content just taught. This feedback can be easily and quickly obtained quantitatively and
carefully analyzed later if the classroom is equipped vattelectronic clicker systentudents
use the remote answering device (clicker) to record their answers for a concept test question and
the distribution of their selections can be shown anonymously to tbke wlass via computer
projection. If most students make the right choice, then the instrunisately move to the next
topic. Otherwise, further discussions can take place to make sure that most students in the class

have a correct understanding of tledevant concepts. Even if the electronic devices are not
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available in the classroonte peer instruction method can still be used by asking students to

show their answers using cards or a show of hands. The instructor could prepare cards, or simply

letter size papers, in different colors with the choices A, B, C, D & E so that the answer

distribution can also be efficiently estimated. The drawback of showing cards or raisisgshand

the lack of anonymity. Inthesecasgsudent s 6 ans weed!lsyothedy rlee piomfsleise
Last but noteast, peer instruction witdin electronic clicker systermanincrease thelass

attendancevhich may have positive implications for learnifpints can bewardedo students

for tying to answer the clicker questis even if their selections are incorr&ince students have

learned the material recently, students can be awarded most of the points (e.g., 80%) for trying to

answer the clicker questions even if they are not corAdsb instructors should makstucents

realize thatquestions similar to theoncept test questions witle askedn their midterm and

final exams so thahey take learning with peesgriously instead of randomly pressing a button

on the clicker.
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2.0 IMPROVING STU DENTSOGUNDERSTANDING OF POSSIBLE

WAVEFUNCTIONS

2.1 ABSTRACT

In this chapter, we will describe the difficulties students have with possible wavefisn®tien

will also discuss the development and implementatioa researckbased Quantum Interactive

Learning Tutorial (QuILT) to reduce these difficulties. The preliminary evaluation shows that the

QUILT aboutpossible wavefunctionsef f ecti ve i n 1 mprovintge stude

concepts related to possible wavefunction

2.2 BACKGROUND

The wavefunction isone of themost fundamental conceph quantum mechanics. In Newtonian

mechanics, once we know the positigf = 0) and velocityv(t =0) of a particle with massn
at a given timet=0 and the forceF(x,t) ading on it as a function of time, we can at least
theoretically figure out the positior(t) and velocityv(t) for all future times and from that

information derive other dynamics variables as a fonobf time, e.g., momentum and kinetic
energy. I n quantum mechanics on the other h a

waveo which i s descYixh)eatda giken tintd.h Ehe absote quareoft i o n
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the wavefuntion |Y (x,t)|2 gives the probability density of finding the particle at positignat

time t. The wavefunctiony (x,t) itself is in general complex so its absolute square is
Y OO =Y ()Y (xb), (Eq2.1)

where Y "(x,t) is the complex conjugate of the wavefunctiéiix,t).

Any possible wavefunction of a quantum system must satisfy some basic properties.
First, since|Y (x,t)|2 represats the probability density of finding the particle at positioand
the probability of finding the particle anywhere in space miost unity the possible
wavefunction Y (x,t) for any quantum system must be normalieak.e., for one spatial

dimension,
AY (kb dx=1. (Eq 2.2)

This implies that the wavefunction must be square integrable and must go to zero at plus and
minus infinity. Second, there cannot be two different values of the probability denditydiog

the particle at a given positiox. So the wavefunctiory (x,t) (both its real and imaginary parts)

must be continuous everywhere. Also, the wavefunction must satisfy the boundary cendition

the quantum syem. For exampleY (x,t) must be zero at the boundary of a one dimensional

(1D) infinite square well since the potential is infinite beyond the boundaries of the well.
Moreover, the first derivative of the wavefunctigiy /px must be continuous everywhere

except for the positions where the potential en&f@y) is infinite. This is because the kinetic

energy operator depends on the second derivative of the wavefunction and is given by

2
g/rom=- = X (Eq 2.3)
2m px
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If uY /px is discontinuous at a position where the potential en&ffy) is finite, the
expectation value of the kinetic energy of the particle would be infinite.

A possible wavefunction of a quantum &\ can be written as a linear superposition of
a complete set of basis vectors. Since eigenfunctions of an operator corresponding to a physical
observable, e.g., energy, form a complete set of basis vectors, we can always write a possible
wavefunction inerms of a linear superposition of the energy eigenfunctions for that system. The

energy eigenfunctiong ,(x) (n=2123,...) corresponding to the energi&s satisfy the Time

Independent Schrédinger Equatil'ISE)

M, (%) = Ey,(¥). (Eq 2.4)
Since the time evolution of a quantum system is governed by theO@pendent Schrédinger
Equation (TDSE), the energy eigenfunction at timean be represented by the energy

eigenfunctiorat timet =0 multiplied by a common phase factor, i.e.,
¥ o(t) =y, (x0)e = (Eq 2.5)
When a quantum system is in an energy eigenstate, the expectation value of any ob@jervable

(without explicit time dependee) is timeindependent because the common phase factor
cancels out, i.e.,
(&) = iy 0B, (x1) = i (x0)e™ &y (x0)e ™" = (&Kt =0)). (Eq26)

Therefore, the energy eigenfunctions are also called the stationary state wavefunctions.

However, all stationary state wavefunctions are notipleswavefunctions for a quantum
system. For example, the stationary state wavefunction of a free particle is a pland“wave
where k is the wave vector. This wavefunction is not normalizable so it is not a [@ssib
wavefunction for a free particle. However, a normalizable free particle wave packet can be
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constructed by taking a linear superposition of the stationary state wavefungffonsth

different wave vectork .

2.3 INVESTIGATION OF STUD ENTSAODIFFICULTIES

I n t hese investigations, our goal was t o €
wavefunctiosa f t er tradi ti onal instruction so that v
understanding.The investigationof studenté difficulties with possible wavefunctien was

carried out by administering written surveys to more gnhandredadvancedindergraduate and

graduate studentenrolled in quantum mechanics courses and by conducting individual
interviews with asubset of student8oth operended questions and multiptboice questions

were administered t o The iodwidual sntenviews neres €onducied f i ¢ u
usingathink-aloud protocol (Chi 1994). During the thiakoud intervievg, students wer asked

to verbalize their reasoning process while they answered the questiimg possible
wavefunctions They were not interrupted unless they remained silent for a wititbe end of

the interview, weasked the students to clarifysuesthey had nb made cleain their earlier

explanations.

2.3.1 Difficulties related to the normalization of possible wavefunctions

One survey guestion asked students to draw a qualitative sketch of the ground state wavefunction

of a particle in a 1D finite square well of vid a and depth- V, (V, >0) between0¢ x ¢ a.

We note that though students were provided separate spaces for drawing the wavefunction, they
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still confused the vertical axis in theotential energy diagram with the vertical axis of the
wavefunction. Instead of simply showing the locatiorxafO and x =a in their sketches, many
students redrew the potential energy diagrandsituated the wavefuion in the well without
specifying what the vertical ax of their plos were. Such confusiobetweerthe vertical ais of
the potential energy diagrarmandthe vertical axs of wavefunction indicates that studemisy
have difficulties with interpretinghe dimension (@nit) of the wavefunction. For a possible

wavefunction Y (x,t) corresponding to a quantum system one spatial dimensignthe

normalizationcondition(Eq. 2.2) must be satisfiedvhich implies
unit of Y (x,t) =1/./unit of x, (Eq.2.7)

in which the positiornx has the unit of length.

Another questiorin the investigatiorasked students to draw the wavefunction of the

particle in a 1D finite square well when the energy of the particle is higher than zero (the

potential energyV(x) of the finite square well isV(x)=-V, between O¢x¢a and
V(X) = 0elsewhere)In response to this questiomprse students incorrectly claimed that the

slope of the wavefiction is zero outside the well since the potential energy there isegrp (
Figure 2.1). The studemwho sketcled Figure 2.1 also incorrectly believed that the constant
value ofthe wavefunction in the region Ill is lower compared to region | since dffected by

the potential energy in region Il afdies.

. y=o 4 X4 s \l) has we clope

. N g
5
LA - Bocted  bu  the pofowtral
T — T I, P ooadeettd  su the peteand)
O b-—-.—...a-m,_;____r? 4 n U . |
Y a N [ \ A
/ v, o Hu T OQAH

Figure 2.1 According to this student, he slope of the wavefunction is zero in the regions where

potential energy is zero.
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Some sudentsalso haddifficulty with normalization of the wavefunction and why
normalization is important. For example, some students were confusedtf@oarmalization
issues ofa free particlestationary statevavefunction. Since the stationary state wavefunction of
a free particle cannot be normalizedis not a possible wavefunction for a free particle. Some
studentswere confused about whether a free particen be ina stationary stateFor a free
particle,we can form avave packetvhichis a superposition of thenergy eigenstate#f these
wavepackets are formed by takiaginear superposition of stationary statasa very narrow
range ofthe energy spectrumt can bemade normalizable but stilonsideredo be almost a
stationary state wavefunctiohhus although a stationary state wavefunctmfra free particles

not a possible wavefunction, the free particle can still itawnergyin a very narrow range

2.3.2 Difficulties related to the boundary conditions in different potential energy wells

The me dimasional (1D) infinite square well and 1D finite square well @mmonmodels

used to illustratéhe basic machinery ajuantum mechanicglowever,students have difficulties

in differentiatingbetweerthe possible wavefunctiorisr thefinite andinfinite square wellsFor
example, wherasked to draw the ground statavefunctionfor a finite square well,some
interviewed students claimed that the shape of the various bound state wavefunctions for the
finite square well cannot be sinusoidal inside the weltause the sinusoidsfationary state
wavefunctions are onlpossiblefor an infinite square well. One of the students incorrectly
sketchedh Gaussian functioand claimed that the ground state wavefunction should be Gaussian
to ensure that the wavefuran ha no cusp and decayo zero outside the well. However,
solving the TISEfor the finite square wellpne finds that the stationary statevefunctiors
inside the finite square wedlre sinusoidal functionsWe find that whilestudents notiatsome
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differences between the finite and infinite square wstationary state wavefunctions corregtly
they overlookdsome features that these two models have in common.

When analyzing the possible wavefunctsior a finite square well, some students ever
generalizewhat they have learned about the stationary state wavefunctionisatqrotential
energy well.For examplethe stationary state wavefunctions fofirate square welhave non
zero exponential tails (bound states) or oscillatory behavior €sicaftstates)n the region
outside the wellStudents oftenncorrectly overgeneralize the behavior of the stationary state
wavefunctionsand conclude that any possible wavefunction a finite square welnusthavea
nonzero part outside the wekor example, m a multiple choice question, we asked 85 students
whetheranormalized wavefunction as shown in Figure 2.2 pessiblewavefunctionfor a finite

square well betweef < x<a. The wavefunctiory (x) shownis ze&o in the regionx<b, and
x>h,. Only 40%of the students correctly answered that swactvavefunction is a possible

wavefunctionfor the finite square wellAbout 51%o0f the students chose the wrong statement
thatfiit is not a possiblevavefunctionbecause the probability of finding the particle outside the
finite square well is zero but quantum mechanically it must be namz&noong ttose students
who incorrectlybelieved thatthe wavefunction must be nonzero outstte well, 60% also
claimed that the wavefunctian Figure 2.2does not satisfy the boundary condition of the finite

square well.

W (x)

- b
#=0 =3 x

Figure 2.2 A wavefunction localized inside a finite square well. Studentsicorrectly believed that any

possible wavefunction in a finite square well must have nerero value outside the well.
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2.3.3 Difficulties related to the continuity of possible wavefunction

Students oftemeglectthe requirement othe continuity of the wavefuntton whenthey sketch

the wavefunctiorfor a particle interacting with piecewisecontinuouspotential energy such as
the finite square wellFor example,n Figures 2.3(a) and (b)both studentsrealizedthat the
ground state wavefunction is sinusoidaside the finite square well and decaying outside the
well. However, they drew the wavefunction inside and outside the veelparatelywithout
ensuring thathe wavefunctions continuousat the boundariebetween different regiondn
Figure 2.3(c)a student sketched a scattering statavefunctionof a particle incident from the
left side of the wellThe wavefunctionshould beoscillatoryin all the three regions (including
inside the we)l instead of exponentially decaying as drawn by the student, #isstudentwho
drew Figure 2.3(cincorrectlysketcheda discontinuousvavefunction at the left boundary of the

well.

L]

Figure 2.3 Samples of incorrect sketches of wavefunctions which are discontinuousthe boundaries

of the finite square well.
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2.3.4 Difficulties related to the continuity of the first derivative of a possible wavefunction

Compared to the continuity dahe wavefunction, the continuity of the first derivative of the
wavefunction is more diffidu for the students tanternalize Many students do not correctly
interpret the meaning of the first derivative of the wavefunctign px. Sincethe derivative of

MY /px (or the second derivativef Y ) is relatedto the kinetic energy of the system, the
wavefunction must be smooth everywhere except where the potential energy is infinite. For
example, in a 1D infinite square well betwe@m x ¢ a, the first derivative of the stationary
state wavefunctions are continuous betw8enx < a but discontinuous at the boundaries: O

and x=a. Thus,a possible wavefunctiofor an infinite square well should not have any cusp
inside the wellHowever, when we asked the students whether the furasishown in Figure
2.4 wasa possible wavefunction fan infinite square well, four out of seven students claimed
that it is a possible wavefunction even though the question explicitly mentiondgd¢batinuity

of UY /px at the positionx =b inside the well. 8me sudents made similar mistakes when they

were asked to draw tlgground statevavefunctionfor a finite square well as shown in Figure 2.5.

Hix)

Figure 2.5 Wavefunction with a cusp inside the well drawn by a studentThe wavefunctionis not

allowed for a finite square well.
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Some studentw/ho did not realize that the first derivative of the wavefunchoustbe
continuouswhere thepotential energyis finite overgeneralize their experience about the
discontinuity ofuY /px at the boundaries of an infinite square veitl incorrectly believed that
MY /px can be discontinuous at the boundariesadinite square welbs well For example,
when sudents were givem question asking therto draw a wavefunction that gossible for
both infinite and finite square wella student sketched a stationary state wavefunction for the
infinite square well and claimed thidti the stationary state wavefunction for the infinite square

well) also waks for finite squarewellso.

2.3.5 Difficulties with qualitative sketch of the possible wavefunction without using

guantitative solutions

Some students have difficulties with qualitatively sketching the possible wavefunction if they do
not know the quantitate solution of thélime-IndependenSchrddinger EquatiofTISE) for the

system. During the interview, one student claimed that it is impossible to draw the stationary
state wavefunctions for a finite square well because one must find the solution of a
trarscendentalequation which can only be numerically solved. When the student was
encouraged to make a qualitative sketch, he drew two coordinate axes and then drew some
parallel curves and a straight line from tbegin interceptingthe curves (Figure 2.6He
claimed that all he can say without solving the equatiomericallyis that theinterceptswill

give the wavefunctiorWhile one must solve a transcendental equation to find the finite number
of bound states for a finite square well, the student wiasdato draw a qualitative sketch of the
wave function, something that is taught even in a modem physics course. In particular, students
are taught that the bound state wave functions for a finite square well look sinusoidal inside the
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well with an exponetmal tail outside in the classically forbidden region. It appeared that the
student had memorized a procedure but had not developed a qualitative "feel" for what the bound

and scattering state wave functions should look like for a finite square well.

Figure 26 A studentds sketch to find a graphical sol uti
believed was necessary to obtain a qualitative sketch of the ground state wavefunction for the finite square

well potential energy.

24 RESEARCH BASED LEARNING TOOLS

Based on the investigation of studédsficulties, we developed QUILT to improve studends
understanding of possible wavefunctions. The goal of the possible wavefunction QUuILT is to
help students learabout possible wavefunctions and bridge the gap between conceptual and
guantitative aspectsihe development ahe QUILT went through a cyclical iterative process
which includes the following stage€l) Development of the preliminary version based upon
theoretical analysis of the underlying knowledge structure and research on students' difficulties
with possible wavefunctions, (?nplementation and evaluation of the QUILT by administering it
individually to students, measuring its impact on studenhiegrand assessing what difficulties
remained, (3) refinement and modification based upon the feedback from the implementation

and evaluation.
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As noted in the introduction section, the QUILT uses a guided approach to learning about
the possible wavefuncins for a given potentialenergyn d it t akes advantage
knowl edge and resources about wavefunction fo
The QUILT also uses computdérasedvisualizationtools to help studentslevelop physcal
intuition about thepossible wavefunctionfor different potential energies. The simulagon
adapted in the QUILT related tbe infinite square well and the free particle wave pachet
developed by the Open Source Phygiagect(Christian & Belloni 2008), which is flexible and
can be easily tailored to the desired situationsur QUILT. We also adapted a PhET Interactive

Simulationdevelopedat the University of Coloradim our QUILT (McKagan et al, 2009

2.4.1 Possible wavefunctiorfor a 1D infinite square well

The first part of the QUILT discusses the possiderefunctionin the simplestmodelinvolving
an infinite dimensional Hilbert spacee., the 1D infinite square well. At the beginniofythe
QUILT, studentget an opportunityo review tle properties of the stationary state wavefunctions

¥ ,(xX)and judge whether the superpositiorttod stationary state wavefunctiofiresented both

in the mathematical and pictorial representaticar®) possible wavefunctiorfer the infinite
square welht a given timeDuring the investigation of studeiifficulties, we found thatmany
students could recognizthat the superposition othe stationary state wavefunctions in the
mathematical representatiasm a possible wavefunction. Butdi incorrectlybelievedthat the
same wavefunction irthe graphical representatiois not possiblebecause the grapis not

symmetric or antsymmetricabout the center of the wellhereforepne question in the QuILT
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. . . . . 1 .
is designed in the mathematical regpgatation, e.g.,\/_i[yl(x) +y,(x)], and another one in the

graphical representation as shown in Figure 2.7.

Y

X=0 Ca X

Figure 2.7 A superposition of stationary state wavefunctions for a 1D infinite square well.

To ensurehatstudentaunderstand why thasymmetriovavefunction is a possible wavefunction
even though theotential energys symmetric about the center of thell, we help students
connect the mathematical and graphical representatiomals&/ askhem to considea dialogue
in which students have to make sense of a conversation between two people as follows:

Sally: | don@ understand the answer to questetvove (Figure 2.7)The wavefunction is
neither symmetric nor aniymmetrc about the centeof the well Why is it a possible
wavefunction for a symmetric potential energy?

Harry: When the potentiaknergyis symmetric, an energy eigenfunction must be
symmetric or antsymmetric. But a superposition of energy eigenstates is not necessarily
symnetric or ant-symmetric For example, the sum of an even function and an odd function is
neither even nor odd.

Sally: But | thinka possible wavefunction must be an eigenstate of a particular operator,
e.g., the Hamiltonian or position operator.

Harry: Thatés nd true. The possible wavefunction need not be an eigenstate of a
particular operator. It can be auperpositiorof the eigenstates.

Do you agree with Sally or Harry? Explain.
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The QUILT also asks students to use the simulatiorconstructvarioussuperpositios
of the stationary state wavefunctidios the infinite square well so that they can watch how the
symmetric/antisymmetric stationary state wavefunctions combine intoother possible
wavefunctios that are neither symmetric or asymmetric A snapshot of the simulation is
shown in Figure 2.8The first window showsthe absolute value of the wavefuncti@tudents
can change the width of the infinite square well and start/stop the time evolution to observe how
the wavefunction changes with #mThe optionfiphase as colorshould be selected in our
QUILT. Unselecting this optiorshows thereal and imaginary partef the wavefunction
separatly. The secondwindow shows the coefficients the superpositionThe coefficients of
different energy igenstates (marked yguantum #) can be inputtedo build a wavefunction
which is a linear superposition of stationary staf#®ed is the real part andilmo is the
imaginary part of the coefficientStudentscan use the buttofiNormalized at the bottonof the

second window to normalize the coefficients.

Eigenstste Expansion = | O
@ 'ge P
| o e |
Pl el T TR
a-157 width of well 10000 0.0000
0.0000 00000
Position Space Wave Function 2L £0.0000
20 2,00 0.0000) 0.0000
0.0000] 0.0000]
i 0.0000] __ 0.0000
16 0.0000] 0.0000]
o 0 0.0000] 0.0000]
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F10 0.0000] 0.0000]
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E 0.0000 00000
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0.4 0 0.0000] 0.0000
02 0.0000] 0.0000]
8 0.0000 00000
v g 0.0000 0.0000
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» [ | « | & |a=pon | ] phase as color iswr [+]
— :
: Normal
Rﬂlﬂ increase dt to change omeize |
Hiagtitop ’ wavefunction faster
Quantum Normalize

Number
Figure 2.8 OSP simulation of the possible wavefunction in a 1D infinite square well.

Students are asked to first predict the qualitative shape imlugasuperpositions of the
stationary state wavefunctions and then use the simulation to examine their prediction. Students
also must reconcile the differences between their prediction and what they observe in the

simulation. Theollowing is a sample ecerpt:
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. . 1
Predict and sketch the shape of the wavefundtion) = E[ufl(x) -y,

Input 1 as the coefficient for the ground state abhdor the first excited state in the

simulation coefficient boxClick Anormaliz& and observethe absolute valueof the

superposition wavefunction. Is the shape the same as your prediction? Explain. (Note that the
simulation shows the absolute value of the wavefunction.)

After the students use the simulation to build a superposition of the stationary state
wavefunctions, theyre given several multiple choice questions to review the properties of a
possible wavefunction in an infinite square well. For example, students often incorrectly believe

that any possible wavefunction must satisfy the TISE. In the QUILT, we ask sttaleotssider

whether the wavefunctiolt (x,0) = i[yl(x) +y2(x)] satisfies the TISE. After their prediction,

J2

students must check their prediction by explicitly plugging the wavefunction in the TISE. They
are also asked to find the wavefunction at timend tken plug it into theTime-Dependent

Schrédinger Equatio(TDSE) to check whetheY (x,t) satisfiesthe TDSE. They learn that a
possible wavefunctiory (x,t) always satisfies the TDSE but not necessanigTISE (unless it

is a stationary state or a superposition of stationary states with the same energy). Students are
also asked to predict how different possible wavefunctions for an infinite square well evolve with
time and they use the simulations in the QUILT to check theadiction. This activity is
particularly useful in helping students understand the difference between the time evolution of
the probability density for a stationary state wavefunction and a superposition of the stationary

state wavefunctions.
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2.4.2 Possible waefunction for a 1D finite square well

The stationary state wavefunctions for an infinite square well are in the form of sinusoidal waves
inside the well and zero outside the well. It is a simple model to help students understand that the
possible wavefuction for a quantum system can be written as a linear superposition of the
stationary state wavefunctions. However, the possible wavefunctions for an infinite square well
are always zero in the classically forbidden region. Moreover, due to the potaetigy ®&eing
infinite outside the well, first derivative of the wavefunction is not continuous at the boundaries.
These artificially constrained properties of the infinite square well are not true for more realistic
potential energies. Therefore, studentsstriearn the properties of the possible wavefunctions
for more realistic potential energies, e.g., the 1D finite square well.

While discussinghe 1D finite square well, students assked to consider whether a
wavefunction witha discontinuous first devative is a possible wavefunctigias shown in
Figure 2.9. Studentdearnthatit is a possible wavefunctidior an infinite square welbut not

for a finite square webince its first derivative is discontinuous»>at 0 and x=a.

A
Y

Figure 2.9 The first derivative of the wavefunction is discontinuous at the boundaries so this
wavefunction is not a possible wavefunction for a finite square well.

Students use the simulaiti to observe the shape of the stationary state wavefun@ions
a finite square well. Theganalso build a wavefunctiowhich is a linear superposition of the

stationary state wavefunctions in the simula@owlcompare the difference between the pdssib
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wavefunctionsfor the finite square well and the infinite square well. ¥daptedhe quantum

bound state prograns¢esnapshot irFigure 2.10) developed by the PhET team at the University

of Coloradoin the QUILT. Studentstan change the depth and viadif the 1D finite square well

and select particularenergylevel to observe the absolute squareaofenergy eigenfunctian

Students can also build various linear superpositions of stationary states by clicking the button

fiSuperposition Staéeand inputing the coefficients as desired. Students can abs®rve the

time evolution of the absolute square of the wavefunction (probability density) by clicking the

buttonfiPlay/Pause . I n t he Qul LT

of t he

possi bl eewavef

outcomes, e.g., the qualitative shape of the superposition j%a{)el(x) +y,(¥)] in a finite

square well and then check their prediction using the simulation.

| £ Quantum Bound States (1.03)

File Colors Help
[ one well \

‘ Total Energy —F‘utenha\EnErgy‘

Energy (eV)

Probability Density

Energy chart
Potential Well

Sauare

| configure Potential

Show magnifying glass (10x)

. W_\__

Display
@ Probability Density

Wave Function

Wave function views:

change

[ superposttion state.. | ——— .o officient

change
height

change
width

imaginary part
\ change
phase O PENE2T .

zero
point

| Play/Pause

Heipl |

Figure 2.10 A snapshot of the simulaion of the finite square well

time evolution

Figure 2.11 shows an example in which students are given two similsstatmnary

wavefunctions (but onetretchedto the leftwith respect to the other) to learn that a possible

wavefunction in a finite square well can ibenzero beyond the well and need not be symmetric
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about the center of the well. Earlier in the QUILT, in the contexhefinfinite square well,
students are asked to consider the same two wavefunctions and determine if they are possible
wavefunctions. Asdiscussed in chapte2.3.2 some students incorrectly believe that the
wavefunction must be nerero outside a finite square well because of the fact that the stationary
state wavefunctions for this system aywdnave a nouzero part outside of the well. We therefore

also asked students whether a peaked wavefunction as shown in Figure 2.2 is a possible
wavefunction for a finite square well. For all the three wavefunctions (Figure 2.2, Figure 2.11(a),
Figure 2.11b)) for a finite square well, students learn that they are possible wavefunctions
because they are fAcontinuous, smooth and nor
stationary state wavefunctions have a-mero part outside of the well does not Iynthat we

cannot take their linear superpositions to form possible wavefunctions that are zero outside the

well.

Y P

X
=0 ¥=3 ;-::CI Xx=a

Figure 2.11 (a) The wavefunction is zero in the classically forbidden region of anfite square well.

(b) The wavefunction is nonzero in the classically forbidden region of a finite square well.

Students again use the simulations to check the time evolution of the stationary states and
non-stationary states for a finite square welludints are also asked to sketch, e.g., the ground
state wavefunctions for the finite and infinite square wells and compare and explain the

similarities and differences between these wavefunctions.
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2.4.3 Possible wavefunctiorfor a free particle

In some quantunsystems,e.g., a free particlethe stationary state wavefunctions are not
normalizable.Although the possible wavefunctions in such quantum systems &rear
superposition ofthe stationary states, the stationary stateemselvesare not possible
wawvefunctions. In the QuILDn possible wavefunctions, we use the free pargsgiemto help
studentsinderstand these issues

In the QUILT, students arasked to choose the correct graphical representation of the

stationary state wavefunction of a freatmde and their attention is drawn to the fact thiae

stationary state wavefunctismAe" for a free particleare not normalizable. We provided a
dialoguequestion as shown below to help the students understand why an energy orunoment
eigenstate wavefunction for a free particle is not a possiélefunctionbut we can still have a
free particle with definite energy or momentum.

Sally. How can the energy eigenfunction not be a possible wave function for the free
particle?

Harry: Beause the absolute square of the wavefunction must be normalizable.
Otherwise the total probability of finding the particle would be infinite.

Sally: | disagree. If the energy eigenfunction is not a possible wave function, that means
we cannot have a freagicle with definite value of energy or momentum. But classically we can
always have a free particle moving with a constant momentum.

Harry: Well, the free particles in reality exist as wave packets. The magnitude of the

21,2

momentum of a free particle ip=>k and the energy i€ = >2m 2p

, Wherek=7 is the

magnitude of thewave vector. A wave packet could consist of plane wel¥ewith different
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wave vectork in avery narrow range. Thus, we can consider the wave pack&féectivelp
having a definite energy and momentum, if the distribution of energy/momentum is highly
localized about a given wave vector

Do you agree with Sally or Harry2xplain.

We incorporated another simulatitom Open Source Physics to help studdessnthat
afree particlewave packetan be constructed usindimear superpositioof the stationary state
wavefunctions. Studentsan observéhat the wave packapreads outis time evolvesStudents
learnthat thespreadingf thewave packet is due to different stationary state wavefunctiais
form the wave packet having different phase velocitgBtadents alsdearnthat in condense
matter physis, the free particle model is often used for electrons in metals with periodic

boundary conditions imposed on the system

2.4.4 QulLT Homework for Possible Wavefunctions

The QUILT homework helps students revithe conceptthey have learned in the QUILT. In the
homework,studentanustexplain in their own words why the wavefunctioustbe continuous.
Students are given different wavefuncti@m askedo judge whether they amossible forthe
finite or infinite square wellnd explain their reasoninghey are also askl to differentiate
between any possible wavefunction atiee stationary state wavefunctions. the QUuILT
homework, students asdso asked to explain why they agree or disagree with statements about
the possible wavefunctions such as the following:

(1) Consider the following statemen€or an infinite square well, all possible

wavefunctions are energy eigenfunctions because the time independent Schrédinger equation
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(TISE) is an eigenvalue equation for energy. Exphainy you agree or disagree with this

statement.

(2) Consider the following statementshd energy eigenfunctioAe” (A is a constant
and k is the wave vector) for a free particle is not a possible wavefunction. Therefore, we cannot

represent a possible wavefunctibor a free particleas a superposition of functions of the

form Ad. Explainwhyyou agree or disagree with this statement.

2.5 PRE-TEST AND POST-TEST DATA

We conducted preliminary evaluations of the QuHbbut possible wavefunction in two
junior-senior levelqguantum mechanicslasses, first with 13tudentsand second with 18
students. The two classes were taught by the same instructor. In both classes, students first
received traditional instruction abotlie possiblewavefunctiondor different quantum systems,
e.g., 1D infinite square well, 1D finite square well, free particle, etc. After traditional instruction,
students took the pitest and then worked on tigUILT. The postest was administered ingh
following class period aftestudents hadinished theQuILT. We designed two versions of a test
(versions A and B) to assess studéntglerstanding of possible wavefunctions. Both vessfon
and B have 5 questiomsich Students were randomly giventit version A or version B of the
test as the preest after the traditional instruction. Then, each student was administered the
version of the test he/she had not taken as thet@sisafter working on the QuILT. In particular,

15 students in the twoadses were administered version A astese (and version B as the post
test) whereas the other 16 students were given version B as ttestpfand version A as the
posttest). The average ptest score for all 31 students was 63% and the averagéegbstore
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was 89%. The average giesst and postest score on each question combining the two classes is
listed in Table 2.1.

Question A2 asks students to consider whether a wavefunction with a cusp (as shown in
Figure 2.4) is a possible wavefunctiaor fan infinite square well. The improved performance
suggests that the students are more likely to understand that a possible wavefunction must be
smooth. Question 8 as shown below tested whether students could recognize the discontinuous
first derivative of the wavefunction at the boundary which is not possible for a finite square well.
The results of question-B indicate that after the QuILT, students had a better understanding of
these issues.

Question B3: Select all of the following wave functioméhich are possible for an
electron in a one dimensionéihite square well of width &etweenx=0 and x=a. A is a
suitable normalization constant. You must provide a clear reasoning for each case.

(@) Y (X) = Asin@ox/a) for 0¢ x¢ a,Y (x) =0, otherwise.

(b) Y(x) = A(\/TSsin(a(/a) +\/T53in(2,a</ a)) for 0¢ x¢ a, Y (x) =0, otherwise.

(€) Y (X) = Ag (227"

Questions A and B4 both asked students to consider whetlhe stationary state
wavefunction for a free particle is a possible wavefunction. We gave the mathematical form of
the stationary state wavefunctigké® for the free particle in question-A but not in B4. The
improved performance ohoth questions in the pesst suggests that students have a better
understanding of the normalization issues of the free particle stationary state wavefunctions. In
the posttest, some students explicitly mentioned that a possible wavefunction fa& paittecle

can be constructed by forming a wave packet using a linear superposition of the stationary state

wavefunctions.
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Question A5 asked students to sketch a single wavefunction thatgsible for both
infinite and finite square wells of width. Both wells are betweer=0 andx=a. If students
believed that such wavefunctions do not exist then they were asked to explain their reasoning.
Partial scores were given to students if they only drew a correct graph but did not provide an
explanation. Inthe pretest, more than 80%f the students either sketched incorrect graphs
which are not possible for the finite square well or incorrectly claimed thataswakefunction
does not exist. After the QUILT, students realized that a possible wavefuratibath infinite
and finite square wells must be zero outside the well and smooth everywhere including at the
boundaries of the well. Question®Basked the students to sketch a single wavefunction that is
possible for the infinite square well but not #ofinite square well. Students showed improved
understanding of the properties of possible wavefunction in different potential energy wells after
the QuILT.

Table 2.1 The pre-test and posttest scores on eaclyuestion. A and B represent the test version.
Fifteen students were administered test A and sixteen students were administered tesinRhe pre-test and

switched the test versions in the podest.

Question A-1 | A2 A3 A4 | A5| B-1 | B-2|B-3|B-4|B-5

Pretest Score in %| 97% | 60% | 93% | 67% | 17% | 81% | 41% | 44% | 66% | 50%

Posttest Score in % 94% | 88% | 97% | 97% | 84% | 100%| 93% | 86% | 79% | 75%
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26 SUMMARY

We have investigated student so dsifdrfdiferentl t i es
guantum systems and used the findimgsa guide to develop the QUILT related to possible
wavefunctions. Preliminary evaluation suggests that the QuUILT about possible wavefunction is

effective in improving studentsd6 understandin
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3.0 IMPROVING STUDENTS 6UNDERSTANDING OF BOUND & SCATTERING

STATE WAVEFUNCTIONS

3.1 ABSTRACT

In this chapter, we ebcribethe difficulties students have witihe bound and scattering state
wavefunctions. We alsaliscussthe development and implementation of a resebeded
Quantum Interactive Learning Tutorial (QulLTo reduce these difficulties. The preliminary
evaluation shows that tH@uILT about the bound and scattering state wavefuncisoeiective

inimpr oving st ude n thacéncepts rélated doduadrandiscattering $tates

3.2 BACKGROUND

Energy eigenfunctiong (x) (n=123...) corresponding to the enéegE, satisfy the Time

IndependenSdrddinger EquatiofTISE) for a quantum system with HamiltoniaEl, le.,
() =Ey.(¥). (Eq3.)
The energy eigenfunction at timecan beobtainedby multiplying the energy eigenfunction at

Ept/> &
y |

time t =0 by thephase factoe .e.,

YWt =y (x0)e = (Eq32)
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Since the energy eigenfunctions of a quantum system form a complete set of basis vectors
for the Hilbert space, any possible wavefunctminthe systen can be written as a linear
superposition othe energy eigenfunctions for that systeBased onte comparison betweehe
energyof a particle for a given quantum systamd the potential energy at plus/minus infinity
(in the position spagethe energigenstates can be categorized into bound states and scattering
states. If the energyf the particlas less than the potential energy at both plus and minus infinity,
the energy eigenstate is a bound state. Otherwise, the energy eigenstate is agsstteri
When approaching infinityX- ° ¢), a bound state wavefunction for a quantum system decays
to zero so the bound state wavefunctions are normalizable. But a scattering state wavefunction is
oscillatory at either plus or minus infty or both so it is not normalizablelowever although a
possible wavefunction can be constructed by taking a linear superpositi@soéttering states,

a scattering state itself is not a possible wavefunction for the quantum system.

3.3 INVESTIGATION OF STUDENTG DIFFICULTIES

In these investigations,uor goal was t o difeculteesnwith ¢he tound dnelnt s 6
scattering state wavefunctiomdgter traditional instructiorso that we can devise strategies to

improve studenfsunderstandingThe invesigation d studenté difficulties with the bound and

scattering statevavefunctiors wascarried out by administering written surveys to more than two
hundredadvancedundergraduate and graduate studemt®lled in quantum mechanics courses

and by condumg individual interviews with a subset of studentge have useddih open

ended questions and multipteh o0i ce questions t o The mdvelualst uden

interviews were conducted using a thallbud protocol (Chi 1994). When the studemtsveered
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the questions in the thirddoud interviews, they were asked to verbalize their reasoning process
and not interrupted unless they remained silent for a whiléhe end of the interviewstudents

were askedo make further explanations on the sswvhich they had not clarified earlier.

3.3.1 Difficulties related to the classical bound state and the quantum bound and

scattering states

In a classical system, when the energy of an object is less than the potential energy in the local
regions, the object i aclassicabound state. For example, as shown in Figure 3.1, if a toy car
with energyE is initially located betweerx=a and x=b, it is bounded in that region and
cannot move to other regie such ax<a or x>b. The positions where the potential energy

V equals the total energy of the classical objedre called the classical turning points, e.g.,

x=a and x=b in Figure 3.1(at these points the kinetic energy of a classical particle is zero
and the particle turns aroundlhe regions beyond the classical turning points are called the

classicdly forbidden regions suctsdhe regions (1), (II) and (1V) in Figure 3.1.

Vix)

<« %em.%ﬁ-me}& v —>

Figure 3.1 An example of classical bound state but quantum mechanical scattering state.

However, for a quantum particle in an energy eigenstate, its wavieiumetnonzero in
the classicdy forbidden regions except where the potential energy is infinity. Therefore, a

guantum patrticle in an energy eigenstate has a finite probability of being found in the ¢jassical
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forbidden regions. Many students have diffties indifferentiatingbetween the classical bound
and scatteringtates and the quantum mechanical bound and scattering states. Take the system
shown in Figure 3.1 as an example. Some studentsur studyincorrectly claimed that a
guantum particle mnst stay in region (lll¥or all times while some other students mistakenly
believed that a classical partialdich was initially in region (lll)can also be found in region (I).

Many students incorrectly belies¢hat any potential energy that alloaslassical bound
state musalsoallow a quantummechanicabound state. We have given 109 studentsewven
universities a multipkehoice question asking them whether a quantuschanicabound state
is allowedfor the potential energy as shown in Fig@.€. Only 22% of the students correctly
recognized that no bound state could exist in sysbtential energy well since the energy of the

guantum particle must be greater than the potential energy at plus/minus infinity.

Figure 3.2 A potential energy well that does not allow quantum mechanical bound states.

3.3.2 Difficulties related to the bound and scattering statebeing part of the same

wavefunction

Some studentsave difficultyrealizng that a bound stater a scattering state is only determined

by comparinghe total energye of a quantum particlan the given statand the potential energy

V at plus/minus infinity. Insteadsome studentslaimed that agiven quantum particle is in a

bound state between the classitaining points and in a scattering state elsewhere, which
indicates that these students incorrectly believe that the bound and scattering state wavefunctions

aredifferent parts of the same wavefueti For example, Wwen we asked the students to draw a
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qualitative sketch of a ground state wavefunction and a scattering state wavefunction for a one
dimensional (1D) finite square well of widi and depth- V, betveen0¢ x¢ a, a student
sketched a wavefunction as shown in Figure 3.3. He believed that the part of the wavefunction

inside the well was a bound state and the parts of the wavefunction outside the well were

scattering states correspondingaiifree particl@.

U AF S peo e e
’L)/L = C %(@;\) + D uﬂ("%‘3 Rownt  state
U B LS Go e

Sl i ns

Figure 3.3 An incorrect sketch of a wavefunction with bound and scattering states simultaneously.

We have administered a multiptboice question to 85 students asking them to judge
whether the energy levels, and E, correspond to a particle in a bound state or a scattering
state in a finite square well as shown in Figure 3.4. Nineteen percent of the students incorrectly
believedthata singleparticle in a giverstationarystatecanhaveenergyE, inside the well and
have a differenenergyE,outside the wellThese students failet notice that one stationary

state wavefunction cannot have differemergjes in different regions. Therefore, a quantum
particlein a given stateannot have a bound state wavefunction in some regions and a scattering
state wavefunction in other regions.

E,

—_— —

E,

x=0 X=a

Figure 3.4 E; corresponds to a bound state and Ecorresponds to a scattering state. A quantum

particle in a stationary state cannot have different energies in different regions.
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3.3.3 Difficulties related to the quantum tunneling effect

In quantum mechanics, there is a fmmmoprobability for a particle to be found in the classically
forbidden regions, which is usually called the tunneling effect. However, some students
incorrectly believe that theunnelingeffect can only exist in thecattering states. For example,

we asked suwents whether a quantum particle with enefgyinteracting with a piecewise
continuous potential energy as shown in Figure 3.5 is in a bound state or a scattering state. Since
E <V at both plus and minus infinityhé particle should be in a bound state. But some students
claimed that the particle is in a scattering state bedausan tunnel through the barriersSome

other students believed that the particlenia bound state in the regions (lI), (11I) and M)tin

a scattering state in the regions (1), (IV) and (VI) sificlassically the particle cannot be found

in those regiorns

| |

my | av) %!
| |
| |

Figure 3.5 An example of a bound state particle tunneling into the classicébrbidden regions.

Moreover, although some students realized ghabrzerowavefunction could exist in
the classically forbidden regions, they still mistakenly believed that it is impossible to find the
particle in the regions where the energy of theigaris lower than the potential energlg €V ).
When we asked the students where they can find the pdaicdegiven potential energy well as
shown in Figure 3.5, several students claimed that the particle cannot be found in(i&gitAs

and (VI) becauséthe particle only tunneled through these barderfowever, when the students
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wereexplicitly asked about whether a bound state particle can be found outside the finite square

well, they would answer yes with no doubt.

3.3.4 Difficu lties in determining bound statesrelated to the maximum value of potential

energyvs. the energy of the particle

A particle is in aguantum mechanicddound state if and only if its energy is less than the
potential energy at both plus and minus infinflpwever, some students are confused about the
state of the particle when its energy is lower than the maximum value of the potential energy. We
have administered a question to 15 students asking them about the state of a particle with energy
E interacting with a potential energy barrier (with maximum valyleas shown in Figure 3.6.

Only seven out of the fifteen students correctly answered that the particle is in a scattering state.
In another multiplechoice quetion about the same systdin Figure 3.6) administered to 85

students, 19% of the students chose the option that the particle is in a bound stakEe<idhen

and in a scattering state wh&>V, .

V= Vo
E
V=0 X
+—— —

X=0 X=a

Figure 3.6 A scattering state particle with energy E lower than the potential energy barrier Y.
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3.3.5 Difficulties related to the directional preference of the scattering state wavefunctions

for a symmetric potential energy

A scattemg state wavefunction is an energy eigenfunction with en&dygher than the
potential energy at either plus or minus infinity or both. A scattering state wavefunction could
have directional preference, e.g., a parteda bedaunded from the left hand side of a 1D finite

square well. However, the directional preference is not necessarya auattering state
wavefunctioncanhave no directional preference. For examp!&,and e ™ are scatténg state

wavefunctions for a 1D free particle system with opposite wave vektansl - k but the same
- ‘2 - -y . i kx . .
energy proportional t(#k . So their superposition wavefuncti@f +e ™ is still an energy

eigenfunction with the same energy as the scattering state wavefure'ticarsd e **. But there

is no directionapreferencedor the scattering state wavefunctieti' + e ™, which is astanding
wave

However, many students have difficulties with the isstedated tothe directional
preference of a scattering state wavefunction. Some students incorrectly assumed that all
scattering states must correspond to a particle being launcmedrfirmus or plus infinity. Such
misconception could be due to ovganeralizing their experience about the experiments of
scattered particles in modern physics. While some other students cthambied scattering state
wavefunctionsfor a finite square wk can be symmetric, their reasoning was incorrect. For
example, some of theincorrectlysketched the scattering state wavefunction as a symmetrical

straight line.
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3.3.6 Difficulties related to the transmissionand reflection of a quantum mechanical

particle in the scattering state

Classically, when a particle with ener@y moves toward a region with higher potential energy

V, > E, the particle will be bounced back. Or if the potential energy is lowerVj.&.E, the

particle will transmit without reflection. However, in quantum mechanics, the wavefurigtion
general has a nereroprobability of transmission and reflection simultaneously. For a patrticle in
a scattering state being launched from thiesiele of a 1D finite square well, it could have a-hon
zeroprobability of being bounced back by the well. Thus, the wavefunction on the left side of
the well has components of both incident and reflected waves Aetj.+ Be ™.

Some studest have difficulties with the transmission and reflection af quantum
mechanical particle ithe scattering states in quantum mechanics. A muitipbéce question
about a particle launched from minus infinity with eneigy O interactirg with a 1D finite

square well (with the depthV, <0 as shown in Figure 3.7) was administered to 18 students.

Only 67% of the students correctly selected the options that the particle nbiasrdgion-zero

probability of passing throughe well but als@ non-zero probability of being bounced back.

E
¢ V=0
X
\V=-Vo
x=0 X=a

Figure 3.7 The particle launched from the left hand side of the potential energy well has a naero

probability of being bounced back by tte potential energy well.
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3.4 RESEARCH-BASED LEARNING TUTOR IAL FOR BOUND & SCAT TERING

STATE WAVEFUNCTION

Based on the investigation of studérdgficulties, we developed researblased learningools
such as a QUILT and peer instruction tools to improve staglenderstanding of the bound and
scattering state wavefunctions. The QUILT helps the students learn about the bound and
scattering state wavefunctionssing a guided approach. We also dseomputerbased
visualization tools in the QUuILT to help studedesvelop physical intuition about the bound and
scattering state wavefunctions for different potential energies. The simulations we adapted in the
QUILT on bound and scattering state wavefuncii®re developed by the PhET team at the
University of Colorad (McKagan et al, 2009). Before the students start using the QUILT, a
warm-up tutorial is provided to prepare all students with the necessary preliminary knowledge.
The peer instruction tools address studgcdsnmondifficulties related to the bound and
scattering state wavefunctions so that the students could reduce some misconaegtmnkl a
better knowledge structutarough peer discussion. We have used the concept tests as eur peer
instruction tools in the juniesenior level quantum mechanicseucse at the University of
Pittsburgh for two years. Studemgistdiscuss each concept test question with thearsbefore
they submit the answethrough the clickers (electronic systenmhe instructas discussthe
concepts and principles involved time concept test questions if the students show difficulty in

answeringhequestions.
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3.4.1 Warm-up tutorial for the bound & scattering state wavefunction

In the warmup tutorial, students get aopportunity to review how to derive the energy
eigerfunctions fron the TISE and why the energy eigenstates can be categorized into bound

states and scattering stat8sidents are asked to write the TISE as

>2 uZY
2m px?

=V(- E)Y, (Eq3.3)

whereV (x) is the potential energy an is the energy eigenvalue. When the potential energy is

greater than the energy of the particle, the curvature of the wavefupé¥aohux® has the same
sign asthe wavefunctionY . Students are asked to sketch a fumcsach that the curvature of
the wavdunction and the value of thevavdunction are both positive (or both negative)
everywhere. Through plotting the function, the students will realize that such a function will
keep increasing while approaching infin{yr keep decreasing while approaching minus infinity)
so it cannot be a normalizable wavefunction. Therefore, students could learn why the energy of a
guantum system must be greater than the minimum value of the potential energy.

Students are also requiremlqualitatively draw a wavefunction in the region near infinity
based on the relation between the curvature and the value watigunction (Eq 33). They

find that the wavefunction at plus/minus infinity is oscillatonEtV(° g and dcay to zero
if E<V(° 9. A multiple-choice questiomelpsstudentdearnthat when the energy is less than

the potential energy at both plus and minus infinity, the wavefunction can be considered as
bounded in a finite range because thabpbility of finding the particle gilus and minugfinity

is zero.Thus,the studentare guided taunderstand that whether a quantum system is in a bound
state or a scattering state depends on the erdrdglye quantum particle compared tthe

potental energy value at plus/minus infinity.
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After the students learn that the bound states and the scattering states are both energy
eigenstates, the QuILT asks them whether a quantum particle could have different energy in
differentregions of a piecewiseontinuous potential energy well (e.g., Figure 3.8). The QuILT
also contains a dialogue question to elaborate that a particle in an energy eigenstate can only
have one energwhile its wave function can extend over various regiang the energy of the
paricle is not well defined if the wavefunction is not an eneejgenstate The warmup
guestions alstelp students leartinat the energy spectrum of a quantum system is discrete for
the bound states and continuous for the scattering states.

V(x)

@ (I1)

Figure 3.8 An energy eigenstate only corresponds to one energy though the potential energy could

have different values in different regions.

3.4.2 QUILT onthe bound & scattering state wavefunction

At the beginning of the QUIL, we ask the students a sequence of questions to help them
distinguish between the classical bound states and the quantum bound states. Then students are
given some questions about the 1D infinite square well and the simple harmonic oscillator (SHO)
potertial energy well which only allow bound states. Studex$® predict whether a quantum

particle can be found in the classlgalorbidden regions of a SHO potential energy well and

then they can use the simulation to observe the bound state wavefuriotiamsSHO and

reconcile the differences between their predictions and observalibey also compare and
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explain the similarities and differencbstweenthe bound state wavefunctions of a 1D infinite
square well and a SHO.

After the students have leaththe simple models, e.g., the iiinite square well or the
SHO, which only allow bound states, they gueded withsometargetedguestions about the 1D

finite squarepotentialenergy well ¥(x) =-V, <0 between0 ¢ x ¢ a andV(x) =0 elsewhere)

that allows both bound and scattering states. Students first predict the shape of a bound state
wavefunction inside and outside the finite square well when the energy is less than zero. A
computer simulation helps the stutkenbserve the shape of the bound state wavefunctions for a
finite square well sahat theycan examine their predictiorand reconcile any differences
between the prediction and observatidien the students are asked to consider whether a
scattering st wavefunction with energ¥ >0 incident from the left side of the well will
necessarilybe bounced back by the well. In the simulation about the scattering state
wavefunctions, studentsanwatch that the amplitude of the wavefunctisna constant on the

right hand side of the well but not on the left hand side. Students learn that the changing
amplitude of wavefunction on the left hand side is due to the interaction between the incident
wave and the reflected wave. In a pictorial mplgtchoice question as shown in Figure 3.9,
students are asked to select the correct shape of a scattering state wavefunction with no
directional preference (e.g., option (ll) in Figure 3.9) when the particle is not sent from one side
of the well. A dialgue question in the QulLTMelps students understanthy a scattering state

wavefunction does not necessarily have directional preference.
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%=0 x=a

(1)

Figure 3.9 A multiple choice question asking students to choose thmrrect qualitative sketch of a

scattering state wavefunction with no directional preference. The correct answer is () only.

Some potential energies such as a 1D finite square banéx) €V, >0 between

0¢ x¢ a andV(x) =0 elsewhere) only allow scattering state wavefunctions. As discussed in
section3.3.4 some students mistakenly believe that a wavefunction is in a bound state when the

energy of the particleE is less than the maximum potential eneigy. To reducethese

difficulties aboutthe scattering stagdor a particle interacting witla 1D finite square potential
energy barrier, the QuILT asks the students to pteiilie state (bound or scattering) of a

quantum particle when its energy/higher or lowerthanV,. Then the students could use the

simulation to change the height of a potential barrier and the energy level of a particle to observe
the shape of the wavefunction inside and outside the barrier. Students will find that the
wavefunction is always oscillatory on the left and right sides of the barrier no matter whether the
energy of the particle is lower or higher than the potential barTfieerefore, for a particle
interacting with a finite potential energy barrier, its energy eigenfunctiwesyscorrespond to
scattering states. Students are also asked to predict whether the wavefunction will be reflected by
the barrier or transmit thugh the barrier. Their predictions can be checkadhe simulationby
comparing the amplitude of the wavefunction on the left and right sides of the barrier. The

varying amplitude ofprobability densityon one side of the well indicadhat the incident
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wavefunction is reflected by the potential energy barrier. A snap shot of the simulation is shown

in Figure 3.10.
| Total Energy  — Patential Energy |
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Figure 3.10 PhET simulation of a scattering state wavefunction incident from the left handide of a
potential energy barrier. The probability density (square of the amplitude) of the wavefunction varies on the

left side of the well due to the interaction betweerhe incident and reflected wavefunctions.

In addition to the QUILT, a sequence researckhased concept test questions can be
integrated with the lectures as p#sstruction tools to improve studedtsnderstanding of the
issues related to bound and scattering state wavefunctions. The concept test questions will be

discussed ichapte 8 in this thesis.

3.5 PRELIMINARY EVALUATI ON

We conducted preliminary evaluation of the QUILT about bound and scattering state
wavefunctions in two juniesenior level quantum mechanics classks first with 14 students
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andthe second with 18 students.ustents first received lectures and then used the concept tests
as peeiinstruction tools in both classes when learning the topics related to bound and scattering
state wavefunctions. After the lecture and the peer instruction in class, students toeki¢ise pr

and then workd on the QUILT. The podest was administered in the following class period
after students had finished the QUuILT. To eliminate any possible differences in the difficulty
levels of the preest and the podéest, we designed two veosis of a test, i.e., Test A and Test B,

each of which has six questions. Students were randomly given either Test A or Test B as the
pretest and then each of them was administered the version of the test he/she had not taken as
the posttest. In particulg 18 students in the two classes were administered Test A as {testpre

and 17 of them (one student absent) took Test B as thagsbstThe other 14 students were
given Test B as the pitest and 12 of them (two students absent) took Test A as #téepbd

The average prest score for all 32 students was 69% and the averagéegbstore for the 29
students was 86%. The average-f@s® and postest score on each question combining the two
classes is listed in Table 3.1.

Questions Al and Bl require the students to consider a particle with endfgy
interactingwith a piecewise continuous potential energy as shown in Figure 3.5 (questijpn B
and Figure 3.11 (question-B). Students are asked to write down all the possdg®ns where a
classical particle or a quantum particle could be found. The improved performance suggests that
the students are more likely to understand that a quantum particle inadithhend or scattering
state could be found in the classical forl@ddegions. Questions-3 and B4 ask the students
whether a quantum particle with enerByincident fromx=- t©would be bounced back by a
finite square well questionA-3 as shown in Figure 3.7) or a finite squaserier (question Bl

as shown in Figure 3.12). The results of questiofs ad B4 indicate that students hawge
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better understanding of the fabat an incident particleas a finite probability of reflection even
if its energy is higher than the maxum value of the potential energy well/barrier. A statement
about the directional preference of the scattering $tate finite square welis usedin both
guestions A6 and B6 as shown below. The instructor did not explain thet@se questions to
the students before they took the ptest and the students did not know that such question
would be askedagain in their postest. In the postest, students showed better understanding of
why the scatteringstate wavefunctionfor a finite square wellcan be symmetric without
directional preference They also sketched clearer graphs of wavefunctions to support their
reasoning.

Question A6/B-6: SudentA says that the scattering state wavefunction for an electron
interacting witha finite square well caneverbe symmetri@about the center of the wédecause
the electrorhas tobe launched from either left or rightudent B says that the scattering state
wavefunction for a finite square well can be symmetric about the center of the well because the
electon need not be launched from left or right. Explain wby agree or disagree witbach

student Qualitatively sketcla wavéunction to support your answer.

I | (1) | i |
m S m o
1 | T
| |
T T

V.

1

V=0 v,

Vv,

4

Figure 3.11 A particle with energy E interacting with a piecewise continuous potential energy well.
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(i) (ii) (i)

=0 =a V=0

Figure 3.12 A particle with energy E incident from the left side of a finite square barrier.

Table 3.1 The pre-test and posttest scores on each question. A and B represent the test version.

Question| A-1 | A-2 | A-3| A-4 | A5 A6 |B1|B-2| B3 |B-4|B-5|B-6

Pretest | 75% | 94% | 67% | 89% | 64% | 56% | 68% | 61% | 93% | 50% | 57% | 43%

Posttest | 96% | 92% | 92% | 83% | 67% | 79% | 82% | 97% | 100% | 76% | 76% | 91%

Since the peeinstruction tools used in clagefore the préest mayenhance studerds
performance in the prest, we administered the piest of bound and scattering state
wavefunctions to another group of students (tenparisongroup) who lad only received
traditional instruction without using the concept tests and the QuILT. Inaimparisongroup,
15 students took Test A and 10 students took Test B taftgitional instruction. The average
score for all the 25 students in tbemparisongroup is 41%. Theomparisongroup students
average score on each question is listed in Table 3.2. By comparing the §tpotatt scores
after using the peénstruction tools (as shown in Table 3.1) with twenparisorgroup® scores
(as shown in Tdk 3.2), we can infer that the concept test reduced stuitéffisulties in some
issues related to bound and scattering state wavefunctions. For example, the -ohdigde
guestion B3 asks the students whether a 1D finite square well allows boued stascattering
states. In theomparisorngroup, only 50%of the students knew that both bound and scattering

states could exidor a 1D finite square well and many students mistakenly believed that only
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bound states were allowed. Questior! Aequires lie students to judge the state of a particle
with energyE interacting with a higher potential energy barrier as shown in Figure 3.6. More
than half of thecomparisongroup students incorrectly believed that the particle is in a bound
state when the energy is lower than the maximum value of potential energy. In que2tiva A
asked the students to sketch the energy levels of the bound states and scattering states for a 1D
finite square well. Theomparisorgroup students hadifficultiesin realizing that the energy of

the particle cannot be lower than the minimum value of the potential energy. Also some students
in thecomparisorgroup did not understand that the scattering states are energy eigenstates with
definite energy value. Atgdent sketchea classical scattering situation such that an incident
particle was reflected when hitting the potential energy veslishown irFigure 3.13). Another
student claimed that the scattering state requires a potenéiedybarrier instead o potential

energy well and sketched a plot as shown in Figure 3.14.

_—

E,

Figure 3.13 A student in the cmparison group incorrectly sketcheda classical scattering situatiorto

represent the energylevelfor a quantum scattering state.

AN

Figure 3.14 A student in the canparison group believed only the energy barrier allowsa scattering
state and he sketcheda classical scattering situation to represent the enerdgvel for the quantum scattering

State.
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Table 3.2 The control group scores on each question. A and B represent the test version.

Question | A-1 | A-2 | A-3| A4 | A5|A6|B-1|B2|B-3|B4|B5]|B-6

After Lecture| 60% | 57% | 7% | 47%| 50% | 23% | 55% | 55% | 50% | 10% | 50% | 25%

3.6 CONCLUSION

We have investigated studedithfficulties related to bound and scattering state wavefunctions
for different quantum systems and used the findings as a guide to develop the QUuILT related to
bound and sattering state wavefunctions. Preliminary evaluation suggests that the QuILT about
bound and scattering state wavefunction effective in improving studerdsinderstanding of

these concepts. Comparisbetween the class using paestruction tools togher with the
lectures and the class having only traditional lectseiggests that the perstruction tools can

reduce studendslifficulties about bound and scattering state wavefunctions
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4.0 IMPROVING STUDENTS 6UNDERSTANDING OF DRAWING ENERGY

EIGENFUNCTIONS

41 ABSTRACT

In this chapter, we describe the difficulties students have with drawing the energy eigenfunctions.
We also discusthe development and implementation of a resebaded Quantum Interactive
Learning Tutorial (QUILT) to reduce these difficulties. The preliminary evaluation shows that the
QUILT about drawing the energy eigenfunctions is effective in improving studdents

understanding of the concepts related to the shape of the energy eigenfunctions.

4.2 BACKGROUND

As stated by the correspondence principle, when the energy of a quantum system is high enough,
the behavior othe quantum system is close to the correspondingickssystem. Therefore, we

can use a senulassical approach wualitativelyanalyze the shape of the energy eigenfunctions
with high energy levels. In the sewiassical approximation, the kinetic enerigyfor a particle

in a quantm system is given bX = E- V(X) where E is the energy eigenvalue (total energy)

andV(x) is the potential energy of the system. The shape of the energy eigenfunction depends
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on the value of the kinetienergyK . In the regions where the kinetic energyis negative

(K <0), the energy eigenfunction decaysei§ in which the magnitude of the wave vector

is definedby

(m is the mass of the particle ards reducedPlanclé constant)(Eq4.2)

In the regions where the kinetic enerffyis positive (K >0), the energy eigenfunction is
oscillatory. In order to qualitatively sketch the oscillatory energy eigenfunction, we nieeo\o
the wavelength of the wavefunction. Theavelengthof an energy eigenfunction can be
expressed by the de Broglie b / = 22>/ p where the magnitude of the momentpnfior
the quantum system goportional to the magnitude of the wave vedtoii.e.,

p=>k =~/2mK . (Eq4.2)
Therefore, the higher theanetic energyK , the shorter the wavelength.

If the kinetic energyK is positive, the relative amplitude of the oscillatory energy
eigenfunction in different regions can also be deterthimethe semclassical approximation. In
the regions where the kinetic energy of the particle is larger, the momentum of the particle is
larger so the particle movd#asten. Therefore, the particle will spend less time in the region
with higher kineticenergyK and the probability of finding the particle in that region is lower.

Since the absolute square of the amplitude of the wavefurj;zt(oz@j2 represents the probability

density of finding the particle at the pd&in x, the absolute value of the amplitude of the

Wavefunctionjy (x)| must be lower in the region where the kinetic energy is higher.
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4.3 INVESTIGATION OF STU DENTG& DIFFICULTIE S

In these investigations,uo goal was tee x a mi n e difficultidsevitht dsawing the energy
eigenfunctionsafter traditional instructioso that we can devise strategies to improve students
understandingThe investigation ostudent8difficulties with drawing the energy eigenfunctions
wascarried out by administering written surveysmanyadvanceduindergraduate and graduate
studentsnrolled in quantum mechanics courses and by conducting individual interviews with a
subset of themWeusedopere nded questi ons t deshyexplicittyaskibgudent s
them to sketch the energy eigenfunctions for a given quantum sy&tenndividual interviews

were conducted using a thiatoud protocol (Chi 1994). In the thirdtoud interviews, students

were asked to verbalize their reasonprgcess and not interrupted unless they remained silent

for a while.At the end of the interviewtheywere askedo explain the issues which they had not

clarified eatrlier.

4.3.1 Difficulties related to the position of the y (X) =0 axis

If the taal energyE of the particle is higher than the potential ene¥x), the energy
eigenfunction is oscillatory about theaxis of the y (x) vs. x plot. On the other handf the
total energyE is less than the potential ener§y(x) at plus/minus infinity, the energy
eigenfunction decays tgr(x)=0 at plus/minus infinity. However, some students have

difficulties in distiguishing between the vertical axis of the potential well (which has the units
of energy) with the vertical axis of the wavefunction so they may shift the position of the

¥ (X) =0 axis whensketchingthe energy eigenfunctions. For example airsurvey question,
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students were given a potential energy diagram for edonensional (1D) finite square well of

width a and depth- V, between0¢ x¢ a. Students were asked qualitatively sketchan

energy eigenfunction witpositiveenergyE >0. A student incorrectly drew the wavefunction

to be higher in the middle of the well as shown in Figure 4.1 and clailedt A (t he wavef
is) higher because some of the wave ise#d at the wadl Similar mistakes also appeared

when we asked the students to draw an energy eigenfunctiomegttiveenergyE <0 for a

1D finite squarepotential energy well. The wavefunction shouwdcillate about the axis

¥ (X) =0 inside the well and decay to zero at plus/minus infinity outside the well. However,

some students shifted thvalue ofy (X) about which it oscillateso y (x) >0 inside the well

even though they hatbticed that the decaying axis outside the well yw#g) =0.

Figure 4.1 An incorrect sketch of an energy eigenfunction that oscillates about different &

4.3.2 Difficulties related to decaying andoscillatory wavefunctions

The energy eigenfunction should be oscillatory in the regions wher¥ (x) and decaying in
the regions wherd& <V (x) . However, some students have difficulties in determining whether

the energy eigdunction is decaying or oscillatory in a given region. When we asked the

students to draw an energigenfunctionof a particle with energy >0 interacting with a 1D
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finite square well of widtha and depth- V, between0¢ x¢ a, some students incorrectly

sketched decaying wavefunctions inside the well as shown in Figure 4.2. These students have not

learned what one should observe when the potential eMgrgyis lower in the well. Instead,

they plotted a decaying wavefunction from rote memory that may correspond to a particle
interacting with a potential energy barrier. Moreover, similar to the stéedplut in Figure 4.1,
the student who sketched Figure 4.d¢@prrectly claimed thafithe wavefunction is a) typical
particle wavefunction but lowered by potential wels though the oscillatiore different sides

of the well should be around different references.

Figure 4.2 Incorrect sketches of an energy eigenfunction in a finite square well.

For an energy eigenfunction with an energy eigenvd#ueV(x), the higheris the
potential energy, the faster the wavefunction decays. We dskeddergradatestudents in a
junior-senior level quantum mechanics course to sketch the energy eigenfunction for a particle
with energy interacting with a piecewise continuous potential energy well as shown in Figure
4.3. Only half of the 13tudents correctly noticed that the wavefunction should decay faster in

region (I11) than in region (I) since the potential energy is higher in region (ll1).
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