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Abstract. When we teach physics to prospec tive scientists and engineers we are teaching more than the "facts" of phy s-
ics – more, even, than the methods and concepts of physics. We are introducing them to a complex culture - a mode of 
thinking and the cultural code of behavior of a community of  practicing scientists. This culture has components that are 
often part of our hidden curriculum: epistemology - how we  decide that we know something; ontology - how we parse 
the observable world into categories, objects, and concepts; a nd discourse - how we hold a conversation in order to ge n-
erate new knowledge and understanding. Underlying all of this is intuition – a culturally created sense of meaning. To 
explicitly identify teach our hidden curriculum we must pay attention to students' intuition and perception of physics, not 
just to their reasoning. 
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INTRODUCTION 

Learning a complex field of knowledge such as phy s-
ics is a more complex process than we often give it 
credit for – because it is so natural to us. Even though 
we may have spent more than twenty years in school 
and many more learning to be experts, we have a 
strong tendency not  to think explicitly about learning. 
Rather, w e have “phenom enological prim itives ( p-
prims)” of learning and folk psychology. But to under-
stand our students and their difficulties in m astering 
physics, we have to get beyond our p-prims about their 
thinking and do the science of understanding their 
thinking processes. 

Typically, when we prepare our syllabi, we select 
the content w e intend to “cover” . B ut w hat w e really 
want our students to learn is more than just a set of 
facts: it’s a way of thinking – the manner and “adap-
tive expertise” of the professional. The “hidden cur-
riculum” is made up of those elements that are a part 
of learning our subject that we expect our students to 
learn without our being explicit about them – the items 
that are supposed to “come along for the ride”.  

In order to go deeper than just “that-looks-good-
to-me!” heuristics, we have to do some deep thinking 
about the nature of professionalism in phy sics. W e 
need to develop insight into how the culture of physics 
affects our cognitive processing and our thinking about 
the physical w orld. Som e issues have been explicitly 
studied by the PER community, for example: 

• Epistemology – W hat is accepted as evidence 
for believing a particular result? [1]  

• Ontology – W hat kind of “things” do we talk 
about and what is their nature? [2] 

But there are oth ers that I think w e need to be m ore 
explicit about. One that we often ignore is intuition. In 
order to consider this elemen t, let’s think deeply about 
both how people think in general and how profession-
als think.  We’ll look at the hidden curriculum through 
two lenses: the cognitive and the socio-cultural. 

THE HIDDEN CURRICULUM 

THROUGH A COGNITIVE LENS 

Since we tend to learn without thinking about it explic-
itly, w e need to deconstruct expert thinking. [3] T his 
helps us make sense both of why the hidden curricu-
lum is hidden and what elements we need to begin 
paying attention to. 

Why the Hidden Curriculum is Hidden 

Learning involves a num ber of cognitive develo p-
ments: building links and associations, compiling a s-
sociated elements into chunks that can be used as sin-
gle elements in working memory (and opened up when 
needed), and developing fr amings – learning when 
particular bits of knowledge and activities are relevant. 
These items are discussed in a number of papers (see 
[4], section 4 and refs. therein). They help explain why 
things that seem  trivial to an expert m ay be difficult 
for a student and why the process of developing exper-
tise rem ains “hidden”. A  critical elem ent in under-



standing both of these issues  is intuition. Its cognitive 
content is suggested by two parables. 

Two Parables of Achilles 

The first parable comes from a book on the subject 
of cognitive linguistics. [5] In this book, G illes Fa u-
connier and M ark Turner consider how we make 
meaning of language and the detailed ways in which 
we construct new ways of thinking out of old. They 
are not trying to make sense of the formal elements of 
language, but rather of what goes on invisibly “under 
the hood”. Here is a selection from their preamble. 

We live in the age of the trium ph of form . In 
mathematics, physics, music, the arts, and the so-
cial sciences, human know ledge and its progress 
seem to have been reduced in startling and pow-
erful ways to a m atter of essential form al struc-
tures and their transformations… . The axiomatic 
method rules, not only in mathematics but also in 
economics, linguistics, sometimes even music. 

On the other hand, common sense tells us that 
form is not substance: The blueprint is not the 
house, the recipe is not the dish, the computer 
simulation of weather does not rain on us. W hen 
Patroclos donned the arm or of Achilles to battle 
the Trojans, what the Trojans first saw was the 
spectacular armor, and they naturally assumed it 
was Achilles, and were terrified, and so the a r-
mor by itself looked as if it was turning the battle. 
But it didn't take long for the Trojans to di scover 
that it w as just A chilles's arm or, not A chilles 
himself, and then they had no pity.…  Clearly the 
miracles accomplished by the armor depend on 
the invisible warrior inside. [5]  

Fauconnier and Turner go on to flesh out the A chilles 
metaphor. Our formal linear reasoning is like the a r-
mor – powerful and enhancing; but without the “inner 
Achilles” – our parallel processing “recognition sof t-
ware” – the formal reasoni ng is useless. Some ps y-
chologists work very hard to try to build computa-
tional models of recognition, but do not yet seem to be 
able to help us at the phenomenological level. For 
now, I suggest we need to think of “intuition” as some-
thing distinct from formal reasoning but enabling it. 

This point is strengthened further by a second par-
able of A chilles, L ewis C arroll’s “W hat the T ortoise 
Said to Achilles.”  In it th e tortoise undermines Achil-
les’ application of formal logic. Here’s an excerpt. [6] 

Tortoise: Well, now, let's take a little bit of the a r-
gument in that First Proposition -- just two 
steps, and the conclusi on drawn from them. 
Kindly enter them in your notebook. And in o r-
der to refer to them conveniently, let's call them 
A, B, and Z: --  

(A) Things that are equal to the same  
      are equal to each other.  
(B) The two sides of this Triangle are things  
      that are equal to the same.  
(Z) The two sides of this Triangle are  
      equal to each other.  

T: Readers of Euclid will grant, I suppose, that Z 
follows logically from A and B, so that any one 
who accepts A and B as true, must accept Z as 
true?  

Achilles: U ndoubtedly! The youngest child in a 
High School -- as soon as High Schools are in-
vented, w hich w ill not be till som e tw o tho u-
sand years later -- will grant that. 

T: And might there not also be some reader who 
would say 'I accept A and B as true, but I don't 
accept the Hypothetical ' [i.e., proposition Z]?  

A: Certainly there might. He, also, had better take 
to football."  

T: And neither of these readers, the Tortoise co n-
tinued, is as yet under any logical necessity to 
accept Z as true?  

A: Quite so, Achilles assented.  
T: Well, now, I want you to consider me as a reader 

of the second kind, and to force me, logically, 
to accept Z as true." 

A: I'm to force you to accept Z, am  I?" Achilles said 
musingly. "And your present position is that 
you accept A and B, but you don't accept the 
Hypothetical --”  

T: "Let's call it C," said the Tortoise.  
A: "-- but you don't accept  

(C) If A and B are true, Z must be true. ”  
T: "That is my present position," said the Tortoise.  
A: "Then I must ask you to accept C." [6] 

You can see where this is going. It is making the 
point that making the connection between properties 
A, B, and Z does not close the argument but logically 
must be considered as a proposition itsel f.  This is 
rather startling – especially to a theoretical physicist 
such as myself. It’s Zeno’s paradox applied to logic.  
The discussion clarifies the role of our “inner Achil-
les”. Even in formal proof our recognition software  
steps in to cut off the inf inite chain . In other w ords, 
“Oh, I get it!” is NOT an element of formal logic. 

 This explains something that I’ve often seen in my 
classes. I will be doing a deriv ation on the board w hen 
some student asks, “How did you get that step?”  
Looking at it, it appears totally obvious to me. Look-
ing at it again, I realize th at I have carried out a nu m-
ber of steps at once – m ultiplying by 2, m oving some-
thing to the other side of the equation, etc., and that I 
could recognize that the two results were the same 
without thinking about it. To get my students to reco g-
nize their equivalence I had to explicate a number of 



steps. It becomes clear that these intuitive recognitions 
are cultural norms, learned as we become physicists . 
They play a role at different  level than the form al, but 
they play a critical role even in interpreting the formal. 

Applying appropriate intuitions is not automatic, 
even for professionals. Consider the following. 

An Example from Problem Solving 

An interesting example is provided by a problem 
and solution from a recent (highly popular) calculus -
based physics text. Since the problem I am about to 
cite contains an error, I w ill not tell you w hat book it 
comes from. Every text contains errors, and I don’t 
mean to beat up on a particular author for mis sing 
something in the thousands of problems contained in a 
modern text. The problem is shown below. 

On a hot 35 C day, you perspire 1.0 kg of water 
during your workout. 
    (a) W hat volume is occupied by the evap o 
           rated water? 
     (b) By what factor is this larger than the    
           volume occupied by the liquid water? 

Fig. 1: A problem from a calculus-based  
introductory physics text. 

This seems quite strange. W e know a lot about gases, 
in particular, that they expand to fill space. Is the an-
swer to (a), “it depends on the size of the room you are 
working out in”?  To see what they had in mind we 
look at the solution manual. To help students, the text 
suggests a rubric for approaching problem solving. 

Model! –Make simplifying assumptions. 
Visualize! – Draw a pictorial representation. 
Solve! – Do the math. 
Assess! – Check your result has the correct units,  

                is reasonable, and answers the question. 

This is good advice, isn’t it?  Here’s the solution in the 
manual. Note that it claims to follow the rubric. 

Model: –Assume the evaporated water is an ideal gas  
   with a m olar mass of 18 g/m ole. Assume the pres 
   sure is 1 atm = 101.3 kPa. 
Visualize: We are given  

T = 35 C + 273 = 308 K .   

n = 1000 g(1 mol/18 g)=55.6 mol.
 

Solve:    
   (a)       pV = nRT V =

nRT

p

=
(55.6 mol)(8,31 J/mol K)(308 K)

101.3 kPa
= 1.4 m3

 

   (b) In the liquid state  = 1000 kg/m3  
   (a simple calculation yields a factor of 1400). 
Assess: Gases really do take up a lot more volume  
   than the equivalent mass of a liquid!  

Ouch!  The difficulty is that  the answer in the solu-
tion m anual fails to treat the problem  intuitively  – to 
tell the story of the problem. The steps of the rubric are 
gone through formally – but without the activation of a 
sense-making intuition about molecules – and even 
about the nature of gases.  

Tying the analysis to a rubric – a formal set of 
mapped rules (the armor) does not help if it does not 
also activate an intuitive sense of meaning by tying the 
problem to all we know and recognize about a system.  
Again, my point is not to chastise the authors of this 
particular problem  but to poi nt out that even profes-
sionals can produce nonsense if they mistake the a r-
mor for the inner Achilles. 

Intuition has many components: the identification 
of identity – to determ ine when things are supposed to 
represent the sam e thing (as in being able to follow  
formal proof); and the maki ng of meaning – placing a 
problem in a broader context by linking to the many 
things we know about our subject and about the world. 

THE HIDDEN CURRICULUM THROUGH 

A SOCIO-CULTURAL LENS 

What I am calling intuition re lies on our entire experi-
ence of the world, but it also involves strengthening 
our recognition software through professional know l-
edge and experience. The intuition of a physicist does 
not belong to an individual alone, but arises as an 
emergent phenomenon from his or her interactions 
with others in the comm unity of physicists and from 
the educational experiences we create for our students. 
This has pow erful im plications w hen w e consider i n-
terdisciplinary issues such as getting training for our 
majors from service departments such as math – or 
when we ourselves provide training for majors in other 
disciplines such as engineering or biology. 

Math in Physics 

If many of our critical hidden curricular  elements 
are community driven, when we go to different co m-
munities for service courses w e can get som ething 
different from what we want. 

Here’s a problem from a calculus final exam at my 
university. 

The population density of trout in a stream is 
r(x) = 20

1+ x

x2
+1   

where r is measured in trout per mile and x is 
measured in miles. x runs from 0 to 10. 
(a) Write an expression for the total number of 
trout in the stream. Do not compute it. 
(b)… 

Fig. 2: A problem from a final exam  
in an introductory calculus class. 



I suspect that most physicists will be troubled, as I am, 
by the lack of concern for units. Not only is the “20” a 
different kind of object than the “1”, but the “1” on top 
of the fraction and the “1” on the bottom are di fferent 
kinds of objects! (One is a length, the other an area.)  
If one of my students wrot e an expression like that on 
my exam, they would get a 0 for writing nonsense! 

A second problem is that of parameters. On the fi-
nal calculus exam I looked at, every problem had two 
symbols – an independent variable and a dependent 
one. All of the other glyphs on the exam were numbers 
or math symbols; there was not a single param eter. 
This avoidance of parameters is endemic in calculus. 
In a typical calculus text containing thousands of equa-
tions, you will find almost none containing parameters. 
Yet in physics, understanding parametric dependence 
– considering limiting cases, for example – is a critical 
skill. In a typical physics text , you will find few equa-
tions that do not contain numerous parameters. Our 
first equations in kinem atics will contain half-a-dozen 
different letters – and confuse students terribly. 

My third example gets at the heart of the hidden 
ways that we use math differently in physics from the 
way mathematicians do. Do we ever need our students 
to be able to create an epsilon-delta proof?  In fact, I 
claim that in physics, the “derivative” is an approxima-
tion to a physical quantity that is not correctly de-
scribed by a limiting process. We consider a velocity, 
for example, as a ratio of sm all changes . If w e try to 
make t too small, our x will start losing its sm ooth-
ness. We will see the bumps arising from the fibers on 
a wooden track, the vibrations due to Brownian m o-
tion, and eventually, the loss of definition of position 
at all due to quantum mechanics. I tell my students that 
when I w rite dx/dt the “ d”s simply mean a  that is 
smaller than any scale I want to consider. 

These distinctions illustrate hidden differences b e-
tween the epistem ological assumptions the cultures of 
physics and math make in the use of equations. If we 
fail to be aware of these differences – and to comm u-
nicate them  clearly to our mathematical co lleagues, 
they can cause our students considerable difficulties. 

Physics in Biology 

My math example shows how the mathematicians’ 
hidden epistemological assumptions a bout their nature 
of knowledge sometimes have conflicts with ours in 
ways that cause our student s trouble. Sim ilarly, when 
we provide service courses, we need to understand 
how students in other disciplines use what we teach. 

Many groups are now exploring how to better teach 
physics to biology students. O ur traditional approach  
cuts down the course for engineers. But do biol ogists 
ever need to calculate projectile motions?  Why should 
we teach thermo using heat  engines?  No biological 
organism makes its metabo lism on temperature differ-

ences. Why do we essentially never mention chemical 
energy?   

Beyond the content, wh at most biologists do w ith 
physics is often very different from what physicists or 
engineers do with it. The “hidden curriculum episte-
mology” of physics as used in biology embeds the 
physics into highly complex webs of knowledge about 
biological systems. In physics, we tend to always go to 
the simplest example and to build intuitions about 
them, using those intuitions as the bones on which to 
put the flesh of more complex examples. This doesn’t 
work in biology where the physics acts more as co n-
straints (energy conservation, second law of therm o-
dynamics, charge conservation, … ) and by describing 
functional parametric dependence that can be used by 
evolution in different way by different organisms. 

CONCLUSION 

We often look at student failures and try to fix them by 
creating linear algorithm s – as if the students w ere 
computers to be programmed. This sometimes works – 
because the inner A chilles comes along for the ride. I 
conjecture that m any of the excellent PER reforms 
(Tutorials, Group Problem Solving, Workshop Physics 
[7]) work because they give students free rein to de-
velop their inner Achilles. 

But if want to learn how to help our students in a 
variety of com munities build an ad aptive and flexible 
expertise, we are going to have to pay more explicit 
research attention to understanding and modeling in-
tuition development – from the intersection of a cogni-
tive and socio-cultural perspective.  
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