Physics Education Research Conference 2011

Frontiers in Assessment: Instrumentation, Goals & Practices

August 3 – 4, 2011

Omaha, Nebraska

PERLOC

Contents

Conference Overview	
Outline Schedule	
Bridging Session	
Banquet	
Contributed Poster Session	
Parallel Sessions	
Parallel Session Abstracts	
Plenary Session	
Contributed Posters	
Conference Map	

Conference Overview

Frontiers in Assessment: Instrumentation, Goals & Practices

The theme of the 2011 PER conference will be Frontiers in Assessment: Instrumentation, Goals & Practices. We hope this theme will generate productive dialogues about issues of assessment and help our field grow by highlighting assessments that go beyond traditional approaches.

Motivation

Assessments are fundamental to education. To borrow from Cole Porter: Teachers do it. Researchers do it. Even students in their seats do it. In physics education, researchers have used assessments to probe aspects relevant to learning such as student knowledge, reasoning processes, attitudes and beliefs, and abilities. Teachers use assessments to find out what their students know, engage students, help students learn, and to judge the effectiveness of their teaching. More broadly, people tacitly assess their own performance in a variety of tasks in their everyday lives, while explicit self-assessment, which is critical for learning, may be less common and a challenge to teach. Although everyone does it, not everyone does it in the same way nor for the same purposes.

In a sense, assessments are the instruments of physics education research. Our understanding of our research is only as good as our understanding of what instruments can (and cannot) tell us. New instruments allow for discovery of new phenomena and development of new knowledge. Discussion of assessment is important as our community broadens the scope of the phenomena we would like to examine, the measurements we would like to make, and therefore, the instruments we need. We believe it is timely to bring discussion of assessment issues into the foreground of the PER community.

In the broader field of educational assessment, there is a rich discussion about issues of validity and reliability of various assessment tools as well as alternative modes of assessment, such as formative assessment, student meta-cognitive reflections, portfolios, and performance assessment. Physics education researchers have begun to take up and examine these diverse assessment practices.

For every research study in our field, researchers need to think deeply about the assessments that are used, including their validity and reliability; methodology; alignment with learning, teaching, and research goals; overall purpose; implicit assumptions; and how our current assessment instruments are or are not meeting our objectives as teachers, researchers and learners.

Organizing Committee:

David Brookes (*Florida International University*), Brian Frank (*University of Maine*), Elizabeth Gire (*University of Memphis*), Matty Lau (*University of Pittsburgh*), & Noah Podolefsky (*University of Colorado*).

The Organizing Committee for the PERC 2010 Conference would like to express gratitude to the following individuals for their invaluable assistance:

Lyle Barbato, Cerena Cantrell, Noah Finkelstein, Tiffany Hayes, Bruce Mason, and Mel Sabella.

The conference program and other information can be found on the web at:

http://www.compadre.org/per/conferences/2011/

Outline Schedule

Wednesday, August 3

3:00pm – 4:30pm: Bridging Session (Harper Center- Hixson Lied Auditorium)

Assessment Lessons from K-12 Education Research: Knowledge Representation, Learning, and Motivation. *Lorrie Shepard, University of Colorado at Boulder*

Complex Interactions between Formative Assessment, Technology, and Classroom Practices. *Edward Price, California State University San Marcos*

Discussion

4:30pm – 5:00pm: Break – Set up contributed posters. (Harper Center Ballroom A/B)

5:00pm – 7:00pm: Banquet and Dinner Speaker (Harper Center Ballroom C)

Standards-Based Grading with Voice: Listening for Students' Understanding. *Andy Rundquist, Hamline University*

7:00pm - 10:00pm: Contributed Poster Session (Harper Center Ballroom A/B)

Thursday, August 4

7:30am - 8:30am: Breakfast (Harper Center Ballroom A/B)

Continuing discussions around contributed posters

8:30am - 10:00am Morning Parallel Sessions

10:00am - 10:20am Coffee Break (Harper Center Ballroom A/B)

10:20am - 12:20pm Plenary Session (Harper Center- Hixson Lied Auditorium)

Research and Development of Enhanced Assessment Tools for Chemistry Education. *Thomas A. Holme, Iowa State University*

Defining and Assessing Competence in Science: Lessons Learned the Hard Way. James W. Pellegrino, University of Illinois at Chicago

Student Engagement in Disciplinary Assessment Co-presenter: Janet E. Coffey, University of Maryland Co-author: David Hammer

12:20pm - 1:50pm Lunch (Harper Center Ballroom C)

1:50pm - 3:20pm Afternoon Parallel Sessions

Bridging Session

Wednesday, August 3 3:00pm – 4:30pm

(Harper Center- Hixson Lied Auditorium)

Presiding: Elizabeth Gire, University of Memphis

3:00pm – 3:30pm

Assessment Lessons from K-12 Education Research: Knowledge Representation, Learning, and Motivation

Lorrie Shepard, University of Colorado at Boulder

For 30 years, research on the effects of high-stakes testing in K-12 schools has documented the negative effects of teaching to the test. Most obvious is the reduction or elimination of time spent on science and social studies instruction, especially in high poverty schools. Less obvious is the harm to student learning in reading and mathematics when instruction is limited to repetitive drill on worksheets that closely resemble test formats. The lack of generalized, flexible understanding of underlying principles in K-12 tested subjects is similar to Mazur's experience with plug-and-chug versus conceptual test questions. The PER community is well aware of the importance of more complete representation of learning goals as a remedy to this problem. Equally important, however, are the assessment "processes," especially feedback and grading, that can either promote or deter students' engagement and willingness to take responsibility for their own learning. In this talk, I summarize learning and motivation research that has particular bearing on effective classroom assessment practices, in K-12 classrooms certainly, but even in university courses.

3:30pm – 4:00pm

Complex Interactions between Formative Assessment, Technology, and Classroom Practices

Edward Price, California State University San Marcos

Interactive engagement (IE) methods provide instructors with evidence of student thinking that can guide instructional decisions across a range of timescales: facilitating an activity, determining the flow of activities, or modifying the curriculum. Thus, from the instructor's perspective, IE activities can function as formative assessments. As a practical matter, the ability to utilize this potential depends on how the activities are implemented. This talk will describe different tools for small group problem solving, including whiteboards, Tablet PCs, digital cameras, and photosharing websites. These tools provide the instructor with varying levels of access to student work during and after class, and therefore provide a range of support for formative assessment. Furthermore, they differ in physical size, ease of use, and the roles for students and instructor. These differences lead to complex, often surprising interactions with classroom practices.

4:00pm – 4:30pm: Questions and Discussion

Banquet

(Harper Center Ballroom C)

Presiding: Noah Podolefsky, University of Colorado

Dinner Speaker: Andy Rundquist, Hamline University

Standards-Dased Grading with Voice: Listening for Students' Understanding Standards-based grading is gaining popularity at the high school level, including physics courses. The basic notion is to give your students a list of objectives upfront that they need to master. Students can reassess often and their final grade is determined solely by their last reassessment on each standard. It's the instructor's job to help students find ways of showing their mastery to you. I implemented this in a junior-level mechanics course where the small numbers allowed me to introduce a novel twist: all assessments had to include student's voice. This meant that students turned in pencasts, screencasts, and inperson assessments. Several days were also set aside for collaborative oral assessments, where students offered up honest advice and scores were mutually determined. In this talk, I'll share my experience trying out this pedagogical experiment and try to convey how it has improved my own understanding of my students' understanding.

Contributed Poster Session Wednesday, August 3 7:00pm – 10:00pm

(Harper Center Ballroom A/B)

Contributed posters should be set up in (insert location) during the break between the bridging session and the banquet (4:30pm – 5:00pm). The poster session will begin immediately after dinner. The posters will be available during breakfast and throughout the day on Thursday. They must be removed by the end of the PERC on Thursday at 4:00pm. The list of contributed posters can be found on page 17 of this program. Authors of the odd numbered posters should stand by their posters from 7:00pm – 8:30pm. Authors of even numbered posters should be at their posters from 8:30pm – 10:00pm.

Parallel Sessions

Thursday, August 4

Morning Parallel Sessions: 8:30am – 10:00am				
Title	Primary	Presenters	Туре	Room
	Organizer			
Formative and Summative	Chandralekha	Bradley S. Ambrose, Steven	Poster	3023A
Assessment in Upper-Level	Singh	Pollock, Michael Loverude,	Gallery	
Physics		Chandralekha Singh, Corinne		
		Manogue		
Fostering Computational	Marcos D	Michael F. Schatz John B. Burk,	Poster	3028
Thinking	Caballero	Matthew A. Kohlmyer	Gallery	
Homework Systems for	Stacy Godshall	Scott Franklin, Yuhfen Lin,	Round	3027
Learning		Raluca E. Teodorescu, Stacy	Table	
		Godshall		
Supporting Scientific	Bruce R. Patton	Bruce R. Patton, Brian A. Pyper,	Round	3029
Reasoning: From Teachers		Ruth Chabay	Table	
to Materials to				
Students				
The Group-Administered-	Edit Yerushalmi	Charles Henderson, William	Workshop	3023B
Interactive-Questionnaire:		Mamudi, Chandralekha Singh,		
A Cost-Effective		Shih-Yin Lin		
Alternative to Individual				
Interviews				

Afternoon Parallel Sessions: 1:50pm – 3:20pm				
Title	Primary	Presenters	Туре	Room
	Organizer			
Multiple Assessments of	Chandralekha	N. Sanjay Rebello, David E.	Poster	3027
Multiple-Choice	Singh	Meltzer, Shih-Yin Lin, Vincent	Gallery	
Assessments		Coletta, Jing Li		
Proximal Formative	Rachel E.	Sarah B. McKagan, Rachel E.	Poster	3029
Assessment	Scherr	Scherr, Eleanor W. Close,	Gallery	
		Benedikt W. Harrer, Eleanor C.		
		Sayre		
Representation Issues:	Corinne A.	Edward Price, Michael C.	Poster	3023
Using Mathematics in	Manogue	Wittmann, John R. Thompson,	Gallery	
Upper-Division		Corinne Manogue		
Physics				
Moving Beyond	Beth Thacker	Beth Thacker, Patrick B. Kohl,	Poster	3028
Conceptual Inventories		Dedra Demaree, Eugenia	Gallery	
		Etkina, Mojgan Matloob		
		Haghanikar		
Redesigning Assessments	Yuhfen Lin	Yuhfen Lin, David T. Brookes	Workshop	3023B
to Motivate Students for				
Deeper Learning				

Parallel Session Abstracts

Morning Parallel Sessions

Poster Gallery: Formative and Summative Assessment in Upper-Level Physics *Chandralekha Singh*

This poster gallery will explore formative and summative assessment issues in upperlevel physics. The poster presenters will cover different areas of upper-level physics. The issues discussed will include whether assessments similar those used in introductory physics are suitable for upper-level courses and the types of assessment that are effective. A diverse set of formative and summative assessment tools will be discussed.

Poster Gallery: Fostering Computational Thinking *Marcos D. Caballero*

Computation (the use of the computer to solve numerically, to simulate, or to visualize a physical problem) has revolutionized scientific research and engineering practice. However, computation is virtually ignored in most introductory college courses.

In this poster gallery, we present an overview of efforts to introduce computation undertaken in both high school and large enrollment university mechanics courses. Several key questions are highlighted for discussion. How can computation be introduced into courses that have a wide variety of student skill levels? How can students' abilities to use computer modeling be evaluated? What challenges do students face when developing a computer model? What is the role of epistemology for students who are learning this new tool?

Roundtable: Homework Systems for Learning *Stacy Godshall*

Assessment of student work can be a vehicle for supporting student learning. In this roundtable, presenters will explore the issues and structures regarding how various kinds of assessments can support student learning and the research that has been done around this topic.

Roundtable: Supporting Scientific Reasoning: From Teachers to Materials to Students *Bruce Patton*

Developing scientific reasoning is critical in Physics learning. In this roundtable, presenters and participants will explore the issues surrounding student development of scientific reasoning, how to best support it, and the research that has been done around this topic.

Workshop: The Group-Administered-Interactive-Questionnaire: A Cost-Effective Alternative to Individual Interviews

Edit Yerushalmi

Individual interviews are often considered to be the gold standard for researchers to understanding how people think about a phenomenon. However, conducting and analyzing interviews is very time consuming. This workshop will present the groupadministered-interactive-questionnaire as an alternative to individual interviews and engage researchers in discussions about the pros and cons of alternative data collection methods. We will discuss our experiences with both types of data collection tools in the context of understanding instructors' beliefs about problem solving. Both tools made use of an "artifact comparison" technique intended to mimic the instructional decisionmaking. The group-administered-interactive-questionnaire replaced the probing of a oneon-one interview with a group task preceded and followed by individual questionnaires. Workshop participants will compare these data collection tools to identify key design features. Collaborative analysis of data collected in both approaches will examine their validity and reliability in clarifying respondents' intentions.

Afternoon Sessions

Poster Gallery: Multiple Assessments of Multiple-Choice Assessments Chandralekha Singh, University of Pittsburgh

Multiple-choice tests are used frequently in physics education as tools for assessing student learning. These assessments are often used to evaluate research-based curricula/pedagogies because they can be administered to a large student population, and are easy to grade, compare and analyze quantitatively. However, even with research-based multiple-choice tests, students' thought process is not revealed very well by the test answers alone. This session will showcase posters with examples of research highlighting advantages and limitations of multiple-choice assessments. These issues include correlation between students' performance on carefully designed multiple-choice tests and the same problems administered in a free-response format and graded on a rubric, gender effects, and other factors.

Poster Gallery: Proximal Formative Assessment *Rachel E. Scherr*

Classically, formative assessment has been considered in terms of changes made to lesson plans as a result of diagnostic testing. Proximal formative assessment is teachers' continual, responsive attention to learners' developing understanding as it is expressed verbally moment to moment: the process by which teachers carefully attend to specific aspects of individual learners' developing understanding, as instruction is taking place in real time (Erickson, 2007; Heritage, 2010). This is among the most subtle and challenging of formative assessment practices, yet is the one with perhaps the most potential impact on a teacher's ongoing activities in the classroom. This poster session will present research on proximal formative assessment being conducted for the Energy Project in the Department of Physics at Seattle Pacific University.

Poster Gallery: Representation Issues: Using Mathematics in Upper-Division Physics *Corinne A. Manogue*

Upper-division students must learn to apply sophisticated mathematics from algebra, limits, calculus, multi-variable and vector calculus, linear algebra, complex variables, and ordinary and partial differential equations. The presenters in this session will discuss how the representations that we choose may affect whether students are able to use this mathematics spontaneously and correctly, whether they can move smoothly between representations, and the extent to which their understanding of the mathematics enhances their understanding of the physics. The discussant will incorporate the perspective of research in undergraduate mathematics education as it applies to the representations that have been presented.

Poster Gallery: Moving Beyond Conceptual Inventories *Beth Thacker*

Many instructors across the country, particularly those teaching by non-traditional methods or interested in modifying their teaching techniques or curricula, find themselves in need of a more comprehensive assessment instrument. They would like to evaluate their instructional methods through a broader assessment of their students' skills, including laboratory, modeling (conceptual and mathematical), problem solving and critical thinking skills, assessed in the context of physics. They would like an instrument that can be used to compare their students' performance to that of other students nationwide.

In this targeted poster session, we will discuss the pros and cons of existing assessment instruments, which include assessments such as conceptual inventories and pre- and post-testing (mostly local), present work on assessments that go beyond conceptual inventories, and the need for broader, more comprehensive assessments, including examples of assessment instruments that might be useful to serve as a prototype.

Workshop: Redesigning Assessments to Motivate Students for Deeper Learning *Yuhfen Lin and David T. Brookes*

We all want the students to achieve higher level reasoning and learning. There are lots of reformed physics curricula that focus on teaching those higher level skills. However, most instructors struggle to come up with matching exam questions that will assess those higher level skills. In this workshop, we will examine the common assessments: homework and exams. We will discuss how to turn the regular end-of-chapter question into a question that requires students to apply higher level thinking and reasoning. We will also talk about some unusual places to look for possible homework and exam questions. Participants are strongly encouraged to bring a copy of their own final exam to the workshop for analysis and discussion.

Plenary Session

Thursday, August 4, 10:20am – 12:20pm

(Harper Center- Hixson Lied Auditorium)

Presiding: David Brookes, Florida International University

10:20am – 10:50am

Research and Development of Enhanced Assessment Tools for Chemistry Education *Thomas A. Holme, Iowa State University*

The ACS Exams Institute has been producing norm-referenced exams in chemistry for over 75 years. Over the past decade, demands for assessment within chemistry education have increased, and the need has grown to consider additional ways to analyze data or develop assessment tools. This talk will note several examples of research and development related to chemistry exams and their use in classroom settings. Topics include, item-order effects, criterion referencing of exam items and differential item functioning.

10:50am – 11:20am

Defining and Assessing Competence in Science: Lessons Learned the Hard Way *James W. Pellegrino, University of Illinois at Chicago*

What do we want students to know and be able to do in disciplines such as Physics, Chemistry or Biology? How do we determine whether students are attaining our objectives? How can we use this information to improve student outcomes? Questions about defining and assessing competence are at the heart of the science education enterprise and they continue to challenge educators across K-16+. This presentation will provide concrete examples of how best to frame and address these issues using examples drawn from my work on the redesign of AP science courses and exams, my participation in developing the NRC Conceptual Framework for new Science Education Standards, and ongoing research on the validity and utility of instruments such as STEM concept inventories. A major point of the presentation is that principled assessment design should be an essential and driving part of the process of designing powerful and effective science learning environments.

11:20am – 11:50am

Student Engagement in Disciplinary Assessment

Janet E. Coffey, University of Maryland

Co-author: David Hammer

Assessment in classrooms is often viewed as the responsibility of teachers. They typically serve as the ones judge the quality of work and advise students about necessary steps to make progress towards conceptual gains. By and large, then, assessment is something done by teachers to students. When students are involved in assessment, it is often as recipients and users of feedback from teachers. There's an analog to this in science. Assessment encompasses the process of peer review, when community members make judgments about the quality of work and provide feedback in reviews, and when funders decide whether to provide support to a research program. However, in

science, assessment also operates on a different level; assessment of ideas is intimately connected to doing science. In this talk, we examine the relationship between assessment and learning in science and in schools. We argue for engaging students in disciplinary assessment activities and for better coordinating the different purposes and roles for assessment.

Contributed Posters

First Author	Title	#
Alvarado, Carolina	Expectancy violation in Physics and Mathematics classes	19
Alvarado, Carollila	in a Student Centered Classroom	10
Arval Bijava	Investigating Dynamics of Group Learning Using	54
Alyal, Dijaya	Huddleboards	54
Aubrecht, Gordon	Using the Fukushima disaster as a teaching tool	98
Baily Charles	Quantum Interpretation and Modern Physics Instruction -	136
Dairy, Charles	Curriculum Development and Associated Outcomes	150
Bairacharya Rabindra	Student interpretation of definite integrals at the math-	90
Dajracharya, Raomara	physics interface	70
Barniol Pablo	Interpretation of Vector Products: Effect of the Context	92
	and Position of the Vectors	12
Barr Stenhanie	Using Artifact Methodology to Compare Learning	72
Darr, Stephanie	Assistants and Colleagues Classroom Practices*	12
Barthelemy, Ramon S.	PER Funding Census	96
Beatty Jan D	What do students do when they retake an exam in small	22
Deatty, Ian D.	groups?	22
	Adaptation and Implementation of the Physics and	
Belleau, Shelly	Everyday Thinking Curriculum in a High School Physics	39
	Classroom	
Brookes, David T.	Designing a physics learning environment: A holistic	63
	approach	
Camp, Paul J.	Beyond the Standard Pedagogical Model II	12
Cardamone, Carolin N.	Item Response Theory Analysis of the Mechanics	1
	Baseline Test	
Carr. Lincoln D.	Socratic dialogs and clicker use in upper-division	15
	mechanics courses	107
Chabay, Ruth	Reasoning with Physical Models	105
Chasteen, Stephanie V.	Teasing Out the Effect of Tutorials in Upper Division	130
· 1	Physics	
Chen, Zhongzhou	Good looking Animation Improves Transfer by Loading	48
	Meaning into Math	
Chini, Jacquelyn J.	What Do Students Learn about Work in Physical and	112
	Virtual Experiments with Inclined Planes?	10
Christensen, Warren M.	Negotiating Novel Forms of Energy: Phase Energy	43
Close, Hunter	Speciation of energy concepts through speech and	51
,	gesture in interaction	
Cochran, Geraldine L.	Seeking Evidence of Reflective Practice in Learning	74
,	Assistants Writing Assignments	
Corpuz, Edgar	Ine Use of PDAs as Classroom Interaction System:	127
	Instructors Perspective*	17
Crouch, Catherine H.	Teaching Physics to Life Science Students Examining	17

	The Role of Biological Context		
Dana Malian	Experiences of New Faculty Implementing Research-		
Dancy, Menssa	based Instructional Strategies	08	
D.D. J.V. C	Teaching Assistant-Student Interactions in a Modified	20	
DeBeck V, George	SCALE-UP Classroom	20	
Dietz, Richard D.	Gender Bias in the Force Concept Inventory?	5	
	Explicating the latent construct of Brief Electricity and	4	
Ding, Lin	Magnetism Assessment	4	
	Understanding and Interpreting Calculus Graphs: Subject	21	
Dominguez, Angeles	matters	31	
	A 12,000-student analysis of normalized gain and		
Dowd, Jason	alternative metrics using the FCI	2	
Dowd, Jason	Towards a Better Understanding of Confusion	62	
	Students' Views of Macroscopic and Microscopic Energy	4.4	
Dreyfus, Benjamin W.	in Physics and Biology	44	
	Problem-Based Learning in Upper Division Courses:	100	
Duda, Gintaras	Student Successes, Perceptions, and Reactions	129	
Dandan Jawal	"Implicit Action": Understanding Discourse Management	50	
Durden, Jared	in Modeling Instruction	52	
Ellenner Meule	Use of Question Formatting in Relation to Cognitive	25	
Ellermann, Mark	Assessment	35	
Esswein, Jennifer	Scientific Reasoning: Teacher and Student Connection	84	
Easter Thomas	Developing an Energy Assessment for Elementary	20	
Foster, I nomas	Education Majors	29	
Foster, Thomas	Improving Self-efficacy with Intentional Tutoring	110	
Franklin, Scott	RAWR: Rapid Assessment and Web Reports	125	
Gaffney, Jon D. H.	Improving physics self-efficacy in pre-service teachers	109	
	A longitudinal study of the development of attitudes and	25	
Galloway, Ross	beliefs towards Physics	25	
	PeerWise: student-generated content for enhanced	33	
Galloway, Ross	engagement, learning and assessment		
Galloway, Ross	Observing the problem solving strategies of students	101	
	Making sense of operators, eigenstates and quantum	107	
Gire, Elizabeth	measurements	137	
Goertzen, Renee	Building blocks of a community of practice: TA	76	
Michelle	professional development	/6	
Creary Korea E	Effects of the Learning Assistant Experience on In-	72	
Gray, Kara E.	Service Teachers Practices*	15	
Hall Nicholas	Facilitating Enhanced Student Interest through Increased	16	
Han, Micholas	Autonomy in the Classroom	10	
Haugan, Mark P.	Reinventing Time and Spacetime	138	
Howking Loffron M	Probing student understanding with alternative	26	
Hawkins, Jettrey M.	questioning strategies	30	
Handarson Charles	Faculty Perspectives about Institutional Assessment of	69	
Henderson, Charles	Teaching Effectiveness	09	

Hinojosa, Carlos	Confronting the difficulties in learning the uncertainty principle: Active learning in a Mexican context	118	
Hinrichs, Brant	Student Difficulty with non-Cartesian Unit Vectors in Upper Level E&M	131	
Hu, Dehui	Scaffolding students transfer of problem solving from calculus to physics	87	
Ibrahim, Bashirah	Using Johnson-Laird's cognitive framework of sense- making to characterize engineering students' mental representations in kinematics	57	
Iverson, Heidi	Understanding the Variable Effect of Course Innovations on Student Learning		
Johnson, Andy	Nonscience Majors' Thinking About Ionizing Radiation	116	
Juma, Nasser	Case Study of Students Ill-Structured Problem Solving during a Capstone Project in an Electronics Lab	132	
Kaczynski, Adam	Students Reconciling Contradictory Commitments in Damped Harmonic Motion Problems	139	
Khan, Neelam	Assessing Students Ability to Solve Introductory Physics Problems Using Integrals in Symbolic and Graphical Representations	86	
Kost-Smith, Lauren	Examining Critical Features of Replicating Educational Interventions	65	
Kramer, Laird	Institutionalizing Reform: Investing in Faculty Instructional Practices	70	
Kuo, H. Vincent	Teaching creativity and innovation to physicists using Tablet PCs	126	
Laverty, James	A scalable system for teaching graphs.	124	
Lee, May	Successes and Constraints in the Enactment of a Relatively Successful Reform	40	
Li, Jing	Investigating students' difficulties with equations involving circuit elements	115	
Lin, Shih-Yin	Using Analogical Problem Solving to Learn about Friction	119	
Lin, Yuhfen	Designing formative assessment that guides students towards self-directed learning	34	
Lunk, Brandon	Student Conversations while Completing Minimally Working Computational Models	49	
Lynch, Robert B.	Comparing Epistemological Gain Based on Class	10	
	Standing	10	
Madsen, Adrian	Standing Influence of Visual Cues on Eye Movements and Reasoning in Physics Problems	47	
Madsen, Adrian Mamudi, William	Standing Influence of Visual Cues on Eye Movements and Reasoning in Physics Problems Teaching Assistants Reasons for the Design of Problem Solutions for Introductory Physics: Rationale and Methodology	10 47 78	
Madsen, Adrian Mamudi, William Mandell, Eric	Standing Influence of Visual Cues on Eye Movements and Reasoning in Physics Problems Teaching Assistants Reasons for the Design of Problem Solutions for Introductory Physics: Rationale and Methodology Student Problem Design: Learner-Driven Creation and Evaluation in Physics Assignments	10 47 78 21	

	them while solving introductory physics problems?		
	Implementing a Problem-Solving Assessment Tool on a		
Marin-Suarez, Teresita	Student-Centered Classroom	19	
Martinuk Mathew	Do Prescribed Prompts Prime Sensemaking During		
"Sandy"	Group Problem-Solving?	104	
Sundy	Assessing Students Ability to Solve Textbook-Style		
Marx, Jeff	Problems: Undate	28	
	Using similarity ratings surveys to assess deen-structure		
Mateycik, Frances	feature emphasis during problem comparison	103	
	Student Views of Similarity between Math and Physics		
McBride, Dyan	Problems	89	
	Conservation of Energy vs. Conservation of Value in		
McKagan, Sarah	Energy	114	
	Predictors for Success in calculus-based Introductory		
Menon, Deepika	Physics Course	66	
Miller Kelly	To What Extent Is Seeing Not Believing?	64	
	Improving Interpersonal Communication Skills in	01	
Moreno, Diana T.	College Science on a Student-Centered Classroom	55	
Murphy, Sytil	A Comparison of Two REU Programs	26	
	Finding Meaningful Search Features for Automated	20	
Nakamura, Christopher	Analysis of Students Short Responses to Conceptual	7	
M.	Questions	,	
Nicholson-Dykstra	Impact of the Learning Assistant Experience for High		
Susan	School Physics Students	23	
	Grading by Conceptual Category: A Technique that		
Paul, Cassandra	Emphasizes Conceptual Understanding	27	
	Free-Response Administration of a Mechanics Reasoning		
Pawl, Andrew	Inventory	32	
	Facilitating faculty conversations: Development of	+	
Pepper, Rachel E.	consensus learning goals and assessment measures	71	
	Towards research-based strategies for using PhET		
Perkins, Katherine	simulations in middle school physical science classes	113	
	A Large Scale Assessment of the Interaction of Lecture		
Pietan, Amy	and Lab Interventions in Students Learning	8	
D 1 1 0 1 1 1	Context Dependence of Teacher Practices in Middle	0.7	
Podolefsky, Noah	School Science	85	
	Using Verbalizations To Understand How Students		
Polak. Jeffrev M.	Think About Integration In Introductory	88	
roluk, serirey ivi.	Electromagnetism Contexts		
Pollock, Steven	Issues and progress in transforming a middle-division	100	
	Classical Mechanics/Math Methods course	128	
	The effect of immigration status on physics identity and	<u> </u>	
Potvin, Geoff	physical science career intentions	67	
Pyper, Brian A.	What does it take to change reasoning ability?	14	
	Assessment preparation: Impacts of explicit reflection	20	
Quinty, Emily	prompts on learning	38	

Rebello, Carina M.	Adapting a Theoretical Framework for Characterizing Students' Use of Equations in Physics Problem Solving	93
Rebello, N. Sanjay	How accurately can students estimate their performance on an exam and how does this relate to their actual performance on the exam?	107
Rodriguez, Idaykis	Communicating scientific ideas: one element of physics expertise	59
Rojas, Sergio	Preparation for Future Learning in Physics via Dynamic Problem Solving Strategies.	100
Rosenblatt, Rebecca	Partial correctness, asymmetries, and hierarchies in understanding force and motion	120
Rosengrant, David	Following Student Gaze Patterns in Lectures	46
Ross, Mike	Teacher-Driven Professional Development and the Pursuit of a Sophisticated Understanding of Inquiry	83
Rouinfar, Amy	Scaffolding the Development of Students Mental Models of Pulleys	111
Rowley, Eric N.	A First Look: ISLE in a Pre-Service Teacher Science Classroom.	82
Sadaghiani, Homeyra	Physics In Uncertain Times	122
Samuels, Natan	Using Cogenerative Mediation to Assess an Aspect of Classroom Culture	80
Sanchez, Casey	Further Investigation of Examining Students Understanding of Lenzs law and Faradays Law	123
Sarapak, Choojit	Learning How to See and Manipulate Nanoparticles Utilizing Noncontact Atomic Force Microscopy	42
Sarapak, Choojit	Learning How to See and Manipulate Nanoparticles Utilizing Noncontact Atomic Force Microscopy	117
Saul, Jeff	Using small-focus group interviews to assess instructional innovation	30
Sawtelle, Vashti	Creating Opportunities to Influence Self-Efficacy through Modeling Instruction	108
Scaife, Thomas M.	Predicting the outcome of instruction: Examples with the contingency model of causal learning	58
Scherr, Rachel E.	Intuitive ontologies for energy in physics	50
Severance. Sara	What are the Effects of Self-Assessment Preparation?	37
Shaw, Kimberly A.	A Survey on Student Self-efficacy in Physics Problem Solving	106
Singh, Chandralekha	Improving Student Understanding of Addition of Angular Momentum	135
Smith, Trevor I.	Student Understanding of Taylor Series Expansions in Statistical Mechanics	94
Snyder, Rachel	Gender Differences in Conceptual Gains and Attitude Regarding Problem Design	24
Spike, Benjamin T.	Toward an Analytic Framework of Physics Teaching Assistants' Pedagogical Knowledge	79
Stephanik, Brian M.	Examining student ability to interpret and use potential	121

	energy diagrams		
Stone Antoinette	A study of student initiated questions in an introductory	53	
Stolle, Alitoinette	physics class	55	
Teodorescu, Raluca E.	Assessment of student-driven multi-level homework	6	
Thealter Dath	Assessing a laboratory-based, inquiry-based algebra	0	
Thacker, Beth	course	9	
Thompson, John R.	TRUSE Conference: Integrating undergraduate physics,	07	
	chemistry and mathematics education research	97	
Van Dusan, Ban	Changing Roles and Identities in a Teacher-Driven	01	
van Dusen, Ben	Professional Development Community	01	
Von Korff Joshuo	Assessment of vertical transfer in problem solving:	61	
von Korn, Joshua	mapping the shape of problem design space	01	
Wang, Jing	Learning Mathematics in a Physics Classroom	95	
Warnen Asnen B	Quantitative Modeling of Changes in Student	2	
warren, Aaron K.	Understanding	3	
West Kaith	Comparison of Traditional and Lecture-Lab Integration	12	
west, Keitin	Instruction in Laboratory Assessments	15	
	Teaching assistants' interactions with their students:		
Westlander, Meghan J.	Exploring changes in teaching methods through	75	
	conversational shifts.		
Wittmann, Michael C.	Evidence of embodied cognition about wave propagation	45	
Wolf, Steven	Interpreting Card-sorting data with categorization graphs	60	
Vu. Oing	Measuring the evolution of introductory physics students'	102	
Au, Qing	problem solving skills	102	
Vandalan Daman Savda	The Effect of High-Stake Testing on Students Learning	56	
refueien-Damar, Sevua	Approaches in Physics	30	
Vorushalmi Edit	Teaching Assistants Reasons for the Design of Problem	77	
refushanni, Eun	Solutions for Introductory Physics: Findings	//	
Zavala, Genaro	Students Difficulties with Unit Vectors and Scalar	01	
	Multiplication of a Vector	91	
7hy Guanation	Investigation of Students Difficulties with Quantum	124	
Zhu, Guanghan	Measurement	134	
Zwickl, Benjamin	Transforming the advanced lab: Part I - Learning goals	133	