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Expt. 2: Light Intensity, Blackbody Radiation 
and the Stefan-Boltzmann Law 

 
Goals:  Determine the emission spectrum from a heated blackbody object (filament lamp) as a 
function of temperature using a photo-diode and a set of interference filters. Compare the results 
with the classical theory of Rayleigh-Jeans and the quantum theories of Stefan-Boltzmann and 
Planck. Use the latter to determine the temperature of an unknown high-temperature source 
(halogen lamp). 
 
Suggestion:  Bring a USB memory stick to class – it can be used for copying the Excel® and 
Vernier Logger Pro® spreadsheets used for the lab.   
 
 

Apparatus and Demonstration List  
 
1. Hewlett-Packard model 974A and 34401A digital multi-meters 
2. Hewlett-Packard model E3632A low voltage DC power supply 
3. Test leads with banana plugs 
4. Photodiode boxes with small and large detectors (one opened for inspection) 
5. Photodiode box mounted on a rotating platform 
6. Coax cable for connecting photodiode box to digital voltmeter 
7. BNC to banana plug adapter for voltmeters 
8. Tungsten lamp and holder 
9. 120 volt Halogen lamp for use as an unknown black-body emitter 
10. Optical bench assembly 
11. Three optical bench mounting clamps 
12. Aluminum light baffles 
13. Six or more mounted interference filters from 450 nm to near infra-red 
14. Hand-held spectrometer   
15. Metric tape measure 
16. Two banana plugs - alligator clip adapters 
17. Solar photovoltaic cell 
18. Opaque white viewing cards 
19. Precision voltage and resistor reference sources for calibrations (check on availability) 
20. Student-supplied digital camera for pictures of set up (optional)  
 

DEMO: Infra-red night-vision viewer 
DEMO: Infra-red non-contact thermometer 

 
 
References: Physics 240 and 340 texts  
                     HyperPhysics (http://hyperphysics.phy-astr.gsu.edu/hbase/HFrame.html) 
                     Wikipedia: Blackbody Radiation 
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2.1 Introduction 
 
In Experiment 1, we explored the behavior of simple gases such as helium.  An "ideal gas" 
thermometer works particularly well with helium because the interaction between atoms is very 
weak.  As a consequence, helium is extremely hard to liquefy – its temperature must be reduced 
to 4.2 K before it can condense.  Another simple physical system is a photon "gas" in 
equilibrium with its surroundings as in a so-called “blackbody”.  Such a system has some 
unusual properties:  the "particles" are, by definition, relativistic, and quantum mechanical 
effects are significant.  In fact, the failure of classical mechanics to provide a finite value for 
thermal emission of electromagnetic radiation led to the discovery that light and other forms of 
electromagnetic (EM) radiation consist of discrete energy packets, aka light quanta or photons. 
In this experiment, you will measure the EM spectrum produced by a tungsten filament at 
various temperatures and compare the results with both the classical and quantum-mechanical 
predictions.    
 
To get familiar with the equipment, you first will make some measurements of light intensity as 
a function of the distance from the source and the angle of the sensor with respect to the light 
beam.  The effects you will observe are only geometrical in nature, but they are basic to many 
aspects of physics.  They are responsible, for instance, for the seasonal variations in average 
temperature that mark the difference between summer and winter. These are particularly 
pronounced at high geographical latitudes, as will be discussed as part of this lab. 
 
2.2 Measuring Light Intensity 
 
The basic device for measuring light intensity in these experiments is a reverse-biased silicon 
diode. Recall what the current-voltage diagram for a diode looks like. A silicon diode is the most 
elementary semiconductor structure one can construct.  Schematically it looks like the sketch 
shown in Figure 2.1.  In the upper region of the diode, electrical current is transported by positive 
charge carriers called "holes"; in the lower region, the current carriers are negatively charged 
electrons.  If this device is "reverse-biased" so that the upper electrode is more negative than the 
lower one, the charge carriers will separate, as shown in Figure 2.2.  In this case, the positive 
holes will be attracted to the top and the electrons towards the bottom, leaving a "depletion 
layer" in the middle.  Since almost no free electrical carriers are present there, the current 
through the diode when it is in the dark is effectively zero (typically nanoamperes or less).  
Under these circumstances, a continuous incident light beam (or x-ray beam, or charged particle 
beam) will produce electron-hole pairs in the depletion region at a certain rate. These pairs 
separate due to the electric field present in the depletion layer and get carried away to the battery 
terminal, amounting to a light-induced current.  The  current is then directly proportional to the 
number of incident photons absorbed per time  For a well-designed photodiode, the average 
number of extracted electron-hole pairs per incident light photon (the quantum efficiency)  is 
fairly close to 1 (typically 0.3 to 0.8 in the visible light region).  The photodiodes used in the 
present lab are mounted in small blue boxes and wired as shown in Figure 2.3.  A 1 kΩ 
protection resistor has been added in series with the diode as a provision to limit the current, in 
the unlikely case that the battery is inserted in the wrong way (see Figure 2.3).  The protection 
resistor will not affect your measurements as long as the current is kept below 200 μA. 
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Figure 2.1: Schematic view of a silicon pn diode. 
 

 
Figure 2.2: By reverse-biasing a pn diode, a charge-free region is created at the pn boundary called the 
depletion layer. This is sometimes denoted as a pin diode, where “i” denotes the intrinsic charge-free 
depletion layer. The circuit symbol for a diode is shown on the right. 
 
Measuring the photocurrent is fairly easy if the current is large enough relative to the “dark” 
current that may be present in the diode when it is reversed biased.  The Hewlett-Packard 974A 
multi-meters will operate well as ammeters down to about 1μA (10-6 A).  This is not sufficient 
for measurements at low light levels, but there is a fairly simple alternative for measuring 
currents below this range: Attach one of the provided banana plugs, which have a 1 kΩ to 100 
kΩ load resistor soldered across the terminals, to the photo-diode box.  Connect a multi-meter in 
voltmeter mode and measure the potential drop across that resistor, as indicated in Figure 2.4.  
Since the multi-meter can detect voltages as low as 3 microvolts (μV), the minimum measurable 
current through a 100 kΩ resistor is 30 pA (3 x 10-11 amperes).  Note that the input impedance of 
the meter is about 10 MΩ, so very little of the photo-current is shunted inside the meter.   
 
In all measurements for this experiment, choose a load resistor that is small enough that the 
measured potentials are substantially less than 0.5 Volts.  Under these conditions, the voltage 
across the known resistor is a linear function of the light intensity. 
 
A note of caution:  Although the voltage output of a photodiode is related to the input light 
intensity, the relationship can be far from linear. In an open circuit (i.e., no current flow), the 
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voltage is practically constant, independent of intensity, as long as the light is bright enough to 
overwhelm the intrinsic electron-hole recombination rate.  The terminal voltage under these 
circumstances approximately equals the band gap potential, which is 1.12 volts for silicon.  That 
is why we measure the current through a load resistance of order 10 kΩ, not the voltage across 
an “infinite” (i.e. large) load resistance.  The photo-current through the load resistor is 
proportional to the light power, provided that the voltage drop on the load resistor is small 
compared to the band gap. 
 
A note of historical interest: The explanation for light-induced electron emission from metal 
surfaces (the photo-electric effect) was the scientific contribution for which Einstein was 
awarded the Nobel Prize in 1921. Contrary to what you might think, he did not receive a Nobel 
prize for either special or general relativity, as it was not common to award more than one Nobel 
prize in one field to a single person.  Marie Curie over the same period did receive two Nobel 
prizes, but one was in physics and the other was in chemistry. 
 
 
2.3 The Light Source 
 
The light source used in this experiment is a tungsten filament lamp that operates at low voltage 
but at fairly high current. Using a regulated power supply, the filament temperature is held 
constant; this will be important throughout this experiment.  The lamp was originally 
manufactured for automobile use so the electrical resistance must be low to generate sufficient 
light with the 12-volt power usually available.  In place of the lead-acid battery in a car, we have 
a DC power supply to provide the necessary DC current.  A diagram is shown in Figure 2.4.  For 
these experiments, the power consumption of the lamp must be carefully measured.  This 
requires knowing both the electric current passing through the tungsten filament and the voltage 
across it.  The resistance of the lamp can then be used to estimate the filament temperature since 
the resistivity increases in a well-known way (more or less linear) as the metal gets hotter. This is 
shown and tabulated in Table 2.1. 
 
The lamp and detector mount on rails so that the positions can be easily changed.  The whole 
apparatus is placed in an enclosure so that light from outside sources can be minimized.  The 
Hewlett-Packard E3632A power supplies are convenient for these measurements since the output 
voltage and current are monitored and displayed.  Do not exceed 13 volts for the lamp.  Keep in 
mind that the resistance of the wire leads to the lamp causes a significant drop in voltage to the 
lamp.  Therefore, the voltage directly across the lamp must be measured with the small hand-
held multi-meter, while the lamp current can be read accurately from the readout on the HP 
power supply. 
 
 
2.4 Light Intensity and Geometry 
 
The intensity of a light source or any source radiating electromagnetic (EM) waves varies in a 
predictable way as a function of distance to the source and angle with respect to the direction of 
incidence.  These dependences are strictly a consequence of geometry. A light source that is not 
collimated by a lens and that is not intrinsically beam-like (such as a laser) will emit light (or 
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other EM radiation) uniformly in all directions. Further, the source may be regarded as a point-
like source if the observation distance is much greater than the size of the source.  
 
In the following sections, you will measure the intensity of light from a small, hot tungsten 
filament using the photodiode circuit described earlier.  It is important to keep stray scattered 
light from affecting these measurements so “dark” boxes using black curtains have been 
provided to reduce the light from room lights and windows.  A light baffle with a 1" diameter 
hole also should be used to reduce scattered light within the enclosure itself. Use your judgment 
in positioning the equipment to reduce reflected and scattered rays inside the box. (A scattered 
ray is one that does not follow a straight path from the tungsten filament to the detector.) Any 
reflected or scattered light many not preserve the blackbody radiation spectrum form the lamp. 
Finally, any remaining current in the detector can be estimated by interposing an opaque card in 
front of the hole in the light baffle and measuring the residual photocurrent present. Subtract the 
background reading from all measurements. Such background subtractions are standard practice 
in the physical sciences. Keep these procedures in mind throughout this course – as accurate light 
intensity measurements using a photo-diode will be required in several of the subsequent 
experiments. 

 
 
 
 Output       BNC 

cable connector  
 
 
 
 
 
 
 
 
 
 
 
Figure 2.3: The internal wiring diagram for the Physics 341 photodiode boxes (see the opened box 
showing the circuit). 
 

1) Set up the tungsten lamp, power supply and HP Digital Voltmeter (DVM) as shown in 
Figure 2.4.  Use the photodiode box with the smaller sensor (3 mm x 3 mm) for 
measuring light intensity.  Operate the light bulb at 10 volts, as measured across the bulb 
electrodes.  Measure the light intensity (which is proportional to the photodiode current), 
as a function of distance from the filament for at least eight points, suitably chosen, over 
a 2-meter range. One or more light baffles, suitably positioned (note their location), can 
be used to minimize stray light. The photodiode should be set with its surface set at the 
optimum angle to maximize the photocurrent.  Use a load resistor of 1 to 10 kΩ on your 
DVM and set the HP-DVM to DC voltage mode.   Remember that the DVM voltage 
should be <0.5 V at the smallest distance to ensure a linear photodiode response.  (If 
you want to get in closer, you can use a smaller resistor or switch the meter to current 
mode.) 
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2) Assuming a uniform point source, how would you expect the net photodiode current to 
vary with distance?  Graph your results using Excel®, Vernier Logger Pro® or another 
suitable program and fit the data to a power law to test your hypothesis. How does the 
program indicate the goodness of the fit? You need to cite that criterion when displaying 
a fit to your data. Note: rather than blindly extracting a best-fit value of the exponent, it is 
better to test whether the expected dependence on distance is obeyed within the 
experimental uncertainties. These can be estimated or otherwise determined (e.g. by 
measuring a known reference voltage source).  Explain your results in terms of geometry 
and such fundamental quantities as the total power emitted by the incandescent lamp.  
See Appendix 2.A for hints on how to explore the functional behavior. 
 

 
 
Figure 2.4:  Schematic of the setup for light intensity vs. distance measurements. 

 
3) In the previous measurements, it was assumed that the light rays struck the photodiode at 

normal incidence.  Determine how the observed intensity changes as the incidence angle 
is varied.  For these measurements, use the larger photodiodes (10.0 mm x 10.0 mm) that 
are mounted on rotating platforms.  The 0o incidence angle can be found by looking for 
the light reflected back from the diode and aligning the back reflection to overlap with 
the incoming beam, a technique we use often in optics. Use light baffles to again 
minimize stray light. Take a minimum of five measurements at different angles. What is 
the expected functional relationship between intensity and angle?  Explain why this 
occurs.  Plot your data in such a way that you would expect a straight line, so that you 
can test if the behavior is as expected.  Include uncertainties (error bars) on your plots. 
These can be added by hand on the printed plots if needed, although most graphing 
programs will allow you to add error bars. 
 

4) The dependence of illumination on angle is the chief cause of seasonal variations in 
temperature on the Earth’s surface.  The Earth's spin axis is tilted by 23.4o with respect to 
the Earth's orbital plane around the Sun. Ann Arbor is located 42.4o north of the Equator.  
Calculate the angle of the Sun's rays with respect to normal incidence at noon in mid-
summer and mid-winter.  From this, determine the corresponding ratio of average light 
intensity between the two seasons. Note: The light intensity at noon as a function of the 
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time of the year approximately follows a sinusoidal dependence. The corresponding 
curve for the average daily temperature high lags that curve by about a month or so. For 
example, the intensity minimum occurs on Dec. 21st, while the coldest days typically 
occur about a month later. 

 
5) A majority of scientists believe that the current level of fossil fuel burning is leading to 

global climate changes that will have very unpleasant impacts on our lives.  The present 
alternative sources of power are either solar energy (a form of nuclear fusion energy), 
used directly or via secondary effects such as wind or waves, or nuclear fission using 
nuclear reactors.  Direct conversion of solar to electrical energy and power using silicon 
photovoltaic devices similar to the sensors used in this experiment eventually might 
become an economical solution, at least in areas with lots of sunshine.  To estimate the 
area of silicon cells required to satisfy our energy needs, we first determine the optimum 
load resistance to extract electrical power. The maximum power is extracted by a load 
resistance RL when the product of the voltage across the load, in this case the load 
resistor, times the current through it (VLIL) is at a maximum.  Use the available solar-cell 
samples, connect them to various load resistors and measure VL vs. the load resistance.   
A resistor switch box is available for this purpose. Plot the power VL

2/RL  vs. RL at about 
12 values of RL between 1 and 50 Ω  or more. Make sure that the power maximum 
occurs near the middle of your graph, not at one of the edges. Note that the resistor box 
readings may not be accurate, especially on the low end, so it is a good idea to check the 
resistance values with your handheld DVM.  From the graph, estimate the maximum 
power that the solar cell can deliver to a load, and the value of the load resistance for this.   
Compare the load resistance for maximum power with the internal resistance of the cell 
and discuss.  You can use Equation 2.3 below to determine the internal resistance of the 
solar cell.  Note that solar cells essentially are photo-diodes. Hence, the internal 
resistance when illuminated is not fixed; it is a strong function of the illumination and 
current. 
 
The following equations can be used to find the internal resistance of a power source 
such as a solar cell.  From Kirchhoff’s  loop rule, the voltage across the load resistance is 
 

VL = V0 – IL RS                                                          (2.1) 
 
where IL is the current through the load resistance RL;  RS is the internal resistance of the 
power supply; and V0 is the open circuit voltage (“EMF”) of the power source. IL can be 
determined from  
 

       VL = ILRL                                                                       (2.2) 
 
Eliminating IL from (2.1) and (2.2) gives: 
 
                                              VL = V0RL/(RL+RS)                                                          (2.3) 

 
This says that if the internal resistance is much smaller than the load resistance, the 
voltage output will not be that much different from the open circuit voltage. In any case 
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you can deduce RS using the above equations together with your measured values of VL 
for the various RL values you used.  

6) The average American consumes about 1 kilowatt of power during the daytime. The sun 
can provide 1 kW/m2 in the form of incident sunlight. Using the efficiency noted below 
for the photodiodes used in this experiment, how large an area covered by solar cells like 
those used here would be required per person?  The US Census Bureau claims that the 
US population was 292,287,454 on January 1, 2004 (http://www.census.gov/).  How 
many square meters of solar cells would be required to satisfy the estimated daytime 
(personal) power use in the US? What fraction of the area of the sun-rich state of Nevada 
would that be? (The area of Nevada is 286367 km2.) 

 
 2.5   Blackbody Radiation and the Stefan-Boltzmann Law 
 
The origins of quantum mechanics arose from the failure of classical methods to explain the 
spectral distribution of light from hot objects.  The experimental model system is a hot cavity 
such as an oven with walls at a uniform temperature T.  A small hole is cut into an oven wall to 
allow a small fraction of the electromagnetic radiation to escape.  Such light is called blackbody 
radiation.  Surprisingly, the spectra of hot bodies such as the Sun or a lamp filament are very 
close to that of an idealized black body.  Even the cosmic microwave background radiation has a 
blackbody spectrum corresponding to a temperature of 2.725 K. (See, for example,  
http://en.wikipedia.org/wiki/Cosmic_microwave_background_radiation). 
 
Statistical mechanics plus classical electromagnetism predicted a spectral distribution called the 
Rayleigh-Jeans Law, which can be written as: 
 

kTkT
c
f

df
dI

22

2 22
λ
ππ

==                                                         (2.4a) 

 
where dI/df is the power emitted per unit surface area and per unit frequency at frequency f (or 
wavelength λ) by an object at temperature T.  Although the derivation of this formula is beyond 
the scope of this course, the form can be easily explained.  In classical statistical mechanics, 
every possible degree of freedom should acquire an average energy of 1

2 kT. For example, a 
monatomic gas molecule has energy 3

2 kT because it can move in three independent directions.  
The number of independent modes of oscillation in a cavity scales like f 2, for reasons similar to 
the relationship of the area of a sphere to its radius.  The total intensity per unit frequency at a 
given frequency is the product of the number of modes available and the average energy in each.  
This is the physical content of Equation 2.4a. 

We may re-express Eqn. 2.4a in terms of wavelength. Using fc /=λ and λ
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where λλ ddI /  is the power emitted per unit surface area and per unit wavelength at wavelength 
λ (or frequency f) by an object at temperature T. Note of caution: λλ ddI /  in Equation 2.4b is 
often  written as Sλ , Iλ , u(λ) or other forms, e.g. as in the figure next to Equation 2.6c. The 
quantities dI/df and λλ ddI /  are quite different: they differ in numerical values, in units and in 
their dependence on f or λ. 
 
From a theoretical point of view, Equations 2.4a and 2.4b are not satisfactory.  As the frequency 
f becomes large (hence λ  becomes small, as in the ultraviolet region), the predicted intensity 
increases without limit, even for objects at modest temperature.  This is called "the ultraviolet 
catastrophe".  On the other hand, at low frequencies (hence large λ ( i.e., at the red and infra-red 
wavelengths), the formula gave accurate predictions of the experimental results, indicating that at 
least some aspects were basically correct. 
 
The problem was solved in two steps.  Since Equations 2.4a and 2.4b lead to an infinite radiation 
rate, another approach must be found to compute the total intensity emitted by a hot object.  
Ludwig Boltzmann found a thermodynamic argument to show that the total radiation intensity, 
i.e. dI/df integrated over all frequencies, is given by  
 

4TI σ=                                                          (2.5) 
 

where σ is a constant of nature and T is the absolute temperature (in K). (See derivations in your 
textbooks or that given in Wikipedia.) This agreed with earlier experimental measurements by 
Josef Stefan.  Equation 2.5 is called the Stefan-Boltzmann Law. The unusually rapid increase in 
radiation with temperature is a consequence of the mass-less nature of photons, the carriers of 
electromagnetic energy. (The same kind of behavior governs phonons, the quanta of acoustic 
energy in solids and liquids.) 
 
Although the Stefan-Boltzmann law correctly describes the total power emitted per area, it does 
not predict the actual form of the spectral distribution. That step was taken by Max Planck who 
postulated that electromagnetic energy was emitted in discrete units or quanta, each with an 
energy given by hf, where h is the Planck constant, 6.6256 x 10-34 joule-second (see Table 2.4).  
For photon energies with hf >kT, it would no longer be possible to populate each mode with kT 
average energy since a fraction of hf is no longer allowed.  The consequence is an additional 
factor of  

hf /kT
ehf / kT −1

 

 
that reduces the spectral distribution given by Equation 2.4.  This factor approaches unity for 
small f, preserving the long wavelength Rayleigh-Jeans behavior, while avoiding the ultra-violet 
divergence.  The result is the Planck spectral distribution: 
 

1
12

/2

3

−
= kThfec

hf
df
dI π                                                    (2.6a) 
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If we rewrite this in terms of power per area and wavelength interval at a given wavelength, we 
obtain for the Planck distribution in terms of λ  (recall c =λf ):  
 

                                                  
1

12
/5

2

−
= kThce

hc
d
dI

λ
λ

λ
π

λ
                                                         (2.6b) 

 
This distribution (shown below) has a maximum at the wavelength given by Wien’s Law: 
 

 
          

     
     
     

 

     
 
 
 
 
 
 
 
 
 
 
 
 

By integrating the above equations over all frequencies or wavelengths, one can recover 
Equation 2.5 and, in addition, find that the constant, σ, is explicitly given by: 
 

σ =
2π 5k 4

15h3c 2 = 5.67 ×10−8W /m2 ⋅K 4                                    (2.7) 

 
It turns out that hot bodies such as the sun or a lamp filament behave much like a canonical 
“blackbody”.  In the first part of this experiment we use an ordinary tungsten wire lamp filament 
as a surrogate blackbody. 

 
7) Verify the Stefan-Boltzmann Law by determining the total intensity radiated as a function 

of filament temperature.  The filament temperature can be inferred from the lamp 
resistance and the resistivity data tabulated in Table 2.1.   For these purposes, the room 
temperature (cold) resistance of the filament can most accurately be obtained with the 
small Hewlett-Packard multi-meter operating in ohmmeter mode.  The filament 
resistance is very small, so be sure to subtract the resistance of the ohmmeter leads.  The 
tabular values contained in Table 2.1 have been entered into an Excel® spreadsheet file 
loaded on the lab PCs for Expt.2W09.  With these data you can use Excel® (or another 
program) to interpolate temperature automatically from your current and voltage 
measurements.  

(2.6c)
T

K
T

c ⋅
=

1
5
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=
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The intensity emitted can be calculated from the total electric power supplied to the lamp, if we 
assume all of it goes into electromagnetic radiation.  You will need to find the surface area of the 
filament responsible for the blackbody emission. Two quantities must be determined:  the wire 
diameter (or radius) and its length.  The length is hard to measure because the filament is tightly 
coiled, but it can be computed from the room temperature (cold) resistance, R, the wire radius, r, 
using the formula you may recall from introductory physics courses: 

      2r
R

π
ρ l

=                                                          (2.8) 

where ρ is the resistivity given in Table 2.1 and  is the wire length.  You will need to measure 
the filament wire radius of a similar lamp that has been dissected to expose the tungsten wire.  A 
precision micrometer is available for this purpose (per usual with any device, check the zero 
offset and adjust or compensate for this).  The emitting area is 

l

lrA π2= .  The total intensity, I, at 
the surface of the tungsten equals the total electrical power iV divided by the area, 
 

I =
iV
A

                                                            (2.9) 

 
where i is the current through the lamp, V is the potential across the lamp and A is the area you 
have derived from the above.  Note that V   should be measured directly at the lamp terminals, to 
eliminate the voltage drop in the power leads.  
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Figure 2.5:  Typical setup for the Stefan-Boltzmann measurements (set baffle as needed to minimize 
stray light). Usually we use LL convention (light from left). 

 
8) Take data with power supply voltages from about 4 V to 13 V in steps of 1 V.  Plot the 

intensity radiated as a function of the filament temperature. Include estimated 
uncertainties (error bars) in your plot. Fit your data to 4TI σ= using Excel® or Vernier 
Logger Pro® and determine the constant σ  and power n and estimate and justify their 
uncertainty.  You can use the Trend line function of Excel® for this or the equivalent in 
the Logger Pro®  (or other) programs. You will find that the fit is poor at lower filament 
temperatures due to the temperature non-uniformity in the filament, which you can see by 
inspection. Thus you may want to drop one or two low temperature points to see if that 
improves the fit, but note this and any improvement found.   Compare your results to the 
expected values for an ideal blackbody.  Use your value for σ to estimate the Boltzmann 
constant  k (and its uncertainty)  assuming known values of  c  and  h  (Equation 2.7). 
 

9) Next investigate the Planck spectral distribution (Equation 2.6) for one or more of the 
higher filament temperatures. Use the photodiode boxes with the large sensors (10 mm x 
10 mm) for this part of the measurement and a resistor of 10K or greater on the HP DVM 
to measure the photodiode current.  Set the photodiode at a known distance ~20 cm from 
the source with one or more light baffles as necessary.   To measure the light intensity at 
different frequencies and hence wavelengths, sets of  interference filters are available 
with pass bands at 450 nm (blue), 550 nm (green) , 650 nm (red) and other wavelengths  
through the near infra-red region .  The bandwidth and transmission for each band are 
provided in Table 2.2.  Handle the filters with care and avoid getting fingerprints on the 
glass surfaces.  Only a small amount of light passes through the filters, especially the blue 
and red and infrared filters.  It is best to mount the filters right on the photodiode box; 
this together with the light baffles minimizes the background light that can get around the 
filter. This is necessary as the intensity away from the maximum will be low and hard to 
measure accurately if there is stray light.   Be sure to subtract the background photo-
current reading you observe when the hole in the baffle is covered with an opaque card.  
Refer to Appendix 2.B to make sure you obtain all the data you need. Take photodiode 
current data at one or more of the higher filament voltages, e.g., 11 V to   13 V with the 
full set of filters.  (Some of the filters will need to be shared with the other groups). 

 
10) Consult Appendix 2.B to determine how to calculate [ ] )(/ λλλ ddI from the photodiode 

currents you have measured and the data provided in Tables 2.2 and 2.3. Plot 
[ ] )(/ λλλ ddI vs. λ for each filament temperature along with the Planck and Rayleigh-
Jeans predictions for [ ] )(/ λλλ ddI .  [Note: You may have to arbitrarily scale the Planck 
and classical predictions by appropriate factors to get them on the same graph.] 
 

11) The Planck spectral distributions (Equations 2.6) give distinctly different predictions than 
the classical Rayleigh-Jeans law (Equations 2.4).  In one case, the temperature 
dependence is given by1/(ehf / kT −1), whereas the latter predicts a simple linear behavior 
with T.  You should compare the shape of the photodiode current vs. temperature curve 
with the quantum-mechanical and classical predictions normalized as needed, ignoring 
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the various normalization factors that don’t depend on temperature. See Additional 
questions in Section 2.7 below (to be answered in your lab report summary). 

 
2.6   Blackbody Temperature of an Unknown Source 
 
Carefully install one of the 120 V halogen lamps on the optical bench and plug it into a 120 V 
outlet. Make sure it has the UV filter glass on the front of the lamp.  Using the techniques 
outlined above with the filter sets provided, measure the emission spectrum of this source.  
 

12) Fit the spectrum with a blackbody spectral distribution (Equation 2.6b) and obtain its 
blackbody temperature. You will likely need to normalize the calculation to fit the data 
once you have the correct shape i.e. temperature determined (Hint: You can use Wien’s 
Law as a guide). Graph your data and the best fit, renormalized as needed. Indicate the 
goodness of fit criterion and provide a reasonable estimate of the uncertainty in T. 

 
13) How does this temperature compare with the surface temperature of the Sun (which is a 

main sequence star)? A red giant star?  
 
2.7   Additional Questions and Analysis  

 
14) You probably found that in the "inverse square law" test the exponent was somewhat less 

than expected.  Estimate (reasonably quantitatively) how much the finite size of the light 
source can affect your “inverse square law” test for small separations.  (Suggestion:  Try 
adding a constant amount to all your distances to see if you can get a power closer to -
2.00) 
 

15) What trig function best describes the behavior of light intensity with angle of incidence 
on the photodiode?  Explain why this would be expected. 
 

16) In the test of the Stefan-Boltzmann Law, what uncertainty causes the largest error?  (e.g., 
lamp current, filament temperature, filament diameter, room temperature filament 
resistance, . . .). Defend your answer with some specific numbers. 
 

17) Estimate the uncertainty in the coefficient σ that you obtained in testing the Stefan-
Boltzmann law by making reasonable variations on some of your data points.  Discuss 
systematic effects and assumptions that would cause the measured value to deviate 
significantly from the expected value.  Would you expect the tightly coiled lamp filament 
to act like an ideal “black body” radiator? 
 

18) Do the same for your value of the exponent of T in Equation 2.5.  Is it consistent with an 
exponent of 4.00?  Discuss. 
 

19) What are the appropriate mks units for [ ] )(/ λλλ ddI  (You may use references to answer 
this. However, note that different symbols are used in literature for what we denote as 
[ ] )(/ λλλ ddI  in Equation 2.6b.) 
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20) We assumed that all the electrical power supplied to the lamp filament is transformed into 

radiation. Discuss the validity of this assumption.  (Where else might it go?) 
Temp  Resistivity Temp  Resistivity 

K R/R293K μΩ · cm K R/R293K μΩ · cm 
293 1 5.48 2000 10.34 56.67 
300 1.03 5.65 2100 10.96 60.06 
400 1.47 8.06 2200 11.58 63.48 
500 1.93 10.56 2300 12.21 66.91 
600 2.41 13.23 2400 12.84 70.39 
700 2.94 16.09 2500 13.49 73.91 
800 3.47 19 2600 14.14 77.49 
900 4 21.94 2700 14.79 81.04 

1000 4.55 24.93 2800 15.46 84.7 
1100 5.1 27.94 2900 16.12 88.33 
1200 5.65 30.98 3000 16.8 92.04 
1300 6.22 34.08 3100 17.47 95.76 
1400 6.79 37.19 3200 18.16 99.54 
1500 7.36 40.36 3300 18.85 103.3 
1600 7.95 43.55 3400 19.56 107.2 
1700 8.54 46.78 3500 20.27 111.1 
1800 9.13 50.05 3600 20.99 115 
1900 9.74 53.35  

 
Table 2.1:   Resistivity for tungsten as a function of temperature. 
 
 
 

Color λ 
(nm) 

Δλ 
(nm) 

Trans- 
mittance, η

f 
(Hertz) 

Δf 
(Hertz) 

E=hf 
(eV) 

blue 450 40.1 0.69 6.662 x 1014   5.945 x 1013   2.755 
green 550 40.1 0.748 5.451 x 1014   3.982 x 1013 2.254 
red 650 35.8 0.828 4.612 x 1014   2.542 x 1013 1.907 
red 700 50.0 0.60 4.286 x 1014 3.06 x 1013 1.771 
IR1 880 50.0 0.55 3.409 x 1014 1.94 x 1013 1.409 
IR2 950 50.0 0.55 3.158 x 1014 1.66 x 1013 1.305 
IR3 1064 10.0 0.50 2.820 x 1014 0.26 x 1013 1.165 

 
Table 2.2:   Interference filter parameters. 
 
 
 

λ (nm) 300 350 400 450 500 550 600 650 700 
ηdiode 0.413 0.504 0.547 0.646 0.748 0.824 0.846 0.852 0.855 

λ (nm) 750 800 850 900 950 1000 1050 1100  
ηdiode 0.852 0.843 0.832 0.814 0.783 0.709 0.45 0.18  
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Table 2.3:   Hamamatsu S2386-5K photodiode quantum efficiency, ηdiode, versus wavelength, λ. 
 
 
 

c    2.99792458 x 108m/s     speed of light   
e    1.60217733 x 10-19 C     electron charge   
h    6.6260755 x 10-34 J · sec    Planck constant   
k    1.380658 x 10-23 J/°K    Boltzmann constant   

 
Table 2.4:  Fundamental physical constants. 
 
2.7 Additional Tips for Keeping Lab Notebooks and Writing Reports 
 
Both the raw data and most of the numerical analysis belong in your notebook.  The formal 
summary of the results along with relevant graphs are then attached separately. Enter information 
either by writing some text and/or by affixing Excel® or other printouts, graphs, etc. 
 
A common mistake that students make is to wait till after the second week of an experiment to 
start analyzing the data.  Often they find they missed some crucial piece of data and they can't 
finish their analysis.   You are strongly encouraged to complete as much of the data taking 
measurements as possible in the first week of a given experiment and start analyzing your data 
right away.  Then if you find something strange, you can re-measure or otherwise obtain the 
necessary data or information the second week. 
 
As in Experiment 1, the numbered items describe the measurements you should perform and 
questions to answer.  Try to describe your measurements in enough detail so that you could 
reproduce the experiment.  Simple diagrams or photographs are often very helpful.  You should 
find that the mere act of writing down what you are doing will help you to think!  Answers to 
questions should refer to the appropriate numbered section in the manual. 
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Appendix A:   Extracting Power Law Behavior from Data 
 
Power law behavior frequently occurs in physics.  In this experiment, one expects to find that 
light intensity varies as R-2 and the radiated power from a hot filament varies as T4.  It would be 
nice to have a systematic way of testing your data to see what exponents are actually measured. 
 
Assume we have a power law relationship: 

y = xp 
 
The logarithmic derivative is defined by: 
 

d log y
d log x

=
x
y

dy
dx

=
x
x p ⋅ px p −1 = p                                         (2.10) 

 
This is a handy tool for finding the power law behavior at any point along a curve.  To apply it to 
the data for this experiment, fit your data to suitable smooth curves.  The slope of the curve can 
then be evaluated and inserted into Equation 2.10 to find the local effective power law exponent. 
 
 
 
Appendix B:   Estimating the Measured Photocurrent 
 
The actual photodiode current measured in Section 2.5 is a somewhat messy product of a number 
of factors.  The steps to finding this relationship are given below. 
 
The power radiated per filament area and unit frequency or unit wavelength is given by 
Equations 2.6a and 2.6b, respectively.  Thus, the power emitted into the filter pass band is: 

 

                                                      filf Af
df
dIP ⋅Δ⋅=Δ                                                       (2.11a) 

 
or, 

 

                                             filA
d
dIP ⋅Δ⋅=Δ λ

λ
λ

λ                                                  (2.11b) 

 
 

where Δf or Δλ is the bandwidth transmitted by the interference filter (Table 2.2) and Afil is the 
lamp filament area.  However, this power is radiated isotropically over 4π steradians.  Thus, the 
fraction of this power intercepted by the photodiode is Adiode/(4π R2

diode) where Adiode is the active 
area of the photodiode and Rdiode is the distance of the diode from the tungsten lamp.  
Furthermore, the interference filter does not perfectly transmit all the light within the stated 
bandwidth.  The actual transmittance, ηfilter, is given in Table 2.2. 
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With these corrections, the power incident on the photodiode is 
 

Pdiode =
dI
df

⋅ Δf ⋅ Afil ⋅
Adiode

4πRdiode
2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ ⋅η filter                                                   (2.12a) 

 
or,   

             

            filter
diode

diode
fildiode R

AA
d
dIP η

π
λ

λ
λ ⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅⋅Δ⋅= 24

               (2.12b) 

 
 
Of course, what you measure with the photodiode is current, not power.  Each photon absorbed 
allows one electron to flow.  The photon arrival rate can be found by dividing the power by the 
energy of a single photon, hf.  One more efficiency factor is required:  the photodiode produces 
an electron-hole pair for each incident photon with a probability <1.  This quantum efficiency, 
ηdiode, is provided in Table 2.3.  The final result is: 

idiode =
dI
df

⋅ Δf ⋅ Afil ⋅
Adiode

4πRdiode
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ⋅η filter ⋅ηdiode ⋅

e
hf

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟                                    (2.13a) 

 
 
or,    

                  ⎟
⎠
⎞

⎜
⎝
⎛⋅⋅⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅⋅Δ⋅=

hc
e

R
AA

d
dIi diodefilter

diode

diode
fildiode

ληη
π

λ
λ
λ

24
              (2.13b) 

 
 

Use the above equations to extract 
λ
λ

d
dI  from the measured diode currents for each filter used at 

one of the known filament lamp temperatures and then for the unknown source.   
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