Will a magnet fall freely in a superconducting tube?

Tim Welsh ('13) and Greg Severn
severn@sandiego.edu
USD, Departments of Physics, and of Electrical Engineering

Abstract

A common demonstration of Lenz’s law and of Faraday’s law of Magnetic Induction is to drop a strong rare earth magnet through a tube of conducting material, typically copper.

If in normal conductors, the breaking work is ultimately the same as the I^2R losses, what would happen in the case of a superconducting tube? There is a theoretical research answer: the magnet should fall freely (once inside) the tube. We have performed the experiment, for the first time we believe, and we show that the magnet remains suspended indefinitely, so long as superconductivity is maintained in the tube.

Background

- Superconductors exhibit no electrical resistance.
- An induced current will eventually damp out, decrease in strength, due to electron collisions with lattice ions, this turns the current into kinetic energy of the lattice, which is heat.
- Currents have been observed to persist in superconducting rings for years at a time.
- Lenz’s Law states that an induced electromotive force (EMF) always gives rise to a current whose magnetic field opposes the original change in magnetic flux.
- Faraday’s law of Induction states that the EMF generated is proportional to the rate of change of the magnetic flux.
- The Meissner effect is the expulsion of a magnetic field from a superconductor during its transition to the superconducting state.
- One mechanism for superconductivity is Cooper pairing wherein phonon-electron coupling occurs, this allows the electrons to drop into energy states which are lower than the fermi energy.
- In type II superconductors, there is a regular array of superconducting grains surrounded by nonsuperconducting material. There is ‘flux pinning’. Magnets can be levitated above HTS (high temperature superconductors), but there are lateral restoring forces not present in type I superconductors.

Experimental Installation

- The tube levitates the magnet!
- The Meissner effect is the expulsion of a magnetic field from a superconductor during its transition to the superconducting state.
- One mechanism for superconductivity is Cooper pairing wherein phonon-electron coupling occurs, this allows the electrons to drop into energy states which are lower than the fermi energy.
- In type II superconductors, there is a regular array of superconducting grains surrounded by nonsuperconducting material. There is ‘flux pinning’. Magnets can be levitated above HTS (high temperature superconductors), but there are lateral restoring forces not present in type I superconductors.

The tube levitates the magnet!

Theory disagrees! Perhaps we’ve learned something new?

In their paper, “Superconducting pipes and levitating magnets”, Levin et al. find that
- work is required to insert the magnet into the tube,
- as long as the pipe length \gg its diameter, the magnet will then continue its descent unhindered.
- the effects of flux trapping (for 6g neodymium magnet with radius 6.35 mm, tube radius of 8 mm, with $B \sim 1$ kG at the tube wall) is negligible.

Acknowledgements

We thank
[1] the Associated Students, University of San Diego, for a student research grant ($1,500).
[2] the Department of Physics, University of San Diego for lab space, tools, and materials (and the front money), and encouragement.

References

[3] CAN Superconductors, s.r.o., in the Czech Republic, www.can-superconductors.com

2012 ALPha Conference on Laboratory Instruction Beyond the First Year of College. University of Pennsylvania and Drexel University, Wednesday, July 25 - Friday, July 27, 2012